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recombination events between nonallelic
copies. The finding of a recombinagenic
motif within the repeats may therefore help
to explain the observation that the break-
points of nonallelic recombination events
are often clustered (12). The overall influ-
ence of mobile DNA elements on recombi-
nation remains unclear, however, with
some over- and some underrepresented
within hotspots. 

The seven-nucleotide motif is not among
those previously associated with recombina-
tion in other species. However, its role in influ-
encing recombination is supported by sperm-
typing experiments, as is the role of another
nine-nucleotide motif motif (CCCCACCCC)
identified by the authors. Indeed, at a subset of
hotspots in humans, mouse, and yeast, varia-
tion in hotspot intensity among individuals
has been shown to depend on particular alle-
les, with recombination events occurring
more often initiating on the background of the
“hot” variant. When Myers et al. examined the
sequence context of two human hotspots
whose intensity has been shown to vary

among alleles, they found that the “hot” alle-
les were their top-scoring seven and nine
oligomer motifs and that in both cases, the
“colder” alleles were a mutation away from
that motif. This result strongly suggests that
these sequences modulate hotspot activity
(see the figure). Further evidence will come
from sperm-typing studies of other hotspots
polymorphic at the same motifs, as well as at
other candidate sequences. 

In light of recent reports that hotspot
locations are largely discordant in humans
and chimpanzees (9, 13), the discovery of
human motifs that appear to influence
hotspot activity raises a number of addi-
tional questions: Can changes to sequence
motifs explain most of the interspecies dif-
ferences, or do other genomic features, such
as chromatin accessibility or transposable
element activity, explain their rapid evolu-
tion? Given that most recombination events
take place within hotspots, and hotspot
locations appear to be rapidly evolving, is
there any constraint on recombination rates
below that of a chromosomal arm? For

example, are the density and intensity of
hotspots constrained within circumscribed
regions of the genome? With more sperm-
typing experiments and extensive linkage
disequilibrium data collection in close evo-
lutionary relatives of humans, answers to
these questions should no longer be elusive.
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A
radical change has occurred in the
practice of numerical weather pre-
diction over the past decade. Until

the early 1990s, atmospheric scientists
viewed weather forecasting as an intrinsi-
cally deterministic endeavor: For a given
set of “best” input data, one “best” weather
prediction is generated. Armed with sophis-
ticated computing resources (including
supercomputers), weather centers ran care-
fully designed numerical weather predic-
tion models to produce deterministic fore-
casts of future atmospheric states. Although
this is still the case today, weather predic-
tion has been transformed through the
implementation of ensemble forecasts. An
ensemble forecast comprises multiple (typ-
ically between 5 and 100) runs of numerical
weather prediction models, which differ in
the initial conditions and/or the numerical
representation of the atmosphere, thereby
addressing the two major sources of fore-
cast uncertainty.

Realizing the full potential of an ensem-
ble forecast requires statistical postprocess-

ing of the model output, in that model
biases, insufficient representations of fore-
cast uncertainty, and the differing spatial
scales of model gridboxes and observations
need to be addressed. In concert with statis-
tical postprocessing, ensembles provide
flow-dependent probabilistic forecasts in
the form of predictive probability distribu-
tions over future weather quantities or
events. Probabilistic forecasts allow one to
quantify weather-related risk, and they have
greater economic value than deterministic
forecasts in a wide range of applications,
including electricity generation, aircraft
and ship routing, weather-risk finance, and
disease modeling (1).

A maturing area is that of medium-range
probabilistic forecasting at prediction hori-
zons up to 10 days, which involves ensem-
bles of global numerical weather prediction
models (1, 2). Three operational methods
for the generation of medium-range initial
condition ensembles have been developed.
The U.S. National Centers for Environ-
mental Prediction (NCEP) and the Euro-
pean Centre for Medium-Range Weather
Forecasts (ECMWF) seek directions of
rapid error growth in selective sampling
procedures, known as the bred-vector per-

turbation method (3) and the singular-vec-
tor technique (4), respectively. The
Meteorological Service of Canada (MSC)
uses the Monte Carlo–like perturbed-obser-
vation approach (5), in which the model
physics parameterizations vary as well.
Ensemble forecasting and atmospheric data
assimilation (the melding of weather obser-
vations into a numerical model) can mutu-
ally benefit from each other, and there are
promising options for a linked system (6).
A recent comparative study suggests that
the ECMWF data assimilation, numerical
modeling, and ensemble generation system
has the best overall performance, with the
NCEP system being competitive during the
first few days, and the MSC system during
the last few days, of the 10-day forecast
period (7). The successful operation of
forecast ensembles on the global scale has
motivated the development of limited-area
short-range ensembles driven by initial and
boundary conditions supplied by different
weather centers, such as the University of
Washington ensemble system (8–10) over
the North American Pacific Northwest (see
the figure).

Probabilistic forecasting has become an
integral part of seasonal prediction as well
(1, 11). Forecasts on seasonal to interannual
time scales rely on comprehensive global
coupled ocean-atmosphere models and
have become feasible with an improved
understanding of the coupling between sea
surface temperature anomalies and atmo-
spheric circulation patterns. A recent spe-
cial issue of Tellus (12) is dedicated to
results from the European Union–spon-
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sored DEMETER (Development of a
European Multimodel Ensemble system for
seasonal to inTERannual prediction) proj-
ect. A single supercomputer hosted seven
independent state-of-the-art models, which
produced a series of 6-month ensemble
reforecasts with common archiving systems
and diagnostics. Each model was run nine
times with different initial conditions,
resulting in global multimodel, multi–ini-
tial condition ensemble reforecasts over the
past 50 years. The DEMETER ensemble
improved both deterministic and proba-
bilistic forecast skill when compared to the
single-model ensembles, in ways that can-
not be attributed to the increase in ensemble
size only. Applications to malaria incidence
and crop yield prediction have shown the
benefits of linking seasonal forecast ensem-
bles to end-user models that are also run in
ensemble mode. Building on the success of
the DEMETER project, an operational real-
time seasonal ensemble prediction system
has been established at ECMWF.

Current challenges include the repre-
sentation of forecast uncertainty due to the
use of imperfect numerical models. Model
uncertainty can be addressed through the
use of multimodel ensembles (in which
each single model run is deterministic), or

through stochastic representations of para-
meterized physical processes, as imple-
mented in the ECMWF medium-range
ensemble, thereby introducing random-
ness into the model runs (13). Both options
link flow-dependent forecast uncertainty
and model-related errors, and it remains to
be seen whether they are superior in any
way to approaches based purely on statisti-
cal postprocessing (7, 14). Nor has the
debate on selective versus Monte Carlo
sampling of initial condition uncertainty
been resolved, although it may evolve in
novel directions as operational experience
with various methods of sequential data
assimilation accrues.

From daily to seasonal time scales, prob-
abilistic forecasts based on ensembles have
become a prominent part of numerical
weather prediction. The ability of ensemble
systems, in concert with statistical postpro-
cessing, to improve deterministic fore-
casts—in that the ensemble mean forecast
outperforms the individual ensemble mem-
bers—and to produce probabilistic and
uncertainty information to the benefit of
weather-sensitive public, commercial, and
humanitarian sectors has been convincingly
established. More work needs to be done to
routinely provide fully reliable, flow-

dependent probabilistic forecast distribu-
tions, particularly of weather f ields, as
opposed to forecasts at individual sites. In
keeping with the remarkable pace of
progress since the early 1990s, we antici-
pate notable improvements in deterministic
and probabilistic forecast skill through the
continued development of multimodel,
multi–initial condition ensemble systems
and advanced, grid-based statistical post-
processing techniques.

Additional effort is required in the com-
munication, visualization, and evaluation of
probabilistic forecasts, and differing inter-
pretations of probability need to be recon-
ciled, to avoid the risk of perfecting ensem-
ble methodologies without a clear aim (15,
16). To this end, the paradigm of maximiz-
ing the sharpness of the probabilistic fore-
casts under the constraint of calibration may
offer guidance. Calibration refers to the sta-
tistical consistency between the probabilis-
tic forecasts and the observations; sharp-
ness refers to the spread of the predictive
distributions and is a property of the fore-
casts only. The goal is to increase sharpness
in the forecasts, without compromising the
validity of the probability statements.
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An improved forecast. Ensemble forecast of surface temperature over the North American Pacific
Northwest, with postprocessed probabilistic forecast products derived by Bayesian model averaging
(BMA) (14). (A to C) The ensemble consists of nine 48-hour forecasts (of which three are shown) valid
at 4 p.m. local standard time on 2 April 2005, using the MM5 mesoscale model with initial conditions
provided by different weather centers (8–10). (D) The BMA combined forecast is a weighted average
of the bias-corrected ensemble members (10, 14). (E) The uncertainty plot is a map of the half-width
of the BMA forecast intervals. Higher values correspond to more uncertainty. (F) The BMA probability
of freezing refers to the 24-hour period ending at the valid time.
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