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Abstract

We develop a method for assessing uncertainty about quantities of interest using urban simulation models. The method
is called Bayesian melding, and extends a previous method developed for macrolevel deterministic simulation models to
agent-based stochastic models. It encodes all the available information about model inputs and outputs in terms of prior
probability distributions and likelihoods, and uses Bayes’s theorem to obtain the resulting posterior distribution of any
quantity of interest that is a function of model inputs and/or outputs. It is Monte Carlo based, and quite easy to imple-
ment. We applied it to the projection of future household numbers by traffic activity zone in Eugene-Springfield, Oregon,
using the UrbanSim model developed at the University of Washington. We compared it with a simpler method that uses
repeated runs of the model with fixed estimated inputs. We found that the simple repeated runs method gave distributions
of quantities of interest that were too narrow, while Bayesian melding gave well calibrated uncertainty statements.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Patterns of land use and available transportation systems play a critical role in determining the economic
vitality, liability, and sustainability of urban areas. Decisions about such infrastructure investments as a new
light rail system or freeway expansion, or major policy changes such as establishing an urban growth bound-
ary, have consequences for decades to come. Furthermore, their development is typically controversial, not
only because of the massive public expenditures involved, but also because the benefits and costs of the pro-
jects are contested. Not only do different stakeholders differ on what values are important, but there is also
generally concern that costs or benefits are overstated, or risks of bad outcomes underestimated. In a recent
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study of transportation projects with a combined cost of $59 billion, in 9 out of 10 transit projects, transit
ridership was overestimated by an average of 106%, and half of all roadway projects studied had errors in
predicted usage of more than 20% (Flyvbjerg et al., 2005). These errors can be attributed to many causes, from
cynical interpretations of models to achieve political aims of leveraging federal investment in desired projects,
to uncertainty in model assumptions and errors in model specifications. For example, predictive simulation
models usually provide point results and do not take into account stochasticity or uncertainty about input
parameters. It is then almost impossible for stakeholders to make the right judgment about the confidence
of such results.

The need for expressing uncertainty in simulation models is widely recognized (see for example Refsgaard
and Henriksen, 2004; Van Asselt and Rotmans, 2002). In fact, there has been a great deal of work done on this
subject in high risk areas, for example in hydrology (Beven and Binley, 1992; Beven, 2000; Christensen, 2003;
Neuman, 2003; Korving et al., 2003), climate change (Casman et al., 1999) and whale management (Raftery
et al., 1995; Poole and Raftery, 2000).

Over the past few years, we have been involved in the development of UrbanSim (Waddell, 2002; Waddell
et al., 2003), a sophisticated simulation system to model urban development. Its goal is to help inform public
deliberation and decision-making on major land use and transportation issues. However, in the present form,
UrbanSim — like many other simulation systems — essentially provides only point predictions.

In this paper, we develop formal methods for assessing uncertainty for land use and transportation policy.
This is an underdeveloped area, where little research has been done. We will apply and adapt previous work
from other policy-related disciplines where possible. However, for several reasons that will be discussed later
in the paper, the previous work is not directly applicable to the present problem. One relevant prior study has
examined the propagation of uncertainty in the context of UrbanSim (Pradhan and Kockelman, 2002). How-
ever, this study analyzed only the sensitivity to a small sample of selected input values and explored the effect
of these changes on outputs, in addition to simple stochastic simulation error from variation in random seeds.
Another approach to extrapolate prediction accuracy for land-use models was taken by Pontius and Spencer
(2005). Their method uses models calibrated at different time points for simulating the present land-cover
change. From a measure derived by a validation with empirical data they estimate how accurately the model
will predict the future. This method is specific to simulation models that have categorical outcomes and sto-
chasticity is not taken into account. Furthermore, none of the above studies generate any statistical inferences,
nor any new methodology to calibrate a stochastic model system with respect to uncertainty, which are the
principal aims of this paper.

The paper is organized as follows. In Section 2 we briefly describe UrbanSim with its model components
and review sources of uncertainty that can be found in simulation models. In Section 3 we develop a formal
method for assessing uncertainty. In Section 4 the method is applied to the UrbanSim system. Section 5 pre-
sents our results. Finally, in Section 6 we discuss limitations of and possible improvements to our approach.

2. UrbanSim
2.1. Description

UrbanSim is an urban simulation model operational in several urban areas in the United States (Waddell,
2002; Waddell et al., 2003). The system is implemented as a set of interacting models that represent the major
actors and choices in the urban system, including households moving to a residential location, business choices
of employment location and developer choices of locations and types of real estate development. It takes an
extremely disaggregated approach by modeling individual households, jobs, and real estate development and
location choices using grid cells of 150 x 150 m in size. The modeling system microsimulates the annual evo-
lution in locations of individual households and jobs as the results of choices by families and employers, and
the evolution of the real estate within each individual grid cell as the results of actions by real estate
developers.

In this section, we give a brief description of the main components of the system. Our emphasis is less on the
details of the algorithms of the individual models, but rather on the information on which models base their
procedures. For details about the algorithms see Waddell et al. (2003).
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Fig. 1. UrbanSim models in order of their runs (from top to bottom). The solid arrows show external input parameters. The dashed
arrows mark the data flow: data are input to the different models, and these in turn modify the data.

The core of UrbanSim (version 3.0) consists of nine models that run in a specified order once per simulated
year. In Fig. 1, the models are sorted from top to bottom according to their run order. Models that are placed
on the same horizontal level are independent of each other.

A simulation is usually performed for a certain time period given in years, determined by the planning hori-
zon in question, typically a thirty-year time frame for metropolitan transportation planning. It is assumed that
at the beginning of the simulation, data reflect the true state in the starting year. We will call such data ““base
year’” data. Each model uses a certain partition of the data as an input and modifies a certain partition of the
data according to the results it produces. These relations are represented in Fig. 1 by dashed arrows. Most of
the models expect additional input parameters (see below) that are marked by solid arrows.

The simulation starts by running the Accessibility model. This model creates accessibility indices that sum-
marize the accessibility from a given geographical unit to various activities. The indices are then used in
Employment and Household location models where accessibilities are expected to influence household or busi-
ness choice of location. The Accessibility model is loosely coupled with a Travel model which predicts con-
gested travel times and costs (not included in the figure), treated here as an external model.

The Economic transition model simulates job creation and loss. It uses aggregate employment forecasts
(control totals) that are obtained from external sources (state economic forecasts, commercial or in-house
sources). The Demographic transition model simulates births and deaths in the population of households in
a similar way. Here again, control totals from aggregated forecasts obtained from external sources are used
as an additional input.

The Employment mobility model determines which jobs will move from their current locations during the
simulated year. It uses annual mobility rates directly observed over a recent period. They are computed from
longitudinally linked business establishment files. Similarly, the Household mobility model simulates house-
holds deciding whether to move. The algorithm uses annual mobility rates estimated from the Census Current
Population Survey.

The Employment location choice model is responsible for determining a location for each job that was either
newly created or determined for moving. The Household location choice model chooses a location for each
household that was either created or belongs to the mover set. Both models are based on a multinomial logit
model calibrated to observed data. Thus, logit coefficients are required by the models as additional input
parameters. These coefficients are usually estimated by external estimation procedures.
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The Land price model simulates land prices of each grid cell as the characteristics of locations change over
time. It is based on a hedonic regression (Waddell et al., 1993) using coefficients estimated externally from his-
torical data.

The one year simulation is concluded by the Real estate development model that simulates developer choices
about what kind of construction to undertake and where. It uses the multinomial logit model and here again,
its coefficients are estimated externally using observed data.

2.2. Sources of uncertainty

In order to carry out a probabilistic analysis of a system, the first step is to identify the possible significant
sources of uncertainty in the system (see e.g. Morgan and Henrion, 1990; Dubus et al., 2003; Regan et al.,
2003). The goal of the analysis is then to quantify as much of the identified uncertainty as possible. We
now review the main potential sources of uncertainty for UrbanSim.

2.2.1. Measurement errors

As mentioned above, data that enter UrbanSim at the beginning of any simulation run (base year data)
should reflect the state of the system, usually a metropolitan area, being modeled. The data are collected from
different sources, such as census, tax assessor records or commercial sources. Such data are subject to errors
and often contain missing values. For example, in parcel data, tax exempt properties like government-owned
properties tend to have very incomplete data in the assessor files, since there is no compelling reason for asses-
sors to collect these items. These data are massive and rely on individual property assessors to input data, and
the resulting databases are often riddled with missing data and data errors.

2.2.2. Systematic errors

Systematic errors are errors that bias the simulation results in a particular direction. This can arise, for
example, from miscalibrated measurement tools or from sampling procedures that are not completely random.
An example of the latter would be a situation where households belonging to a certain category, such as a
certain race, are excluded or undersampled in the sampling process when creating the household database
from census sources. Both the measurement errors and the systematic errors affect the quality of the base year
data.

2.2.3. Uncertainty about model structure

Three sources of uncertainty about model structure can be distinguished. The first is the selection of vari-
ables in the statistical models embedded in UrbanSim, such as the multinomial logit model or the hedonic
regression. The second is the choice of the statistical model itself. For example, processes modeled by the mul-
tinomial logit could be modeled instead by another discrete choice model, such as multinomial probit or mixed
logit (Train, 2003). The third source of uncertainty is the selection of the processes that are modeled by Urban-
Sim. Like any model, UrbanSim does not represent the complete set of processes that influence the evolution
of households and job locations. The model is designed to represent the most important processes and ignore
those that have little impact on outcomes, but there can be uncertainty about this choice.

2.2.4. Uncertainty about model input parameters

As described in Section 2.1, there are several sets of input parameters that enter UrbanSim and all of them
are estimated by external models or procedures. Since these estimates are not exact, they contribute to overall
uncertainty.

2.2.5. Stochasticity

An important source of uncertainty arises by using random numbers within models. In UrbanSim, simu-
lations with different seeds of the random number generator produce different results, and this has to be taken
into account in the uncertainty analysis. In UrbanSim, several models that are based on the multinomial logit
model use a sampling procedure for sampling choice alternatives. Also, both mobility models use sampling for
determining movers according to given rates.
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Table 1
Procedure type, type of estimation of input parameters, number of input parameters, and whether or not random numbers (RNs) are used,
for each model in UrbanSim

Model Procedure Estim. of input par. #Par. RNs
Accessibility Deterministic - - No
Economic/Demographic transition Algorithm based on joint prob. distr. External sources 17 Yes
of jobs/households
Employment/Household mobility Random sampling Observed rates 79 Yes
Employment/Household location choice Multinomial logit Multinomial logit 332 Yes
Land price Hedonic regression Hedonic regression 49 No
Development Multinomial logit Multinomial logit 615 Yes

For each model, Table 1 summarizes the information about the main component of the procedure, the esti-
mation of the input parameters, the total number of input parameters, and whether or not random numbers
are used by the model.

3. Bayesian melding method
3.1. Notation

We denote the collection of model inputs about which there is uncertainty by @. Model inputs are quan-
tities that we must specify for the model to run and about which we have some information. They can include
model parameters and starting values of the system at the start time. The collection @ is a subset of the set of
model inputs, and does not include inputs that we take to be known or fixed.

We denote the collection of model outputs about which we have observed information by @. This will typ-
ically be a subset of all the outputs produced by the model, and can include values or summaries of the state of
the simulated system at various times during the simulated time period. For now, we consider the situation
where the model is deterministic, so that any two runs of the model with the same inputs yield the same out-
puts. In this case, we denote the mapping function that produces @ by M4, so that & = M4(©). We will extend
our analysis later to nondeterministic models.

We denote the quantities of policy interest by . These can be functions of model inputs, of model outputs,
or of both, so that

¥ =Myp(0,) =My(0,Ms(0)). (1)

It follows from (1) that ¥ can be viewed as a function of the inputs alone. Often the quantities of policy inter-
est will be values of the system at a future time.

Observed data that provide information about the outputs are often available, such as measurements of
outputs at time points within the simulated time period. We denote the collection of such data by y.

3.2. Bayesian melding

Bayesian melding was proposed by Raftery et al. (1995) and Poole and Raftery (2000) as a way of putting
the analysis of simulation models on a solid statistical basis. The basic idea is to combine all the available evi-
dence about model inputs and model outputs in a coherent Bayesian way, to yield a Bayesian posterior dis-
tribution of the quantities of interest, ¥. The method was developed initially for deterministic simulation
models.

The first step is to encode the available information about model inputs and outputs in terms of probability
distributions. We represent our information about the inputs, @, by a prior probability distribution, ¢(®). We
specify a conditional probability distribution of the data y given the outputs @, and this yields a likelihood for
the outputs

L(®) = Prob(y|®). (2)
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Because @ = M4(0), (2) yields a likelihood for the inputs also, since
L(©) = Prob(y|M(6)). (3)

We thus have a prior, ¢(@), and a likelihood, (), both defined in terms of the inputs. It follows from Bayes’s
theorem that we have a posterior distribution of the inputs given all the available information, namely

n(©) x q(O)L(O). (4)

In words, the posterior density is proportional to the prior density times the likelihood. The constant of pro-
portionality is defined so that (@) is a probability density, i.e. so that it integrates to 1. The collection, ¥, of
quantities of policy interest can be expressed as a function of the inputs by (1), and so, in principle, (4) yields a
full posterior distribution, n(¥), of the quantities of interest. This combines all the available relevant informa-
tion, and so provides a comprehensive basis for risk assessment and decision-making.

3.3. Simulating the posterior distribution

How can we evaluate the posterior distribution (4), and the resulting posterior distribution of the quantities
of interest, n(¥)? The posterior density does not have an analytic form because it involves the mapping func-
tions My and My, which are typically available only through computer evaluation of the model. Here instead,
we use a Monte Carlo method introduced by Raftery et al. (1995) and Poole and Raftery (2000), based on the
sampling importance resampling (SIR) algorithm of Rubin (1987). It works as follows:

1. Draw a sample {@,,...,0;} of values of the inputs from the prior distribution ¢(®).

2. Obtain {@y,...,®;} where @; = M4(0O)).

3. Compute weights w; = L(®;). As a result, we get an approximate posterior distribution of inputs with values
{©,,...,0/} and probabilities proportional to {w1,...,w;}.

4. The approximate posterior distribution of the quantities of interest has values {¥y,...,¥;} where ¥, =
My(0,, ;) and probabilities proportional to {wi,...,w;}.

The method is illustrated in Fig. 2.

The models that we are dealing with here are not deterministic. We consider here models that contain a
stochastic component in the sense that they use random numbers and that runs with different seeds return dif-
ferent results. To include this source of uncertainty in the framework, we modify the above procedure as
follows:

IS. As before, draw a sample {©y,...,0;} of values of the inputs from the prior distribution ¢(®).
2S. For each @;, run the model J times with different seeds to obtain @, j=1,...,J.

Ca
O,

Quantities
of interest

) ‘ I

/

data

Model
I

start present future

Fig. 2. Illustration of the Bayesian melding method. The uncertain model inputs, @ are assumed to refer to the starting time of the
simulation, and the outputs, @ and the data relevant to the outputs, y, are observed at the “present” time, while the quantities of interest,
¥, refer to the future. The quantities ©;, ®; and ¥; refer to the ith simulated values of inputs, outputs and quantities of interest,
respectively.
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3S. Compute weights w; = L(®;). We then get an approximate posterior distribution of inputs with values
{©1,...,0,} and probabilities proportional to {w;:i=1,...,/} where w; = }Z]‘{:lwij.
4S. The approximate posterior distribution of ¥ now has I x J values ¥;; = My(0;, ®;), with weights w;;.

For UrbanSim, however, this method is not able to cover the full range of values for which the posterior
distribution is substantial. This is because the stochastic mechanism in UrbanSim does not have
enough variation to reach all likely outcomes; there are important sources of variability that it does not
include.

To overcome this problem, we modify this method by incorporating an additional error term in the like-
lihood function to account for the sources of variation that UrbanSim does not model explicitly. This leads
us to the following algorithm:

1S’. As before, draw a sample {@1,...,O;} of values of the inputs from the prior distribution ¢(®).

25’. For each @;, run the model J times with different seeds to obtain @, j=1,...,J.

3S’. Compute weights w; = L(®P;) where @; = }ij.zlcb,-j. Here again, we get an approximate posterior distri-
bution of inputs with values {@,,...,©;} and probabilities proportional to {wy,...,w;}.

4S’. The posterior distribution of @ is no longer approximated by the set {®;;} but now has a finite mixture
distribution of the form

n(®) = Zwip(¢|@i)' (5)

In (5) the conditional distribution p(®|@;) has an assumed parametric form that reflects the additional
sources of variation.

The posterior distribution of ¥ has a similar form, namely
/
n(¥) = wp(V|6,). (6)
i=1

The next section provides an example.

4. Application to UrbanSim
4.1. Data

We now illustrate Bayesian melding by applying it to a test case, using data from Eugene-Springfield, Ore-
gon. The model is run starting in 1980, for which detailed information on the city’s starting state are available.
The goal is to use UrbanSim to predict the number of households in the year 2000 in each of the city’s K = 295
Traffic Activity Zones, or in aggregations of zones. We will refer hereafter to a Traffic Activity Zone simply as
a “zone.” We have data for the year 2000, but here we use them only for assessing the method and verifying
the predictions, not for making them.

In addition we have data on the number of households in each zone in 1994, denoted by y = (yy,...,Vx).
These data are used to form the likelihood. So the exercise is one of making predictions in 1994 for 2000, using
detailed data from 1980 and less complete data from 1994. Thus the times used in the simulation are: “‘start™:
1980; “present’’: 1994; “future’’: 2000, using the terminology of Fig. 2.

As mentioned in Section 2.1, UrbanSim runs on base year data, which reflect the true state in the starting
year about all actors and choices in the system, such as households, jobs, grid cells, etc. These are usually avail-
able for every decade. Bayesian melding allows to capture uncertainty using partial information about these
entities that might be available for years in which base year data are not available and thus, for which the
simulation could not be run.
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4.2. Likelihood and posterior distribution

In order to compute the weights in Step 3S’ of Section 3.3, we need to define a likelihood function, as given
by Eq. (3). Specifically,

wi o< p(y@;) = Hp(ykl@i)- (7)

The likelihood p(y|@)) is based on the following model:

iid

gpijk = Wik + 5,']‘]” where 5ijk NN(O7 O'g), and (8)
|0 = 0)) = 1y +a+ex, where e CN(0,7). 9)

Here, u; denotes the expected output corresponding to the ith simulated input ©; and the kth zone, 0, and €;
denote model errors, and a denotes the overall bias in the model.

Estimation of py, 03, 67, and a can be done by approximate maximum likelihood (see Appendix A). We
denote these estimates by juz, 65, o7 and a.

This yields a predictive distribution of our quantity of interest:

. F
yk|@i NN(&—F,&m,Ug) with U; = 6'124-7() (10)

(see Appendix B for details).

We then have

wi o p(10n) =[] exp ; , an
K 1 & N ¢
log w; X — 5 10g(27w,~) — 2—01 kg:l (yk —a— ,uik) g (12)

The quantities &;, o7 and a were estimated at the “present” time #; = 1994. By (6), the marginal distribution of
the quantity of interest, ¥, the number of households in the kth zone in the year z, = 2000, is given by a mix-
ture of normal distributions, as follows:

! =2
n(qlk):ZWiN<&ba+mik;<6?+%>bv>, k=1,...,K, where
i=1

J
1 J
miy. = j Jz; lPijk-

Here, b, and b, denote propagation factors of the bias and the variance over the time period [¢;, 2]

(13)

4.3. Prior on inputs

Input parameters for several of the UrbanSim model components were estimated by multinomial logistic
regression or by hedonic regression; see Table 1. These have known standard errors (SE) and covariance
matrices (C). For these parameter sets we used the multivariate normal distribution MVN(®,C(0)), where
O is the estimator of ©. The off-diagonal elements of the covariance matrices were very small, so we used only
diagonal matrices, diag(SE(©)?).

For each mobility rate r in the employment and household mobility models we used the normal distribution

7 7 2 P . . .
N| 7, (@) ) , truncated at zero, where 7 is an estimate of the rate r and » is the number of observations from

which 7 was obtained.
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Table 2
Observed data in 2000 and predictions for 2000 made in 1978 and 1988 for the Eugene-Springfield area
Observed data in 2000 Prediction from 1978 Prediction from 1988
Population 322,977 379,500 331,600
Employment 158,271 173,400 NA
Wage and salaried employment 143,900 NA 129,200

Prior distributions of the control totals for the economic and demographic transition model are based on
forecasts for the end year of the simulation made long before. In order to estimate the standard error of these
totals, we obtained several pairs of prediction and observation values from the historical data (see Table 2).
From the four triples (prediction, observation, time difference) denoted by (¢;, ¢;,d;) where i = 1,...,4, we cal-
culated variance per year as

Using the data in Table 2, we obtained V' (¢) = 0.000647. Our prior distribution for the control total is then the
normal distribution N(¢,20V(¢)), where the variance is multiplied by the 20 prediction years, 1980-2000. In
this example, we used the actual value of ¢ for 2000 as the mean ¢ of the prior distribution, purely for illus-
trative purposes. In practice, of course, this would not be available for forecasting purposes, and one would
instead use a current forecast. In our case, the prior distribution was quite spread out, and so the results would
not be very sensitive to precisely what prior mean is used. This approach to assessing uncertainty about fore-
casts is similar to an approach used in demographic population projections called ex postanalysis (Keyfitz,
1981; Stoto, 1983; Smith and Sincich, 1988).

5. Results
5.1. Simulation

We ran UrbanSim for 100 different inputs, each of them twice with a different random seed. This gave 200
runs in total, with /= 100 and J = 2. We confirmed our results by a larger simulation with / = 1000 and J = 3
(see Section 5.6).

The simulation was started in 1980 and run until 2000. The results ®;; and ¥, were saved for all
i=1,....1j=1,....J, k=1,...,K, where ®;; and ¥y, are the numbers of households in zone k for the
jth run with the ith set of input values in 1994 and 2000, respectively.

5.2. Transformation

In Egs. (8) and (9), we assume that our model errors have constant variances a3 over all i and k, and o7 over
all k. In Fig. 3, we examine the relationship between the estimate of @, denoted by ji;, and its standard devi-
ation, sd(®;z). The lowess curve is also shown; this is a nonparametric smooth estimate of the relationship
between the estimate and the standard deviation (Cleveland, 1979).

It is clear that sd(@®;;) increases with increasing fi;. The relationship is approximately linear on the log-log
scale, as shown in the right panel of Fig. 3. The slope suggested transforming the data by taking the square
roots of the number of households, so as to obtain a more nearly constant variance.

Fig. 4 shows the scatter plots from Fig. 3 after the square root transformation. The relationship was
much weaker and the squared correlation coefficient was now only R* = 0.03. This suggests that the variance
is close to being constant when the data are transformed to the square root scale. We excluded zones from
the analysis for which either fi; or sd(®;;) was equal to zero; these were typically zones with no residential
units.
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Fig. 5. Absolute error of the transformed data, |,/y; — \//ﬁ\ik|, vs. standard deviation of /®;; for t = 1994 and the corresponding lowess
curve (raw data in the left panel, data on the log—log scale in the right panel). As in Fig. 3, the plots contain 500 randomly selected points,
whereas the lowess curve is based on all points.

The relationship between the absolute error |y, — ji| and sd(®;;) after the transformation is shown in
Fig. 5. Here the squared correlation coefficient is R* = 0.01. This provides further evidence that the square
root transformation has stabilized the variance. We therefore applied the square root transformation to @
and y, for all i,j,k, prior to any computation.
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Table 3

Estimates required for computing the weights

Estimate —0.156 0.072 15.035 15.071
SD across i - - 2.323 2.323

Estimates for 6—%,) and v, respectively, denote the mean of 67 and v;, respectively, across all i.

5.3. Computing the weights

From the results @, we estimated the quantities needed to compute the weights given by Egs. (11) and (12).
They are summarized in Table 3. The table shows the mean and standard deviation of 67 and v; computed over
all i. It is clear that 67 is the dominant component in the variance v;. We excluded zones where ji;. = 0 from the
analysis. These were mostly zones in which up to 1994 no residential units were placed. This reduced the num-
ber of zones, and hence the dimension of the outputs, to K = 265.

Table 4 shows the resulting seven highest weights and the minimum weight for the 100 simulation runs.
Each weight reflects how well the corresponding outputs predicted the values observed in 1994. For example,
the simulation for simulated input i = 64 had the largest weight among all the simulated inputs, and yielded
outputs whose correlation coefficient with the observed data is R =0.93. On the other hand, simulated input
i = 33 had the minimum weight, and produced outputs whose correlation with the observations was consid-
erably smaller, at R = 0.84.

5.4. Posterior distribution

In order to compute the posterior distribution of our quantity of interest given by Eq. (13), we set the prop-
agation factors b, and b, to 20/14, equal to 255325,

The results for one zone are shown in Fig. 6. The left panel shows a histogram of the results from the 200
UrbanSim runs without applying Bayesian melding. The right panel shows the Bayesian melding distribution
of the number of households in the zone. It can be seen that the Bayesian melding distribution is wider than

the range of the simple multiple runs, and for this zone the observation (bold vertical line) fell outside the 90%

Table 4

The seven highest weights and the smallest weight

i 64 13 12 76 68 88 23 33 (min)
w; 0.8058 0.0883 0.0370 0.0217 0.0122 0.0116 0.0068 4%x107%
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Fig. 6. Results of zone 80. Right panel — histogram of multiple runs. Left panel — Bayesian melding probability distribution (top curve),
and its components. In each plot, the vertical solid line marks the true observation (= 154), the vertical dashed line marks the mean and the
vertical dotted lines mark the 90% confidence interval.
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Table 5

Coverage of for the 90% confidence interval

Method Missed cases Coverage
Bayesian melding 31 0.88
Multiple runs 163 0.38

Missed cases give the number of observations that fall outside of the confidence interval. The total number of observations is 265.

interval defined by the multiple runs, but well inside the Bayesian melding 90% interval (marked by dotted
vertical lines).

In fact this phenomenon was quite general: the multiple runs interval missed the true observation far more
often than the Bayesian melding interval. This can be seen in Table 5 which shows the number of missed cases
and the coverage for both procedures. The multiple runs interval included the actual observation less than 40%
of the time, compared with its 90% nominal level. In comparison, the Bayesian melding 90% interval con-
tained the observation 88% of the time, which is quite satisfactory. Similar results are obtained from the
1000 x 3 simulation (see Section 5.6). The table suggests that Bayesian melding is much better calibrated than
a distribution provided by simply taking results from multiple Monte Carlo runs.

We did a more complete check of the calibration of the methods by calculating their verification rank his-
tograms. The verification rank histogram (Anderson, 1996; Hamill and Colucci, 1997; Talagrand et al., 1997)
was introduced by meteorologists to evaluate probabilistic weather forecasts and is a useful tool for assessing
predictive distributions. For each zone, we simulated 99 values of the number of households from the Bayesian
melding predictive distribution, and then we computed the rank of the true observation within the set of
99 + 1 = 100 numbers consisting of the 99 simulated values and the observation. Thus, we had 265 rank values
ranging from 1 to 100. If the predictive distribution is well calibrated, the distribution of the resulting ranks
should be close to uniform. The histogram of the ranks is called the verification rank histogram, and large
deviations of the histogram from uniformity indicate that the predictive distributions are not well calibrated.

Fig. 7 shows the verification rank histograms for multiple runs of UrbanSim and for Bayesian melding. It is
clear that the verification rank histogram for the multiple runs is very far from being uniform, showing that
this method is poorly calibrated. The verification rank histogram for Bayesian melding is much closer to being
uniform.

The same information is shown in a different way in Fig. 8, which shows the cumulative distribution func-
tions (CDFs) of the ranks shown in Fig. 7. If the verification rank histogram is uniform, then the CDF should
lie on or close to the 45° line, or line of equality, y = x. It is clear that the CDF for the multiple runs is far from
this line. The CDF for Bayesian melding is quite close to the line of equality, indicating once again that Bayes-
ian melding is much better calibrated.
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Fig. 7. Verification rank histogram for the output from multiple runs (left panel) and from the Bayesian melding procedure (right panel).
The closer the histogram is to being uniform, the better calibrated the corresponding method is.
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Fig. 8. CDF for the output from multiple runs (left panel) and from the Bayesian melding procedure (right panel). The closer the CDF is
to the diagonal line of equality shown on the plot, the better calibrated the corresponding method is.

5.5. Aggregated results

Often we are interested in a higher level of aggregation than the basic zones for which results come out of
the model, such as the zones of Eugene-Springfield. For example, we might be interested in the central business
district (CBD). The posterior distribution of a spatially aggregated output, such as the number of households
in the CBD, can be found by aggregating the results for the smaller geographical units. In our case study, the
posterior distribution of the number of households in a collection of zones is that of a sum of random
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Fig. 9. Histogram of the simulated posterior distributions for four aggregated quantities of interest: the numbers of households living
within 8, 9, 10, and 11 min of the central business district. The true observations are marked by bold vertical lines.
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F([;ill)llli)jrison of coverage from Table 5 in simulations with different number of runs

Simulation size 100 x 2 1000 x 3

Method Missed cases Coverage Missed cases Coverage
Bayesian melding 31 0.883 29 0.890
Multiple runs 163 0.385 165 0.375

o
o |
(eV]
o &
o~ 31 .
xX
8— §’ Wm”ﬂ
[ ® o
2 8 i
S © &%
]
E 3 °
£g &@f
o ®° °
=4
[s\] M
07 T T T T T T T
0 200 400 600 800 1000 1200

simulation 1000 x 3

Fig. 10. For each zone, mean value of 100 values simulated from the posterior distribution that was derived for simulation size 1000 x 3
(x-axis) and 100 x 2 (y-axis), respectively.

variables, each of which has a distribution that is a mixture of several truncated normal components.
Although this is complicated to find analytically, it is easy to approximate by simulation.

Suppose we are interested in the number of households that live within a certain radius of the CBD. Fig. 9
shows histograms of results for four different radii, measured in time distance, each of them simulated by 1000
values. In each case the observation (bold line) fell close to the mean of the posterior distribution.

5.6. Number of simulations

The results presented were obtained with 200 runs in total (with /= 100 and J = 2). Since an UrbanSim
simulation of large size is not yet feasible in practice due to the long run time, we explored whether results
obtained by using more runs are significantly different. To check this, we ran UrbanSim with 7= 1000 and
J =13, i.e. with 15 times as many runs.

Table 6 compares coverage from Table 5 for the two different simulation sizes. It can be seen that there is
almost no difference in coverage between the two cases.

Fig. 10 compares simulated values from the resulting posterior distribution 7(¥) given by Eq. (13), for the
two simulation sizes. In this experiment, we simulated 100 values for each zone from each of the two distri-
butions and computed their mean values. In Fig. 10, means resulting from the smaller simulation are plotted
on the y-axis, whereas means coming from the larger simulation are plotted on the x-axis. The fact that almost
all the values lie very close to the diagonal suggests that the initial number of replications (200) was adequate
to obtain accurate results.

6. Discussion

We have introduced a new method for assessing uncertainty in the output from urban simulation models,
called Bayesian melding. Bayesian melding was introduced in another field and applied to deterministic sim-
ulation models. However, the urban simulation models we are concerned with are stochastic, and so we
extended Bayesian melding to deal with stochastic simulation models. Bayesian melding combines all the
available information about model inputs and outputs and combines them in a Bayesian way, to provide a
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posterior distribution of quantities of interest that provides a fully assessment of uncertainty and risk. The
method gave well calibrated results in a case study.

The methodology described in Section 3 can be applied to any stochastic simulation model that can be
expressed in terms of its inputs and outputs. Furthermore, uncertainty about inputs should be expressible
in the form of a prior probability. Different simulation models will differ in how the weights w; of the finite
mixture distribution are computed. For UrbanSim we developed a probability model that is based on a mix-
ture of normal distributions. We believe that this model can be used in various land use simulation models.
However, models with different characteristics might be better fit using other probability models.

Our approach could be improved in various ways. In our case study we were modeling counts of house-
holds, and we modeled these using a transformed truncated normal distribution. This worked well, but it
may be more appropriate to build a model on the Poisson distribution, which is designed for counts. Also,
for simplicity we ignored spatial correlation in the prediction errors, even though it is quite possible that spa-
tial correlation is present. It would be possible to model spatial correlation by replacing the independence
assumption in Eq. (9) by a joint distribution with dependence specified by a geostatistical correlation function.
Something like this was done for probabilistic weather forecasting by Gel et al. (2004).

One practical problem with our approach is that for larger cities UrbanSim can take a long time to run, and
so our method could be extremely expensive computationally, as it requires several hundred runs of the model.
There are various ways in which it may be possible to reduce the time required.

A first approach is simply to use a more efficient importance sampling function than the prior on inputs,
¢(0), such as the pre-model distribution of the inputs, proportional to g(0)L(6). A second method is to use
adaptive sampling importance resampling (Givens and Raftery, 1996), in which SIR is run a first time, and
then the importance sampling function is replaced by a more efficient one based on the first results, and used
in a second application of SIR. This process can be further iterated, if needed.

A third possible approach would be to use Latin hypercube sampling (McKay et al., 1979) in place of sim-
ple random sampling in the Bayesian melding algorithm. This would be likely to provide a more efficient algo-
rithm. However, this too is unlikely to be a full solution on its own, because the number of model runs is still
likely to be substantial. A fourth method is the three-point Gauss—Hermite quadrature method of Raftery and
Zeh (1993). This can be extremely efficient in terms of number of model runs, but requires some initial knowl-
edge of where the best values of the inputs are likely to be. It has been used with success in hydrogeological
applications (Levy et al., 1998; Levy and Ludy, 2000).

A fifth approach, used for the extremely high-dimensional problems in atmospheric sciences, is based on
model ensembles. A fairly small ensemble of runs (typically 5-50) from different inputs is used; these are
not necessarily drawn from a probability distribution. Records of predictions and observations are typically
used to postprocess the output to correct biases and produce approximate posterior distributions. One method
for postprocessing small ensembles that has worked well for probabilistic weather forecasting is the recent
Bayesian model averaging approach of Raftery et al. (2005); this can yield a calibrated posterior distribution.

Finally, another promising idea is the combination of Bayesian melding with the notion of a model emu-
lator (Sacks et al., 1989). A model emulator is a fast approximation to the model, which, when provided with
the model inputs, yields approximate values of the model outputs, and takes much less computer time to run
than the full model. The most prevalent model emulators work by performing a small number of model runs
at strategically chosen input values, such as those resulting from Latin hypercube sampling. The emulator then
interpolates between the model runs, with kriging often being used as the basis for the interpolation (Sacks
et al., 1989; Currin et al., 1991).

Here is a composite strategy combining several of these ideas to yield a more efficient approach. Suppose,
we have a limited ““budget” of B runs. Then we could:

1. Use Latin Hypercube Sampling to draw a sample of size B/3 from the prior distribution of the inputs. We
then run the model for each one of these inputs.

2. Cut down on the dimension of the input space, by testing for each input parameter whether the outputs
vary significantly with that input. If they do not, we disregard uncertainty due to that input and keep it
fixed. Suppose that the number of parameters remaining is Nparam. Nparam could be constrained to be no
more than some upper limit, which could be a function of B, for example /B/3.
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3. Find the approximate posterior mode by using B/3 iterations of a Nelder-Mead optimization algorithm,
starting at a subset of the initial input values sampled by Latin Hypercube Sampling.

4. Use approximate three-point iterated Gauss—Hermite quadrature centered at the approximate posterior
mode, to carry out the required integrations. This requires O(Nfaaram) model runs.

The total number of model runs required by this strategy is at most B.

Several other approaches, some also using Monte Carlo methods and Bayesian ideas, have been proposed.
Generalized likelihood uncertainty estimation (GLUE) (Beven and Binley, 1992) has been applied to a wide
range of hydrology and water quality models; see Beven et al. (2000) for a review. This is similar to Bayesian
melding, but the “likelihood” function defined is typically derived from a measure of goodness of fit of model
predictions to observations, rather than from a probability model. “Nonbehavioral” realizations are rejected,
and the remaining realizations are weighted by the likelihoods; the threshold for this decision is subjectively
chosen by the user. As a result, GLUE has no clear Bayesian interpretation.

In Section 2.2, we reviewed sources of uncertainty that enter UrbanSim. Our method accounts for all the
listed sources except one: uncertainty in model structure. A combination of our approach with other methods,
such as Bayesian model averaging (Hoeting et al., 1999), could close this gap.
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Appendix A. Estimation

Let 1, J, K denote the sample size of the input parameters (Step 1 of Section 3.3), the number of runs for the
same input parameters (Step 2) and the dimension of the output space, respectively. Then, the quantities in

Egs. (8) and (9) can be estimated as follows:

e Estimation of p:

N
Hix = j 121: ‘pti/k- (14)
e Estimation of ¢3:
1
A2 ~ 2
% = Ig %;(@[/‘k — fu)" (15)

e Estimation of a:
1

a=1z a (Ve — i) (16)
e Estimation of o2

o1 y .

0,2 =X Z(yk_a_:uik)z (7

Appendix B. Building the posterior distribution

To build p(yx]@,), note that
W —a— ) = p —a— wy) — (e — wy)
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and so

E(y, —a—jiz) =0 and
2
N N o
Var(y, —a — jue) = Var(y, —a = ) + Var(ue — ) = 07 + 2.

Then we get Eq. (10).
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