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SUMMARY

We show how a Bayesian analysis of a fertility model incorporating many of the previously
suggested models can account for uncertainty about which fertility model provides the best approx-
imation in any given trial. We also show how uncertainty about anomalies such as outliers and
fertility jumps can be accounted for. We argue that this is preferable to conditioning on an
‘“‘appropriate’’ model, and show by examples how accounting for such possible anomalies can both
influence support for a particular fertility model and reduce the dependence of treatment estimates
on the choice of fertility model.

1. Introduction

An objective of most agricultural field trials is to assess the effect of treatment on yields. This must
be done in the presence of unknown fertility trends through the field. Many stochastic models for
these fertility trends have been proposed and shown to be efficient competitors to classical blocking
designs (see Section 2). In this paper we shall restrict attention to trials where plot fertilities are
correlated in oniy one direction. In the case of a rectangular lattice of plots this is often assumed
when the long, thin nature of the plots makes those with common long edges spatially close
compared to those with common short edges.

When using a stochastic model for field fertility in the analysis of a particular trial, two questions
must be addressed. The first is the choice of fertility model, and the second is the treatment of
anomalies such as outliers and fertility jumps, i.e., sudden level shifts in fertility. Even when several
such possibilities are entertained, it is not uncommon to condition on a single model and a single set
of anomalies, which are determined by model diagnostics; see, for example, Cullis, McGilchrist, and
Gleeson (1991) and Martin (1990). Here we propose to account for uncertainty about the fertility
model and possible anomalies rather than to condition on an ‘‘appropriate’” model. This will be
particularly important when several choices are almost equally appropriate (see Section 4.3).

We first define a general but simple state-space model for agricultural field trials, which turns out
to include many of the models in current use (Section 2). We then show how this framework allows
us to model outliers and fertility jumps quite easily (Section 3). The importance of doing this and of
accounting fully for the associated uncertainty is illustrated in several examples (Section 4).

2. A Fertility Model

2.1 Model Definition

We suppose that the trial consists of one or more blocks of plots. Here a block refers to a row of
adjacent plots, with plots in different blocks assumed to bear little relationship to each other. The

Key words: Bayesian analysis; Random effects; Residual maximum likelihood; State-space
models.
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plots are numbered 1 through n along the row within each block, and block by block. Plot ¢ is
therefore at the beginning of a new block if + = 1 or if plots  and # — 1 are in different blocks.
We assume that the data can be decomposed additively:

Y=Dr+F+ ¢, (1)

where Y is the n-vector of yields, 7 is the v-vector of treatment effects (which may include other
covariates), D is the corresponding design matrix, F is the n-vector of fertility levels, and ¢ is the
n-vector of measurement errors.

We model F recursively to correspond to walking through the plots from plot 1 to plot n, with ¢
therefore indexing time as well as the plots. Starting from the assumption that the fertility is
approximately locally linear, we suppose that the fertility level at plot ¢ given the previous plots is
approximately the fertility on plot # — 1 plus some measure of the rate of increase of the fertility at
this plot. Given that the fertility level is fluctuating around some local mean value, we may expect
the fertility level on plot ¢ to be closer to this mean value (as otherwise it may become unbounded).
We define G,_, to be the fertility gradient between the fertility level at plot ¢ and plot ¢t — 1, and note
that the more slowly G changes with time the smoother the corresponding fertility level F becomes.

More precisely, we shall model the plot fertilities conditional on the parameters A, A,, and o7 4.
where 0 < A, < A\, < 1 and 07,4 = 0, recursively as follows:

Case 1: Same block

F A 1\/F 0 i
<G>1 = (01 /\2) (G>r—l + <§:1>: §r ,f;‘ N(07 o-érad) (2)

Case 2: New block

F
(G) -~ N(O’ 2uncund) (3)
[(t—1)

1+ AA, Ay

(=21 = 225 (1=Ah) | o2

Eun(:()nd =
Ay 1—A3
_— 1
(1 =21y
where we use the notation (¢ — 1) to indicate the set 1,2, ..., ¢t — 1.

The assumption that |A,|, [A,| < 1 results in the distribution of (%) being stationary and it is the
distribution unconditional on other plots that we use when at the beginning of a block. We are
assuming here that while the plot at the beginning of a new block is not adjacent in the field to the
previous plot, the two plots are relatively close. Thus while the two plots have similar characteristics
(i.e., the same marginal distribution), they can be assumed independent.

The intuition of a smoothly varying fertility suggests that both A, and A, should be nonnegative.
The restriction A; = A, is enforced to aid identifiability as the marginal distribution of Y, remains
unchanged if we interchange A, and A,. Indeed, the marginal distribution of the fertility level F, also
remains unchanged, with this interchange affecting only the distribution of the fertility gradient G,.
The choice of A; being the larger coincides with our intuition governing the definition of F and G.

In line with & representing measurement error, we shall assume that the ¢, (r = 1, ..., n) are
independent (and independent of F), and further make the distributional assumption,

iid

e, ~NO, 62, t=1,...,n, 02=0.

While & could be absorbed into F, we make the distinction as the term ¢ is directly interpretable
as measurement error and observed data often support its presence (Whittle, 1954). The distribution
of Y is therefore dependent on the parameter 6% = (07,44, Oapss Aps Ap), OF 0 = (07, %fert, Ay, Ay),
where

) 1+ A1, 5 ,
o= 0-grad + O obs

(1= AN = 2,41 = A3

is the variance of any observation Y, given D and 7 only, and
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U<2)bs
%fert = 100 1 — —
2

is the percentage of this variance explained by the fertility.

The condition 0 < A, < A; < 1 forms a triangle in (A;, A,) parameter space, with an open side
(being the bound to nonstationarity) and two closed sides. This suggests two natural special cases
for modelling field fertility, with the more general parameter values lying between these special
cases. (We ignore the nonstationary side; see Section 6.) The first special case is obtained by forcing
A, = 0. This model, while assuming that the fertility levels at consecutive plots are related, assumes
that the fertility gradients are independent. This typically results in jagged fertility trends. The
second case results by forcing A, = A, and potentially produces smoother fertility trends than the
first.

Figure 1 displays these two special cases in relation to our (A, A,) parameter space, together with
various fertility models previously proposed for field fertility. These include the simplest conditional
autoregression CAR (Besag, 1974), the simplest simultaneous autoregression SAR (Whittle, 1954),
the first-difference model I(1) (Besag and Kempton, 1986), the second-difference model 1(2) (Green,
Jennison, and Seheult, 1985), and the ARIMA(1, 1, 0) (Gleeson and Cullis, 1987), AR(1) (Patterson,
1983), and white noise models.

b \
1(2)
1 4+
|
|
|
& .
o 12
0g | :"
v =
NS =z
I &
| <
|
|
|
|
|
A, =0 or CARor AR(1) | I(1)
iid —

1

Figure 1. Comparison of our fertility model with the simplest simultaneous autoregression

(SAR), conditional autoregression (CAR), first- and second-order integrated models (I(1) and
1(2)), ARIMA(1, 1, 0), and the model of independence (iid).

Our fertility model is a special case of the AR(2) model, with A, and A, being the roots of the
characteristic equation. Forcing these roots to be real and positive eliminates models with oscillating
correlograms that can take negative values. We argue that these phenomena do not conform with the
notion of a fertility trend, where the correlations should decrease with increasing distance and
remain nonnegative. If present, it is assumed that they can be more directly modelled (such as with
direction of harvester as a covariate), and not included with the fertility. Williams (1952) considered
experimental designs and maximum likelihood under the general AR(2) fertility model without
measurement error.

The model with A; = A, is the AR(2) model with equal roots of the characteristic equation. The
resulting autocorrelation function has the form

A
.= + — kAT,
P 1+ A2 !
This autocorrelation function is unlike those for any other AR(2) model in that while it is monoton-
ically decreasing away from zero, it is flat at the origin rather than spiked. This special case of the
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AR(2) model was not studied by Box and Jenkins (1976), for example. The same autocorrelation
structure also arises from what may be considered the simplest truly bilateral simultaneous autore-
gression, namely F, = a(F,_, + F,, ;) + &, where a = \,/(1 + A%). Whittle (1954) considered the
two-dimensional version of this process and described data that supported this phenomenon.

2.2 Bayesian Estimation
To calculate the posterior distribution of 7 we must calculate the integral

p(r|n=fp(v, o|Y) do «fp(m, O)p(r, 6) db,

where p(Y|t, ) is the likelihood and p(r, ) = p(76)p(6) is our prior for (7, 6). In general, this integral
cannot be evaluated analytically, and so a numerical technique must be used. The computation can
be simplified by using a multivariate normal prior for (76) (or with simple modifications a mixture of
multivariate normals). It then follows that p(AY, 6) « p(Y|7, 6)p(7]6) is also a multivariate normal,
and p(11Y) = [ p(7Y, 0)p(6Y) d6 is a mixture of these normal distributions.

The mean and variance of (7]Y, 6) and the likelihood given 6, p(Y]6), can be calculated directly
using the Kalman filter with state X, = (F,, G,, 7, ..., 7,) even in the presence of missing values
(Kalman, 1960). This suggests the use of importance sampling to estimate the posterior for 7 by first
simulating 6, (i = 1, ..., N) independently from the sampling importance density f(6), and then
forming the estimate

P(91|Y)
CA

| N
prln) = 2 p(rl6, 1) )
i=1

The distribution f(6) is chosen such that it can be easily simulated from, and is as close to the
unknown p(6|Y) as possible. As N approaches infinity, p(7]Y) approaches p(1]Y).
Another approximation is

p(r|Y) = p(], V), )

where 6 is the value of 6 that maximises the posterior distribution of 6, p(6|¥). A numerical
maximisation of p(6]Y) is therefore required to obtain 6. We shall employ this approximation (5) in
Section 3.3.

Figure 2 displays the posterior of a treatment contrast (early spraying — no spraying) in the
mildew control trial (Draper and Guttman, 1980; Jenkyn et al., 1979) estimated by equations (4) and
(5) under the prior p(r, 6) « o~ 2. Similar results were obtained with other vague priors. While
conditioning on 6 resulted in a good approximation with considerably less computation, as expected
it underestimates the uncertainty about the value of this contrast. It obtains the same mean but its
variance is underestimated by about 19%.

posterior density

0.3 0.4 0.5 0.6 0.7 0.8
treatment contrast

Figure 2. Posterior distribution for early spraying — no spraying in the mildew trial; solid line:
true posterior; dotted line: approximation (5).
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The accuracy of the approximation (5) is not surprising when one notes its similarities with
restricted maximum likelihood (REML) estimation (Patterson and Thompson, 1971; Laird and
Ware, 1982). When the prior p(r, 6) « 1 is used, § equals the REML estimate of 6 and the (1 — «)
highest posterior density region of the approximate posterior distribution of 7 equals the (1 — @)
confidence interval from conditioning on the REML estimate of 6. To correct the underestimation
of uncertainty that occurs in REML, McGilchrist (1989) suggested inflating the REML estimate of
o” by n/df, where n is the number of observations and df = n — dim(6). However, here this increases
the variance by only about 9% compared with the 19% that would be required to make it exact.

Note that a better choice of prior than p(r, 6) « 1 is likely to be available. Even ignoring the fact
that 6 contains variance terms for which a non-uniform prior may be more appropriate, for many
trials prior information about 7 will be available. This is particularly likely to be the case when 7
represents the effect of different varieties. In early generation variety trials the prior for 7 should
reflect the genetic relationship between the varieties [see, for example, Cullis et al. (1990)]. For later
trials, the information derived from earlier trials with these varieties can be utilised.

An alternative to using a prespecified prior is to use a random effects model where the variety
effects have an exchangeable joint distribution. The prior distribution of the variety effects can be
estimated from the data, leading to an empirical Bayes approach. If that distribution has a para-
metric form, we have a parametric empirical Bayes model (Morris, 1983). A simple parameterisation
of the distribution for this population is to assume 7 multivariate normal with mean p. 1 and
covariance matrix o2C.. Here C_ is a prespecified covariance matrix for 7, 1 is the v-vector of ones,
and u, and o7 are unknown scalars that could, for example, be estimated by the mode of their
posterior density. This is similar to the approach employed by Cullis et al. (1990) for unreplicated
treatments.

Figure 3 illustrates the effect of using a random effects model instead of a fixed effect model on
the ARC 2 trial (a trial with 38 treatments replicated 3 times and nothing unusual in the way of
outliers or fertility jumps). Here we have used the approximation just described with C_ equal to the
identity and the model with A, = A,. Note that the random effects model results in estimated
treatment effects (posterior means) with a smaller range. The standard deviations of the treatment
difference posteriors were similarly reduced. This shrinkage agrees with our intuition that the
treatment with the largest estimated effect from the fixed effect model is likely to be overestimated.
The reason for this treatment’s favourable result is likely to be due at least in part to random
deviations (as it would be completely if the true variety effects were equal).

LI
o ' foe)
. 'd
(S o
& .3
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-1.0 -0.5 0.0 0.5 0 2 4 6 8
fixed effect fixed effect

Figure 3. Comparison between fixed and random effects models, trial ARC 2. Posterior means
for varieties (left) and means divided by standard deviations for treatment differences (right). The
vertical and horizontal axes indicate random and fixed effect models, respectively.

3. Modelling Outliers and Fertility Jumps
3.1 The Robust Model

We now extend our model to allow for the possibility of outliers and fertility jumps. The term outlier
is used to refer to a single observation whose value was generated by a different mechanism,
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whereas a fertility jump refers to a sudden, relatively large shift in the fertility level compared to the
majority of the observations. Both occurrences are considered rare, but when present can greatly
influence the resulting inferences. We retain the decomposition in equation (1), and the treatments
7and design matrix D, but assume that a fertility jump modifies the distribution of F and an outlier
modifies the distribution of &.

The field fertility is modelled as in equations (2) and (3). However, given that there is a fertility
jump at plot 7, we assume that the fertility at plot 7 is independent of the fertility at plot t — 1. We
apply the same justification as was used in Section 2 when plot ¢ is at the beginning of a block, and
hence apply the same distributional assumptions. Thus equation (3) is used if plot ¢ is either at the
beginning of a block or at a fertility jump, with equation (2) being used otherwise.

We model outliers by modifying the distribution of the measurement errors ¢. While retaining
normality and independence of the ¢,, we inflate the variance of ¢, by a constant factor, k2,,,, when
observation ¢ is an outlier. We shall henceforth assume this variance inflation factor to be 100 (see
Section 5 for a discussion of this value). Thus, while an outlier observation y, still has a distribution
centred on (D7), + F,, its distribution is considerably more spread out.

To avoid a possible identifiability problem, we assume that a fertility jump cannot occur at the
beginning of a block. We also make the assumption that a fertility jump and an outlier cannot both
be present at the same plot. This simplifies our model by allowing at most three possible cases for
each plot: a fertility jump, an outlier, or neither. The fourth possibility of both a fertility jump and
an outlier should be uncommon, and we note in this case that the distribution of y, is affected little
by the exact value of the fertility at plot . Hence in this case we redefine the fertility jump at plot
t to be at plot ¢ + 1. While this results in an incorrect estimate of the plot fertility at plot ¢, we note
this and consider it to be of little consequence, as the posterior distribution of 7, which is of primary
interest, will be affected negligibly.

Formally, we shall let ¢, denote the condition of plot 7. Thus ¢, = 1 if plot 7 has neither an outlier
nor a fertility jump, ¢, = 2 if plot # has an outlier, and ¢, = 3 if plot ¢ is at a fertility jump. Then
¢ =(cy, ..., c, denotes the condition of all the plots. We define the submodel M. to be the model
with plot conditions c.

Our model for Y consists of a mixture of these submodels where each submodel M. is weighted
according to the prior probability of model M. The likelihood for Y is therefore

p(Y) =2, p(YIM)p(M.)

and the posterior distribution of 7, the quantity of interest, is given by

p(r|Y) o X p(r]Y, Mp(M.|Y).

We assume that the prior specifies the conditions of the different plots to be statistically independent
and that the conditions 1, 2, and 3 have prior probabilities 96%, 2%, and 2%, respectively. These
choices are discussed in Section 5.

3.2 Comparison with Robust Time Series

In the absence of the term D7, we obtain a robust model similar to those employed in robust
nonseasonal time series (Harrison and Stevens, 1976; West and Harrison, 1990). Estimation under
such models is aided by the fact that an observation is most correlated with observations on nearby
plots, the neighbours. Thus the condition of a plot can be well estimated with knowledge only of the
observations on the neighbouring plots. Estimation can then proceed recursively by updating the
plots in field order, so that a plot is considered at about the same time as its neighbours.

In the presence of the term D7, the neighbourhood structure described above is more complex,
with the neighbouring plots being not only those nearby in the field, but also those receiving a similar
treatment combination. A recursive procedure is therefore not as efficient, as it becomes difficult to
update the plots in such a way that a plot is updated at about the same time as its neighbours. The
simplest solution to this problem would be to condition on an estimate of 7, and then estimate the
condition of the plots as before. Figure 4 compares the results of using maximum likelihood on the
full model to estimate 7 with the exact Bayesian solution in some simple cases.

In Figure 4 we assumed that F = 0 and o%,, = 1, so that the observations are independent with
a variance of 1, or of 100 if conditioned to be an outlier. The (scalar) mean 7 was assumed to have
the improper uniform prior and only the first observation had positive prior probability (2%) of being
an outlier. The approximation is good with nine replicates, but seriously underestimates the
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uncertainty about whether the observation is an outlier or not with three replicates. The problem
occurs because the likelihood is the mixture of the two normal likelihoods corresponding to the two
submodels, and with few replicates the critical factor is which of these likelihoods dominates the
other. Maximum likelihood cannot be expected to perform well when the log-likelihood is so
nonquadratic, nor is it trivial to ensure that the global maximum and not just a local maximum is
achieved.
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Figure 4. Effect on posterior probability of an outlier when conditioning on the MLE for 7

under the simple model with F = 0 and o?,, = 1. Only the first observation y, is nonzero. The

three graphs assume (left to right) 3, 5, and 9 replicates, respectively, with the true posterior
(solid) and approximation (dotted).

3.3 Estimation for the Robust Model

The oversimplified model used for Figure 4 suggests that the posterior probability of an observation
being an outlier is well approximated by zero unless its cross-validated residual is at least 3. Since
such a large residual is rare under the nonrobust model, this suggests that most of the submodels of
our model will have very low posterior probability. We therefore propose to calculate only the
submodels that have nonnegligible posterior probabilities M., ¢ € €, and approximate the posterior
probabilities for the other submodels by zero. We defer the estimation of € to Section 3.4, but now
take it as given.

We approximate the posterior distribution of 7 as follows:

p(rIV)=> | p(r, 6, M |Y) db

cESG

~ > pM|V)p(rlb,, M, Y). (6)

cE€
In equation (6), 9L. is the value of 6 that maximises p(8|M,., Y), and

p(M_|Y) « p(YIM_)p(M )
=p(M,) f{)(Yl(% M.)p(6|M.) dé

~p(M)p(Y16., M )p(6.M.), ©)

where p(6/M ) is the prior for 6 under submodel M., and is typically assumed to be the same for
every submodel. Thus each submodel is estimated separately, as in Section 2.2, equation (5), and the
results combined under the assumption that integrating 6 out of p(Y, 6|M_) can be well approximated
by maximising it with respect to 6.

The simpler approximation that conditions on a single value 6 of 6 that maximises
Seeq P(6, M |Y),

p(e|p) = f S p(r. 0, MY) d6
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zj > p(7l6, M., )p(M_|6, Y)p(6]Y) db
cE®

>, plr]é, M., V)p(M_|8, V), (8)

cES

U

applies the same approximation as in Section 2.2 to the complete model. A comparison of these two
approximations is illustrated in Figure 5, where we again assume the simplified model with zero
fertility, so that § = o2,,, and the observations are independent. Observations receiving the first

treatment were all assumed to be zero except for y,, whereas observations on the other treatments
were such that their residual sum of squares equalled their degrees of freedom (so 67, = 1).

obs
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Figure 5. Effect on posterior probability of an outlier when conditioning on the MLE for o2,

under the simple model with F = 0. The only nonzero observation for the first treatment is y,.

The graphs (left to right) correspond to trials with 5, 10, and 20 treatments, respectively,

replicated 3 times. The true posterior (and approximation (7)) is solid and approximation (8) is
dotted.

In this case approximation (7) is very good (and is exact if the prior p(o2,) = 1 is used in (7) in
place of the assumed p(d2,,) * 1/02,,). Approximation (8) underestimates the uncertainty about
whether the first plot contains an outlier or not, especially for small trials.

3.4 Determining the Conditioning Set of Outliers and Jumps

Due to the large number of possible submodels, it is likely that any practical choice of €, the
conditioning set of anomalies, will in total comprise a small percentage of the posterior probability,
the majority of the probability being spread very thinly over the very large number of remaining
submodels. Nevertheless, the posterior for the treatment difference 7, — 7; will primarily be
influenced by the presence of outliers on any plots with treatments i or j applied, or by fertility jumps
on plots close to these plots. The marginal posterior probabilities of outliers and fertility jumps on
these plots are of primary importance when calculating the posterior for this treatment difference.
These marginal posteriors can be reasonably approximated by a few submodels since to a first
approximation the posterior occurrences of outliers and fertility jumps can be assumed independent.
This approximation is most likely to be violated when the addition of an outlier or fertility jump
greatly modifies the estimate of 6, influencing the probabilities of future outliers or fertility jumps
through different distributional assumptions (likely only in small trials or when the original outlier or
fertility jump has very high posterior probability), or when the outliers or fertility jumps in question
are close under the neighbourhood structure.

To determine the set of submodels M_, ¢ € 6, that have nonnegligible posterior probability, we
adopt a recursive procedure beginning with the submodel ¢, = 1 for all 7. This submodel corresponds
to no outliers or fertility jumps and often has high posterior probability; we adopt the convention of
always including it in 6.

Given that we have just included the submodel M. in 6, we then consider the submodels M. in
.. that have the same outliers and fertility jumps as M_ plus one extra outlier or fertility jump. The
submodels in 6. are then approximately ranked according to their posterior probability, and
estimated in turn until a submodel from €_. is rejected from € due to its low posterior probability.
Here the submodel M_. is rejected if its posterior probability is less than a proportion « of the sum
of the posterior probabilities for the submodels previously considered from 4. and M,. The
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proportion « is taken to be small, and in our examples we took a = 2%. Choosing « to be close to
the (usually small) prior probability of an outlier or a fertility jump seems reasonable because it
implies roughly that when the data alone provide evidence against a plot being an outlier or a jump,
that possibility is ignored. The recursion is continued by considering those submodels with an extra
outlier or fertility jump from those submodels M. accepted into €.

There are various ways of determining the ranking of €_.. Likely outliers can be detected by the
estimated measurement errors with large magnitude from the submodel M, (note that 8. is likely to
be close to 6, due to the similarity of the submodels). Similarly, likely fertility jumps may be
detected by values of £, + & — (F,_, + &,_,) from the submodel M_. A more refined estimate for
a selection of submodels could be based on p(M_.|6,, 7., Y), where #, is the estimate of 7 from M_,
or even better based on p(M..|6., ¥). These rankings for €_. are likely to be progressively more
accurate but require progressively more computation. They all require considerably less computa-
tion than our final estimate, p(MC,|éC,, Y), which requires a numerical optimisation and should be
required for only a small subset of submodels in €6...

4. Examples .

We now consider three trials as examples. All are early grain variety trials conducted by the
Agricultural Research Council of Great Britain and consist of 3 or 4 blocks with each variety applied
to exactly one plot in each block. The first two trials (ARC 8 and ARC 6) illustrate, respectively, the
case where there is uncertainty about whether a single outlier or fertility jump is present, while the
third trial (ARC 1) illustrates the occurrence of many possible outliers and fertility jumps. Further
examples can be found in Taplin (unpublished Ph.D. dissertation, Department of Statistics, Uni-
versity of Washington, 1990), where estimation of the general model given in equations (2) and (3)
often resulted in either A, = 0 or A, = A,. We therefore shall summarise the results for the two
extreme cases A, = 0 and A, = A,. In any case we shall see that submodel uncertainty has a greater
influence on the posterior for 7 than model uncertainty. Cullis and Gleeson (1989) found that the
simple I(1) fertility model was satisfactory in 90% of 1,019 variety trials conducted in Australia
during 1987-1989.

4.1 A Possible Outlier: Trial ARC 8

Figure 6 displays the treatment-adjusted data (i.e., ¥ — D%, where 7 is the estimate of 7 under the
submodel ¢, = 1 for all ¢) in field order for the three blocks with the treatment number as the plotting
symbol. The lines are the estimated fertilities from the A; = A, model (solid) and the A, = 0 model
(dotted). While the posteriors for 7 were very similar under the two models, the estimated fertility
is smoother under the A, = A, model, with correspondingly larger estimated measurement errors.

The large magnitude of the estimated measurement error on plot 23 suggests that this value is
atypical, and Figure 7 is similar to Figure 6 but assumes the submodel ¢,y = 2, ¢, = 1 for all ¢ # 23.
This is almost equivalent to removing this observation from the analysis. Table 1 summarises the
estimation of these two submodels under the two models (estimation of the model with general A,
and A, results in A, = 0).

Both models achieve similar log-likelihoods, and this together with the fact that for either
submodel the models achieve similar posteriors for 7 suggests that for this trial submodel uncertainty
is more important than model uncertainty. With a prior probability of an outlier of 2%, this translates
[by approximation (7)] into posterior probabilities of an outlier on plot 23 of 82% and 79% for the
A, = 0 and A, = A, models, respectively. Approximation (8) however results in posterior probabil-
ities of 98% and 97%, respectively, and essentially conditions on plot 23 containing an outlier.

For comparison, a complete Bayesian analysis with prior p(6) « 1/¢* resulted in a posterior
probability of ¢,; = 2 of about 68 + 4% (calculated using importance sampling as in Section 2.2).
Thus approximation (7) also underestimates the uncertainty about the condition of plot 23, but not
as much as approximation (8).

Finally, we note that it is the possibility of ¢,; = 1 or 2 that is the primary issue for this trial. The
next most likely outlier appears to be on plot 33 with a posterior probability of less than 3%, and the
most likely fertility jump occurs at plot 43, with a posterior probability of about 6%. These
possibilities have little influence on the posterior for 7. The effect on the posterior of 7of uncertainty
about the condition of plot 23 will be illustrated in Section 5.

4.2 A Possible Fertility Jump: Trial ARC 6

Whereas the trial ARC 8 was dominated by a large measurement error relative to the fertility trend,
the trial ARC 6 provides the contrasting situation where o2, is very small. Here we shall assume
that o2, = 0 for trial ARC 6 and illustrate a possible fertility jump. Figure 8 graphs the treatment-
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Figure 6. Trial ARC 8, treatment-adjusted yield graphed with symbol treatment number under
submodel ¢, = 1 for all ¢. Lines are estimated fertility from A, = A, model (solid) and A, = 0
model (dotted).

adjusted yield (under the model with A, = A,) against plot number in the same manner as for trial
ARC 8. Note that here there are four blocks, and since o2, = 0 the estimated fertility equals the
treatment-adjusted yield.

Table 2 summarises the estimation of the two submodels ¢, = 1 for all # and ¢5 = 3, ¢, = 1 for all
t # 5, under the two models with o2, = 0. We have chosen to force o2, = 0 because it was usually
estimated to be zero anyway. Only when A, = A, and c5 = 3 was o2, estimated to be nonzero, and
even in this case it was negligible.

Unlike in the previous example, the choice of model now influences the evidence for the
submodels; the fertility jump at plot 5 is more likely under the model with A; = A,. Assuming a prior
probability of a fertility jump of 2%, the posterior probability that c5 = 3 is 63% when A, = A,
compared to 16% when A, = 0. This increased model influence is to be expected due to the lack of
measurement error, making the distribution of ¥ more dependent on the distribution of F.

We note that while the model A, = 0 was .6 unit of log-likelihood superior to the model A, = A,
when conditioning on ¢s = 1, it is .2 unit inferior when taken unconditionally. Thus, when the
possibility of fertility jumps is introduced, there is quite a shift in evidence about which fertility
model is appropriate. Furthermore, under the submodel ¢, = 1 for all ¢, it is the posterior for the
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Figure 7. Trial ARC 8, treatment-adjusted yield graphed with symbol treatment number under
submodel with c,; = 2, ¢, = 1 for all ¢ # 23. Lines are estimated fertility from A, = A, model
(solid) and A, = 0 model (dotted).

Table 1
Comparison of submodels for trial ARC 8
Submodel with c¢,; = 1 Submodel with ¢,3; = 2
Model Log-like. o %fert A Log-like. o’ %fert A
A =0 1 .16 64 .81 5.5 .14 82 .83
A=Ay .0 .16 51 1 5.2 .10 68 77

treatment difference 7,; — 7,¢ that differs most between the two models. It is also this treatment
difference that is most influenced by the introduction of the fertility jump at plot 5 (since treatments
17 and 16 were applied to plots 5 and 4, respectively), and we shall show in Section 5 that allowing

for the possibility of fertility jumps makes the treatment posteriors under the different models more
similar.
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Figure 8. Trial ARC 6, treatment-adjusted yield graphed with symbol treatment number under
submodel ¢, = 1 for all z. Line is estimated fertility from A, = A, model.

Table 2
Comparison of submodels for trial ARC 6
Submodel with ¢5 = 1 Submodel with ¢5 = 3 )
Model Log-like. o’ i A Log-like. _*oi .
A =0 .6 .36 .94 2.8 .50 .97
A=Ay .0 .30 .67 4.4 .36 2

4.3 Multiple Possible Outliers and Fertility Jumps: Trial ARC 1

The treatment-adjusted data are plotted in Figure 9 together with the estimated fertility from the
A, = A, model. A dominant feature here is the inability of the estimated fertility to increase as
quickly as the treatment-adjusted data over plots 1-10. A fertility jump at plot 5 appears more
appropriate, and Figure 10 displays the results conditional on the submodel ¢5 = 3, ¢, = 1 for all ¢
# 5. This fertility jump is well supported by the data, with a posterior probability of over 95% from
a prior of only 2%.
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Figure 9. Trial ARC 1, treatment-adjusted yield graphed with symbol treatment number under
submodel ¢, = 1 for all . Line is estimated fertility from A, = A, model.

We shall restrict attention here to the smoother model A, = A, because while it is superior to the
A, = 0 model by only .1 unit of log-likelihood when conditioned on ¢ = 1, it is superior by 1.4 units
when ¢5 = 3. Due to the dominance of ¢ = 3 over ¢s = 1 (under either model), the data strongly
favour the A; = A, model under the robust model. Estimation of the model with general A, and A,
results in A, = A,.

Table 3 shows the 13 submodels with highest approximate posterior probability, and their
posterior probabilities conditional on € only containing these submodels. Table 4 shows the
marginal posterior probabilities of the 7 most likely outliers and fertility jumps from our analysis
(with a = 2%:; see Section 3.4). Note that conditioning on a single submodel is not appropriate, as
the submodel with highest posterior probability conditions on a fertility jump at plot 5 only, whereas
the marginal posterior probability of an outlier on plot 49 is 63%.

S. Sensitivity to Model Specification

We have conditioned on values for p ., Pjump» and k. chosen prior to the collection of the data. We
have not determined these parameters from the data because the likelihood function can be quite
flat, indicating that the data contain little information concerning these parameters. Nevertheless,



Anomalies in Field Trials 777

1.0

yield
0.0

-0.5

-1.0

plot number

1.0

0.5

yield
0.0

-1.0

50 60 70 80 90 100

plot number

1.0

0.5

3729

yield
0.0

-05

-1.0

100 110 120 130 140 150
plot number
Figure 10. Trial ARC 1, treatment-adjusted yield graphed with symbol treatment number under
submodel ¢5 = 3, ¢, = 1 for all # # 5. Line is estimated fertility from A, = A, model.

Table 3
The 12 best submodels for trial ARC 1 and their
approximate posterior probabilities

Submodel Posterior

— probability
Jumps Outliers (%)
3 15.6
5 49 11.0
5, 105 49 10.0
5, 48, 105 49 9.2
5, 46,105 49 77
5 35, 49 7.2
5, 105 56
5, 105 35, 49 4.8
5 147 3.5
5, 47, 105 49 33
5, 48, 105 35, 49 3.1
5 35 3.1
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Table 4
Marginal posterior probabilities of outliers and fertility
jumps for trial ARC 1

Outlier
or Posterior
fertility probability
jump (%)

J(5) 97
j(46) 9
j(48) 14
J(105) 52
0(39) . 27
0(49) 63
0(147) 17

the values of these parameters can have a substantial effect on the posterior for 7, especially if they
model anomalies as very rare when they are present.

5.1 pouw and pjump
We first consider how the posterior for 7 is influenced by our prior choice for p,,, and p;,,,,- This
information is easily available under the approximation (6) and (7). We note that under this
approximation the submodel priors influence the posterior for 7 only through the mixing proportions
of the posteriors for 7 based on each submodel. Thus we can easily re-evaluate the posterior for 7
under different prior probabilities for anomalies (assuming the same €).

The left graph in Figure 11 displays the posterior for the treatment differences 7y — 7 in trial 8 as
a function of p,,,. It assumes the model with A, = 0 and that € contains only the two submodels c,
= 1 forall rand c,5 = 2, ¢, = 1, for all r # 23. The .5%, 2.5%, 97.5%, and 99.5% quantiles are
graphed along with the posterior mean. Note the insensitivity of the posterior to the exact value of
Pout Detween .5% and 5% compared to the extremes of 0% and 100% (which correspond to the two
submodels).

The other two graphs in Figure 11 refer to the effect of p;,,,, on the posterior for 7,; — 7,4 in trial
ARC 6. Only the two submodels ¢, = 1 for all 7 and ¢5 = 3, ¢, = 1 for all  # 5 are included in 6.

1.5

1.0
T~
06
TN
06
~
~

04

posterior quantiles
05

0.4

0.2
0.2

o f e
S o K et I ERNUPPIIRRRISE
g o e — o |7
- —_— c 1. - = e —
R —_ - — —_———
S ~
- e
2 {7
0.0 0.04 0.08 0.0 0.04 0.08 0.0 0.04 0.08
p(outlier) p(jump) p(jump)

Figure 11. Effect on posterior for a treatment contrast of p., and p;,,,. Lines represent

posterior mean (solid) and 2.5%, 97.5% (dotted), and .5%, 99.5% (dashed) quantiles. Asterisks

represent values when p,,, or pj,mp = 100%. Graphs from left refer to trial ARC 8 (A, = 0), trial
ARC 6 (A, = A,), and trial ARC 6 (A, = 0).
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The centre graph assumes the model A, = A,, whereas the model with A, = 0 is assumed on the right.
These graphs illustrate how similar the posteriors from different models can be after taking into
account the submodel uncertainty. The indicated quantiles are similar when p;,,.,, = 2% despite their
being quite different for each submodel.

5.2 koy,
We now examine the influence of &, (used to model outliers) on the posterior probabilities of the
submodels. Unfortunately the situation is not as simple here, as each submodel must be refitted (i.e.,
optimised over 6) with every new value of k_,,. In general this will require considerable computa-
tion, so instead we provide a simple approximation.

By definition of an outlier we require k,,, > 1, and in practice we expect it to be at least as large
as 5 (which will approximately remove an outlier from the analysis). If we approximate the
likelihood by conditioning on estimates of = and 6, then the ratio of the likelihoods for M, under

kout = kouer 10 kouro 18 approximately
k A " 1 n 1 n
out20 obs,2 - .2 - O A2
~ exXp ~2 2 E7, (i) eXp 2 ) 24 €2 00 | (9)
koutlaobs,l) (2k<2)ut102)bs,1 i=1 o 2koul2c-obs,2 i=1
where M conditions plots o(1), o(2), ... , o(n) only as outliers, &, ,, is the estimated measurement

error on plot o(i) under k,, = Ko, and G, is the estimate of o, when k., = k.. This
approximation results by considering only the plots with outliers, since the distribution at these plots
is influenced most by changing our model for outliers. The approximation is reasonable if k2,02,
is large compared with ¢ (so that outliers are approximately independent of the other plots), which
will typically be the case.

Expression (9) still depends on the &, ;, and to avoid the estimation of these for every value of
kous We could condition on the same value of &, obtained from, say, k,,, = 10. The resulting
approximation,

koutZ " -1 n ) -1 n s
eXP\ 57 2 £ ol(i €X A2 A2 € o(i) | » (10)
(koutl) p<2k?)utla'?)bs El o @ P 2kgut20-<2>bs E] 2o

is very good and easily used to evaluate the effect of changing k_,,. Note that this assumption of
similar 6 is more reasonable here than when comparing different submodels as practical values of
ko Will all essentially remove outliers from the analysis. Furthermore, for values of |¢; /&, Of
about 4 or 5 that create submodel uncertainty, the ratio of exponentials in equation (10) is
approximately unity (especially for larger k,), which results in the ratio of likelihoods being
approximately kg .o/Kkoue;-

Thus, this approximation suggests using the (p.u, kou) combination of (pouckouti/Koutzs Kout1)
instead of (pou2, kourz)s and so Figure 11 can again be used. For example, if we wished to use kg,
= 5 instead of k,,, = 10, we could use Figure 11 after scaling the horizontal axis by a factor of
one-half (so .10 becomes .05). This approximation also illustrates how, for larger &, it is the ratio
of poue to ko, that is of primary importance and not the individual values.

6. Discussion

We have proposed a procedure for modelling outliers and fertility jumps when estimating treatment
effects in agricultural field trials. As a first stage, we have specified a state-space modelling
framework for agricultural trials in the absence of such anomalies that includes many previously
proposed models as special cases. One special case that has not received much previous attention,
the so-called partial second-differencing model when A; = A,, seems particularly interesting because
of its properties and its success in examples. The overall procedure seems to be successful in
accommodating outliers and fertility jumps in a routine way, and it also allows us to take account of
uncertainty about model specification and the presence of anomalies when making inference about
the treatment effects. The framework allows for both random and fixed effects modelling in a natural
way, and permits the incorporation of prior information very easily.

The procedure we have used to model fertility jumps can be employed for any stationary fertility
model by again assuming independence between fertilities across the jump. For the first-difference,
or random walk, fertility model, the F, — F,_, are iid N(0, a'érad), and we could model a fertility jump
at plot ¢ by multiplying the variance oZ,,4 by a constant ké,ad (=100, say). While this has the desired

g
effect, examples suggest that after accounting for possible fertility jumps, a smoother fertility model
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is likely to be more appropriate. Modelling fertility jumps under models such as the ARIMA(1, 1, 0)
or second-differencing models is not so straightforward.

There has been little attempt to model fertility jumps in agricultural field trials, although the
occurrence of level shifts in general time series is often recognised. Outliers are usually dealt with
by replacing these observations with missing values. The decision to designate an observation as an
outlier may be made by a subjective examination of residuals, or by a formal statistical test [see, for
example, Kitagawa (1979)]. Note that this is approximately equivalent to conditioning on a single
submodel, which we have shown to be unsatisfactory in some circumstances.

The posterior distribution of 7 can also be approximated using the Gibbs sampler (Geman and
Geman, 1984; Gelfand and Smith, 1990). Here we define the state X = (F’, 6, 7/, ¢"), and from an
initial value of X replace X; with a realisation from the distribution of (XJX_,- (j# 1), Y). All of these
distributions are trivial except perhaps when X; is an element of 6 (Taplin, unpublished dissertation
cited previously). After enough replacements, X will be approximately a realisation from the
posterior p(X|Y), and hence a stochastic approximation can be formed by such repeated sampling.

This procedure is efficient at determining 6, as it visits the submodels in time proportional to their
posterior probability. For well-designed agricultural field trials, however, it appears relatively easy
to determine 6. Furthermore, the Gibbs sampler is not as efficient at approximating p(7]Y, M_) as the
approximation p(7Y, M_, ) used in equation (6), which uses the normality assumptions to better
advantage. Another disadvantage to the Gibbs sampler is that the estimation must be repeated for
different submodel priors, so that a sensitivity analysis such as Figure 11 in Section 5 is not as
immediately available. Also, by examining the submodels included in %, the data, and using the
intuition behind what the submodels represent, it may be possible to determine whether enough
submodels have been included in €. On the other hand, the partial results available to date (Raftery
and Lewis, 1992) suggest that the Gibbs sampler would have to be run for a large number of
iterations (perhaps on the order of 4,000-5,000) to obtain accuracy comparable to that obtained with
the approximations we have used here. Thus, the Gibbs sampler may well be computationally
inefficient compared to the approximations used here.

Based on our examples we suggest the following points: (i) It is better to account for uncertainty
about outliers and fertility jumps than to condition on a single set of such anomalies. (ii) Possible
outliers and fertility jumps can have a greater influence on our assessment of the treatment effects
than the choice of any (reasonable) fertility model. (iii) Accounting for possible outliers and fertility
jumps can reduce the disparity between treatment estimates from different fertility models. (iv) The
possibility of outliers and fertility jumps should be considered while deciding on an appropriate
fertility model (if one such fertility model is to be conditioned on).
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RESUME

Nous montrons comment une analyse bayésienne d’un modele de fertilité, incorporant plusieurs
modeles recommandés antérieurement, peut prendre en compte 'incertitude dans le choix du
modele de fertilité qui fournit la meilleure approximation dans chaque essai donné. Nous montrons
aussi comment il est possible de tenir compte de I'incertitude due a des anomalies telles que des
données suspectes ou des variations importantes de fertilité. Nous argumentons que cette attitude
est préférable pour choisir un modéle ‘‘approprié.”” Nous montrons, par des exemples, comment la
prise en compte d’anomalies possibles peut a la fois influencer le choix d’un mode¢le particulier de
fertilité et réduire I'influence des estimations des traitements dans le choix du mod¢le.
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