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SUMMARY

The mixture transition distribution (MTD) model was introduced by Raftery as a parsimonious
model for high order Markov chains. It is flexible, can represent a wide range of dependence
patterns, can be physically motivated, fits data well and is in several ways a discrete-valued
analogue for the class of autoregressive time series models. However, estimation has presented
difficulties because the parameter space is highly non-convex, being defined by a large number
of non-linear constraints. Here we propose a computational algorithm for maximum likelihood
estimation which is based on a way of reducing the large number of constraints. This also allows
more structured versions of the model, e.g. those involving structural zeros, to be fitted quite
easily. A way of fitting the model by using GLIM is also discussed. The algorithm is applied to
a sequence of wind directions, and also to two sequences of deoxyribonucleic acid bases from
introns from mouse genes. In each case, the MTD model fits better than the conventional Markov
chain model, and for the wind data it provides superior out-of-sample predictions. A modification
of the model to represent repeated patterns is proposed and a very parsimonious version of this
modified model is successfully applied to data representing bird songs.

Keywords: Angular data; Bird songs; Deoxyribonucleic acid; Discrete time series; Optimization;
Wind directions

1. Introduction

There are many examples in which we would like to fit high order Markovian models
to discrete data. However, in the conventional parameterization of such processes
the number of parameters increases geometrically with the order, so that parsimony
is effectively lost. In this paper, we describe some computational algorithms for
fitting a parsimonious autoregressive-like Markov model known as the mixture
transition distribution (MTD) model, and we illustrate its use with some examples.

In Section 3 we analyse a data set that includes over 77 000 hourly observations
of wind directions at a meteorological station at Roche’s Point, Ireland; see Raftery
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et al. (1982) and Haslett and Raftery (1989). One aim here is to predict wind speeds
and directions to control the wind turbine generators that make up a wind farm,
and to manage the electric power supply. Wind turbines should be oriented so that
they derive the most energy from the wind, so that their current best orientation
is a function of future as well as current wind direction. Predicting output from
a variable energy source such as wind is important so that the need for power from
other, more stable, sources such as oil can be anticipated.

Our second example, discussed in Section 4, is from the area of biomolecular
sequence comparison. This field has provided statisticians with a wealth of novel
problems. As an example, descriptive statistics on deoxyribonucleic acid (DNA)
composition have proved useful in the search for coding regions and introns, the
statistical assessment of sequence similarity and the analysis of repeated motifs
that may be of biological significance. Similarly, a statistical analysis of protein
sequences of known three-dimensional structures has been used to infer potential
folding patterns of other proteins. It is not our purpose here to describe these areas
in any detail; rather, we refer the reader to the recent review article by Curnow and
Kirkwood (1989) and the books edited by Waterman (1988) and Doolittle (1990)
for good introductions to this field. We shall focus on just one example from the
area of DNA sequence analysis to which the MTD model might be applied.

Finally, in Section 5, we analyse some bird song data which are dominated by
patterns that are repeated many times. Such data are used to study questions such
as memory, responsiveness and imitation in birds. They may also be a template for
other problems where complex repeating patterns are embedded in noise, such as
speech recognition and the analysis of DNA coding regions. Here we find that a
simple and parsimonious modification of the MTD model fits well.

The MTD model was introduced by Raftery (1985a, b) and is defined as follows.
Let {X,:t =1, 2,...} be a time homogeneous /th-order Markov chain on a finite
set of m states (here labelled 1, 2..., m), and let the transition probabilities
be

plolivy .o i) =P(Xyy 1 =lp| Xspion =1, 0, X, =10), t=1,2,.... (1)

There are (m — 1)m’ independent parameters in equation (1). For / > 1, the MTD
model provides a useful parameter reduction in equation (1) by supposing that

1/
ploliy, .., @) = Z )\jQ(iolij), (#))
Jj=1
where Q = {q(i|/j)} is a column stochastic matrix satisfying
m
q(ilj)=0 and 2, q(rlj) =1, i=1...,m, €))
r=1
and
M+...+N=1 (€))

Note that the number of independent parameters is now m(m — 1) +/ -1,
increasing only linearly in /. For example, when there are m = 4 states, the number
of parameters for a second-order (/ = 2) chain is 13 in the MTD model as against
48 in the usual second-order Markov chain model. To ensure that the transition
probabilities are properly defined, we also require
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1
2 Nglioli) =0 for all iy, . . ., i. ()

Jj=1

Notice that when conditions (3)-(5) are satisfied 0< p(iy |, ..., i) < 1 for all i,
Ly ooyl

The MTD model is so called because the conditional probabilities in equation (2)
are linear combinations of contributions from the past. It is analogous to the
autoregressive AR(/) model in that one extra parameter is added to the model for
each extra lag and that the lagged bivariate distributions satisfy a system of matrix
equations that are similar to the Yule-Walker equations.

In some situations it has a direct physical interpretation in terms of the prob-
ability of returning to past states, or states close to them. For example, in modell-
ing employment histories, someone who changed from job A to job B at the last
transition may be more likely to revert to job A at the next transition than someone
who had spent a long time in job B. Specifically, suppose that at the next time point
t + 1 a person has probability A\, of being in a job like her present job and prob-
ability A, of being in a job like the job that she occupied at the previous time
point ¢ — 1. Thus, if she changed job between times # — 1 and ¢, she has a prob-
ability \, of reverting to her previous job or a job like it. Here the word ‘like’ has
a stochastic meaning defined by the matrix Q: if a person leaves job j to
move to one like it, the conditional probability that the new job is i is g(i|/)
(i=1,..., m). Then the person’s job history is precisely a trajectory of the
stochastic process defined by equation (2) with / = 2. If a person has a non-zero
probability of reverting to jobs like those held up to / time periods ago, we have
model (2) with general /. Raftery (1985a) analysed a set of job histories of physicists
and showed them to be well fitted by this model.

We have found the MTD model useful in practice. From an algorithmic point
of view, there are really two special cases of the MTD model, these being determined
by what is assumed in addition to conditions (3) and (4) about the {\;}. With the
positivity assumption

A0, i=1,..., 1 (6)

the inequality in expression (5) is automatically satisfied, and fitting presents few
problems. This is the most important case in practice, and it has the added benefit
that the N-parameters may be readily interpreted as probabilities. The examples
given in Raftery (1985a) satisfied assumption (6).

However, not all the data sets that we have analysed satisfy this condition.
Without the positivity assumption, equation (5) comes into play in a crucial way,
and computationally it becomes important to be able to reduce the large number
of constraints that are operating there. In Section 2 we suggest how this might be
done and in Section 4 we give an example.

2. Parameter Estimation

'2.1. Maximum Likelihood Estimation
The parameters Q and {\;} can be fitted by maximum likelihood by maximizing
the log-likelihood



182 RAFTERY AND TAVARE
logL = > n(ig, iys..., iy)logp(io|iys ..., i), @)

where n(iy, i, ..., i) is the number of times that the sequence i, = i,_, — ...,
occurs in the data, p(i|i,, ..., i;) is given by equation (2) and the sum is over all
igs @1y ..., iy With n(iy, i;,..., i) > 0. The maximization is subject to constraints
(3), (4) and (6). In equation (7) we have ignored the contribution to the likelihood
that comes from the initial distribution.

Although there are several numerical approaches that might be taken to this
problem, we found that direct maximization of log-likelihood (7) was effective. We
used the sequential quadratic programming algorithm implemented as routine
EO04UCF in mark 15 of Numerical Algorithms Group (1991). Although derivatives
of the objective function and the constraint functions may be calculated, we found
that approximating these by finite differences was effective.

One troublesome part of the algorithm involves the storage and recovery of the
counts n(iy, i, ..., §;). For models with high values of / or m, the number m'*!
of potential patterns can be extremely large. We proceeded by labelling a pattern
(ips &y ..., §;) by the number

!
i=1+ > (- lym'*'-J,
=0

J

If the number of possible patterns was sufficiently small, we stored the whole (now
one-dimensional) array of counts. However, the maximum number N, say, of
patterns that can be observed in the data is a little less than the length of the
observed time series, so in cases where m’*! is a very large compared with N we
calculated and stored the ccunts by using a simple hashing algorithm with a vector
of length approximately 1.25N.

The types of data that we have analysed have led to several useful additional
features of the programs. '

(a) Structural zeros in the Q-matrix may be handled directly. Example 3.2 in
Raftery (1985a) is of this type.

(b) Predetermined A-values may also be set to 0, corresponding to the omission
of those terms.

(c) Fixed or random starts for the parameters in the iterative scheme are
allowed. In the first instance, Q is estimated by the usual first-order transi-
tion matrix, and the \; are equal. In the second instance, random Q and
N\; are used, subject to constraints (3) and (4). This facility is particularly
useful in the iterative algorithm for determining whether a local or
potentially global maximum has been reached. Although we have no formal
proof that a unique maximum exists, numerical evidence with some 20 data
sets suggests that it does.

2.2. Reducing Number of Constraints

In the absence of the positivity constraints (6), the general MTD model must
satisfy the m/(m — 1) constraints in expression (5). For example, in the four-state
second-order case, i.e. m = 4 and / = 2, the number of constraints is 48, so that
the resulting constrained numerical optimization problem is computationally
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demanding. The following result effectively reduces the number of constraints in
expression (5) to m.

Proposition 1. Let T = L;, 50 N\;, and define g_ (i) = min, ¢; ¢, {g(i]/j)} and
q. (i) =max, ¢j<m{q(ilj)}. Then Ii_,N\q(i|i;) >0 for all i, i,..., i, if and
only if

Tqg_(i)+ (1 -T)q, (i) 20 for all i. 8)
Proof. If inequality (8) holds, then

i
Z)‘jq(ilij)= Z Ng(ilip) + Z Nq(ilip)

Jj=1 JN 20 JN <O

> 2 Ng-() + 2 Ng. (i)

JN 20 J:N<O0
=Tq_-() + (1 -T)q.(i)
= 0.

Conversely, assume that condition (5) holds, and suppose that g_ (i) = g (i|p,)
and q. (i) = q(i|p,). Then

Tq_-()+ (1-T)g. () = 2 Nqlilp) + 25 Na(ilpy)

JiNZO JiN <0
20,
which completes the proof.

The likelihood function in equation (7) can now be maximized under the con-
straints given in inequality (8). However, the constraint function is highly non-
differentiable, and this leads to problems with the use of routine E0O4UCF. Although
the algorithm converges close to a solution quite rapidly, it then cycles in a
neighbourhood of the local optimum. As a simpler, if somewhat ad hoc, procedure
we run the algorithm with no constraints on the A\-terms and then use proposition
1 to check that the solution does satisfy the constraints (5). The fits with negative
A-values described in Section 4 were found in this way.

2.3. Minimum x? Estimation
As an alternative to maximum likelihood, we have also used minimum
x? estimation. The aim is to find Q and {)\;} that minimize

2 _ {n(i0$'°-s ll) _e(i(),..., il)}2
X*=2; oy 1) ’

where
e(igy .., if) =n(+, iy,..., i)plpliy,...s0),

.and + denotes summation over that index. The sum is over all n (i, i, ..., i) for
which n(+, i,..., §) >0, and the constraints (3), (4) and (8) apply. This is a
useful alternative, since the fitted counts e from the optimization are natural
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candidates as measures of goodness of fit of the model. Kwok (1988) and Li and
Kwok (1989) have shown that in some special cases of the MTD model the minimum
x 2 estimator has lower bias than the maximum likelihood estimator but about the
same variance, and hence lower overall mean-squared error.

The asymptotic theory of X? when the parameters have been estimated by max-
imum likelihood is given in Billingsley (1961). He shows that, under the assumption
that the process is described by an /th-order Markov chain, X2 has asymptotically
as n — o a xZ2-distribution.

We also experimented with different numerical algorithms for this problem,
essentially based on knowledge of derivatives for the constraint functions. Once
more the direct approach seems the easiest, using algorithm E04UCF again.

2.4. GLIM Analysis of Two-state Models

When m = 2, the MTD model may be fitted by using an iterative procedure in
GLIM (Baker, 1986). Focus for the moment on the case / = 2, and write \; = A,
A, =1 — A. Log-likelihood (7) may be written

2
logZ = 33| 3} n(iy i, i) ogpili, i) )
i, ip Ni=1

For each i, and i,, the inner term in equation (9) is (essentially) a binomial log-
likelihood for n(+, i, i) trials and success probability p(1|i;, i,), where

q(1]1) h=1,ip=1,
N1 + (1= N)g(1]2) =1, 0 =2,

p(i, b) =3 (7 23\ q(1]1) +rg(1]2) =20 =1, (10)
q(1]2) iy =2, 0 =2.

If N is known, then equations (10) show that the p(1|i,, i,) are linear in the
parameters g(1|1) and g(1|2), g(1|1) being the coefficient of the covariate
x] = (1, \, 1 =\, 0) and ¢g(1]2) the coefficient of the covariate x] = (0, 1 — X\,
N, 1). Thus ¢g(1|1) and g(1]|2) (and so Q) may be estimated by using binomial
error, identity link, no intercept and covariates x; and x,.

However, if ¢(1|1) and g(1|2) are assumed known, then equations (10) show
that p(1|i,, i,) is linear in \; N\ is the coefficient of the covariate x] = (0,
q(1|1) —q(1]2), g(1|2) — g(1]1), 0) and the offset is xi = (g(1]1), g(1]2),
q(1]|1), g(1|2)). Thus A may be estimated by using binomial error, identity link,
no intercept, covariate x; and offset x,. This leads to a simple recursive scheme for
estimating the parameters, reminiscent of the iterative algorithms used in survival
analysis; see Aitkin et al. (1989).

The generalization to / > 2 is almost immediate from the form of equations (10).
The number of covariates for the first stage remains 2, the elements of x, being
replaced by L;; -\, For the second stage the number of covariates is / — 1.
It does not, however, seem to be simple to generalize this scheme to the case m > 2.

2.5. Model Comparison
To compare the rival, non-nested, models in the examples that follow, we would
ideally like to compute the posterior probability of each model under a range of
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plausible prior distributions for the parameters. The use of successive significance
tests seems less satisfactory because many of the comparisons involve non-nested
models and because the use of multiple tests makes the properties of the overall
procedure difficult to assess.

Here we use the approximate result that if we are comparing two models M,
and M, then the Bayes factor, or ratio of posterior to prior odds, By, for M,
against M, satisfies

— 2log By, ~ BIC, — BIC,. (11)

In approximation (11) BIC; = — 2logL; + k;logn, where L; is the maximized
likelihood and k; is the number of independent parameters in the model M; (i =
0, 1). This holds quite generally for models which satisfy regularity conditions
sufficient for the maximum likelihood estimator to be asymptotically normally
distributed (e.g. Raftery (1988)). The MTD model (2) does satisfy such conditions
provided that the parameters lie in the interior of the parameter space, i.e. that the
inequalities in equation (5) are all strict. We assume this to be the case here. Result
(11) has been formally established for independent exponential family observations
by Schwarz (1978), for the usual Markov chain by Katz (1981) and for log-linear
models of contingency tables by Raftery (1986a).

If M, is always some base-line model such as the independence model and
expression (11) is calculated for each model of interest M,, then the resulting
Bayes factors yield the approximate posterior probabilities of each of the models
of interest (Raftery, 1988). The rules of thumb of Jeffreys (1961), appendix B, sug-
gest that such a comparison should not be regarded as decisively favouring a larger
model over a smaller nested model unless the difference in BIC values is at least
about 10.

Model comparisons based on posterior probabilities can yield results that are dif-
ferent from those based on significance tests. This is especially so with large
samples, including some that we analyse here. In such cases significance tests at
fixed significance levels often reject null hypotheses more easily; an example with
n = 110000 was discussed by Raftery (1986b). This is related to the ‘conflict between
significance and P values’ discussed by Berger and Sellke (1987). Alternatively, bas-
ing model comparisons on Bayes factors may be viewed as an automatic, decision
theoretic, way of setting significance levels to balance power and significance.

Our code produces Pearson residuals which can be used to suggest ways in which
the model could be improved. New models suggested by such a process can be com-
pared with the other models under consideration also using approximate Bayes
factors.

3. Wind Direction Data

We return to the observations on wind directions at Roche’s Point, Ireland. The
data were recorded from 1.00 a.m. on January 1st, 1961, and ran for almost 9 years.
There are 77 155 observations in all. The original data were recorded as 0 for no
wind, and then in 10° units from due north, for a total of 37 states.

Fig. 1 provides a histogram of the distribution of wind directions for all 9 years
combined, together with separate histograms for each of the 8 complete years in
the data set. Broadly, these annual histograms are rather similar and show natural
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modes in the data that are preserved from year to year. On the basis of these results,
we chose to recode the data into five categories: 0, 6-14, 15-23, 24-32 and 33-5;
these are labelled 1-5 respectively in what follows.

As might have been expected, there are some inhomogeneities in the distribution
of wind directions which are revealed when the data are analysed in separate
months. See Fig. 2.

These distributions are rather similar for the months November-April. We
therefore chose the months November-April as a period in which wind directions
might be modelled by a stationary MTD model. The data analysed here come from
the period November 1961-April 1962, providing a total of 4344 consecutive hourly
observations.

Table 1 glves the BIC values for the full Markov model and the MTD model.
The order js estimated to be 7. The estimated parameters are )\1 0.591,
)\2 =0.237, )\3 =0.076, >\4 =0.018, )\5 =0.024, )\6 =0.024 and )\7— 0.031, whereas

0.65 0.01 0.01 0.01 0.01
0.09 0.95 0.01 0.00 0.03
Q=10.14 0.02 0.92 0.04 0.00
0.05 0.00 0.06 0.92 0.04
0.08 0.03 0.00 0.03 0.91

The estimated Xj are positive and decline with lag, indicating that the most
recent observations are the most important, and that the current observation tends
to be close to the immediately preceding observations. The O-matrix indicates the
process to be smooth, with the probability of staying in the same state being 0.91
or greater whenever there is any wind, and the probability that the direction changes
by more than one state being very small.

We note that )\7 is larger than }\4, )\5 and )\6, probably because the \;-term is
capturing the small residual dependence on X,_5, X,_o, ..., as well as the
dependence on X, _; itself. This suggested that we fit another MTD(7) model, with
the constraint that N\, = As = As = 0. As we discussed in Section 2.2, this is easy
with our algorithm.

TABLE 1
Wind direction data from Roche’s Point, Irelandt

Order | No. of parameters, k BIC (full model) No. of parameters, k BIC (MTD model)

0 4 12716.5
1 20 5085.7 20 5085.7
2 100 5198.8 21 4646.4
3 500 8243.3 22 4569.5
4 2500 24674.7 23 4557.5
5 - - 24 4544.7
6 - - 25 4539.8
7 - - 26 4538.8
8 - - 27 4540.8
:9 - - 28 4540.4
10 - - 29 4545.4

tn = 4325 observations starting at position 20 in the sequence.



188

March

10

re
8

—————————{
01°0 80°0 80°0 ¥0°0 20'0 0°0
Kouenbeyj eanejes

8
> &
«

2
o
[
w e

-10

——————————
01°0 80°0 90°0 00 20'0 00
fKouenba,j eanejes

<o
<?
o
©

| %g

[

=

[=

3]

e =]
o

=3

——————————t 2

01°0 80'0 90'0 $0'0 200 00 °
Aouenbayj eAgejes

wind direction
June

May

bl

wind direction

April

wind direction

RAFTERY AND TAVARE

01°0 80°0 90°0 ¥0°0 200 00
Kouenbeyj eApe|es

40

10

wind direction

August

01°0 80°0 90°0 ¥0°0 200 00
Kouenbey) eanejes

40

wind direction
November

g -2 g
8 8 g
£s :5
2§ 3 =§ 8 e
o o o
(=] o o

040 80°0 S0°0 ¥0'0 200 00 '
Kouanbey) eanejas

40

0 10 20 30

=3
01°0 80'0 90°0 ¥0°0 200 0°0 '
fouanbey) eape|jes

3

010 80'0 900 ¥0°0 200 00
Kouenbay) eAnejes

01°0 80'0 90°0 $0°0 200 00 '
fouanbeyj eAnejes

¢ e e
3 8 =¥
Rg &5 5 &
e § 3
35 3 B
o3 23 © o
(-] o o
o o

01°0 80°0 90°0 ¥0'0 200 00 '
Kouenbey) ene|es

01°0 80°0 80°0 $0'0 200 00 '
Kouenbayj eanejes

o
04°0 80°0 90°0 ¥0'0 200 00
Kouanbayj eagejas

wind direction

wind direction

t, Ireland, 1961-69

wind direction

ts of 10° from

in uni

d

tions are measure

1rec!

analysis by month (wind d

1n

Roche’s Poi

ions in

tes no wind)

1ca

Histograms of wind direct

; 0 ind

Fig. 2.
north



ESTIMATION AND MODELLING REPEATED PATTERNS 189

TABLE 2

Prediction results for the wind datat
i Model D;
1 Independent trials (equal frequencies) 1609.4
2 Independent trials (Markov, order 0) 1779.4
3 Markov, order 1 699.1
4 MTD(7) (\g = s = A\g = 0) 658.0

TResults based on fitting models to the first 3844 observations, and
using the last 500 for prediction.

The resulting BIC value was 4530.4, making this quite clearly the best model
considered. The Q -matrix was almost unchanged, whereas )\, = (0.598, )\2 = 0.245,
)\3 = 0.001 and )\7 = 0.057. This is not very different from the full MTD(7) model,
but it seems to summarize the dependence in a more parsimonious way.

To assess the predictive power of the MTD model, we used a variant of the hold-
out procedure. We refitted the models to the first 3844 data points and used the
last 500 observations for comparing models. See Dawid (1984, 1986) for further
discussion of this general approach to comparing models. We used the fitted
parameters for model / to compute the predictive probability P; of observing the
last 500 data points, conditional on the earlier data. To assess the out-of-sample
predictive performance of each model /, we used the logarithmic scoring rule of
Good (1952) in the form D; = — 2log P;. This is on the same scale as the deviance
in GLIM, and we refer to it as the ‘predictive deviance’. Lower values of D, corres-
pond to better out-of-sample predictive performance. The results are shown in
Table 2.

Our preferred model, the MTD(7) model with A, = A\ = A\ = 0, is clearly better
than the more conventional first-order Markov chain, outperforming it by 41 units
of predictive deviance. Also, observe from the results for models 1 and 2 that it
is not necessary for a more highly parameterized model to outperform a submodel
in terms of predictive deviance, in contrast with the standard likelihood calculation.

4. Analysis of Intron Sequences

The statistical significance of repeated patterns in a DNA sequence must be
measured against the background stochastic structure of the sequence itself. Among
possible models for this structure are Markov chains, which might describe the DNA
sequence in terms of its nucleotide composition (i.e. as a string of letters from a
four-letter alphabet, {A, C, G, T}). There are several other alphabets of biological
interest such as the purine-pyrimidine alphabet in which each base in the sequence
is coded as either purine ({A,G}) or pyrimidine ({C,T}). For example, Blaisdell
(1983) reported that, relative to a model of independent bases, non-coding sequences
(such as introns) generally contain a shortage of runs of length 1 and 2 of purines
and pyrimidines, and an excess of long runs of them; see also Karlin et al. (1988).
In this section, we describe an exploratory analysis of two different DNA sequences
from introns in certain mouse genes.
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4.1. Mouse T-cell Receptor a/d-locus

The first example is an analysis of part of the mouse T-cell receptor o/5-locus
(Wilson et al., 1992; Koop et al., 1992). This region is 94 647 bases in length. It com-
prises over 50 introns and 50 exons; the exons comprise just 6% of the sequence.
The particular sequence that we have analysed is the intron before joining gene seg-
ment J50 (Koop etal., 1992). It starts 5’ to exon 1 of V85 and ends three bases
before the recombination signal 5’ to J50. The sequence is 5778 bases in length.

A preliminary analysis shows that the sequence is clearly first order when
analysed in the four-letter alphabet {A, G, C, T}; see Table 3. The MTD model pro-
vides no improvement on this fit. The estimated transition matrix Q is given in
Table 4.

A Markov chain with transition matrix Q is (strongly) lumpable with respect
to a partition Py, ..., P, of the state space if, and only if, for 1 < (i, j) <r,
Liep,q(I|k) has the same value for each ke P; (Kemeny and Snell, 1960). The
lumpability condition ensures that the lumped process is also Markovian, no matter

TABLE 3
Intron from mouse T-cell receptor o/é-locust

Order | No. of parameters, k BIC (full model) No. of parameters, k BIC (MTD model)

Alphabet A, C, G, T

0 3 15980.1

1 12 15 549.3 12 15 549.3
2 48 15756.9 13 15552.4
3 192 16 828.7 14 15 561.1
Alphabet A/G, C, T

0 2 12 042.0

1 6 11 900.1 6 11 900.1
2 18 11939.7 7 11885.5
3 54 12 204.7 8 11 890.2
Alphabet A/G, C/T

0 2 8005.6

1 4 7881.8 4 7881.8
2 8 7850.5 3 7851.4
3 16 7878.2 4 7856.1

tn = 5769 bases, starting at position 10 in the sequence.

TABLE 4

Estimated Q-matrix for the Markov model
Next base Last base

A G C T

A 0.31 0.29 0.32 0.18
G 0.27 0.27 0.04 0.29
C 0.20 0.22 0.27 0.26
T 0.22 0.21 0.37 0.27
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what the initial distribution of the original process might be. An examination of
the matrix O in Table 4 indicates that we might simplify the stochastic description
of this intron by lumping the states A and G into a single state A/G that denotes
purine. A formal test of this lumpability hypothesis may be found in Thomas and
Barr (1977). The new alphabet is {A/G, C, T}. The BIC analysis of this new
sequence is presented in Table 3. As would be expected, among the fully
parameterized Markov models a first-order chain provides the most parsimonious
description. Its estimated transition matrix is given in Table 5. However, it can be
seen from Table 3 that an MTD(2) model provides a better description. In this case,
A, = 0.71 and A, = 0.29, and the estimated transition matrix Q is given in Table 6.

Finally, we analyse the purine-pyrimidine alphabet {A/G, C/T}. From the
previous discussion, it seems clear that the original sequence is not lumpable with
respect to the purine-pyrimidine partition of the states. The purine-pyrimidine
sequence may not be Markovian (or even homogeneous, unless we assume that the
original chain was stationary). Fitting Markovian models to such data provides an
exploratory approach to approximating the stochastic structure of a complicated
process by simpler processes. We might expect this more complicated structure to
be reflected in a higher estimated order of dependence in the Markovian approxima-
tion. This is indeed the case here, as the results in Table 3 verify. The purine-
pyrimidine chain is approximated by a second-order Markov chain. The MTD
model offers no further improvement in this case.

The discussion of lumpability provides an indication of the greatest extent to
which the states of the chain can be aggregated without losing important structure.
Here, this seems to be the three-state case analysed above. Thus, in a sense, the
second-order MTD model for the three-state case provides the most parsimonious

TABLE 5
Estimated Q-matrix for the Markov
model
Next base Last base
A/G C T
A/G 0.57 0.36 0.47
C 0.21 0.27 0.26
T 0.22 0.37 0.27

TABLE 6
Estimated Q-matrix for the MTD(2) model
Next base Last base
A/G C T
A/G 0.60 0.33 0.44
C 0.20 0.28 0.26
T 0.20 0.39 0.29
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available representation of the data within the class of Markov chain models
discussed.

4.2. Mouse aA-crystallin Gene

Avery (1987) examined the Markovian structure of introns from several other
genes in mice, to determine whether certain short DNA sequences occurred more
often than would be expected by chance. Here we shall analyse the introns from
the mouse aA-crystallin gene, further details of which may be found in Avery
(1987). The sequence analysed here comprises two introns, of total length 1307
bases, and is shown in Table 7.

Following the style of analysis of the previous example, we see first that the

TABLE 7
Data for introns from mouse o A-crystallin gene; see Avery (1987)t

3411314321 1221212433 4422422413 2432421313 3334244334 2443424131 3312132413 3314224231 3333212414 3122243432
4242242113 2112342221 3224242221 3224234122 2332131334 4333434321 2212143224 1432431134 2122212142 1223331443
3334233133 1331312211 2213222231 3222213222 3124322434 2444422422 2142133211 3441214332 3113321132 3432443122
3322124222 4331244424 3442443343 4333334433 3143422431 1322213131 3312333244 4244121312 3333213311 2244243413
2433211132 4321314333 3242244424 1324422243 1431243113 1113322121 4222422241 2221134313 2212134424 1311313243
2242224443 2442111131 1332422213 1233314221 3243211242 4133113211 1443222211 1432133242 4132133321 3311313133
3343331113 3244434344 1321324134 1341243433 1124344334 1141433121 3323133313 3242243312 3414331412 1221213124
4413422212 2132413221 3442221144 1322133211 1431422441 1431122232 2122214114 2112214112 2112213241 2244411421
1221324324 4114243441 1313221422 1112214112 2342121241 3122141142 1132112233 2211224341 1241321442 4324312112
2133213244 1432411342 1411322141 1224331242 4114213221 1332124212 4312214421 1221442412 4241222112 2242411424
1411221344 1324414424 1411421344 3424312221 3414122213 2114311423 2124322213 4224433342 4331334211 4343314244
1224343333 2213343121 3422213222 2133121212 2132444244 3324431331 1321313313 4312334433 4424314332 4313242442
2443422414 3431422132 2214213312 2141213243 4422222142 2444342424 3313243343 3422444333 3132422111 2343334443
3444213

1To be read across the rows: A=1, C=2, G=3, T=4.

TABLE 8
Introns from mouse aA-crystallin genet

Order | No. of parameters, k BIC (full model) No. of parameters, k BIC (MTD model)

Alphabet A, C, G, T

0 3 3620.8

1 12 3559.7 12 3559.7
2 48 3758.8 13 3566.1
3 192 4542.8 14 3572.8
Alphabet A/G, C, T

0 2 2739.0

1 6 2728.7 6 2728.7
2 18 2786.6 7 2722.7
3 54 2973.2 8 2729.4
Alphabet A/G, C/T

0 1 1810.9

1 2 1792.8 2 1792.8
2 4 1798.1 3 1791.3
3 8 1813.8 4 1797.1

tTwo introns, n = 1302 bases, starting at position 6 in the sequence.
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sequence of bases with alphabet {A, C, G, T} is clearly indicated to be of order
1; see Table 8. The estimated transition matrix Q is given by Table 9.

Notice that this transition matrix is qualitatively rather similar to the correspon-
ding matrix for the T-cell receptor intron discussed in the previous section. In
particular, this sequence is also (approximately) lumpable with respect to the parti-
tion {A/G, C, T}. The results are again consistent with the previous example, in
that among the fully parameterized Markov models the first-order model provides
the best description. However, a better description is provided by the MTD(2) model
in which X, = 2.46 and X, = —1.46, and the estimated transition matrix Q is given
in Table 10. Note that in this example the likelihood is maximized by some negative
values of the \;. The constraints are checked by using the method outlined after
proposition 1.

Finally, the analysis of the collapsed chain in its purine-pyrimidine alphabet is
given in Table 8. The odds for the data being generated by a second-order MTD
model as against a first-order Markov chain are about 2:1 by expression (11). This
provides some evidence for the chain being of order 2, although in the words of
Jeffreys (1961) it is ‘not worth more than a bare mention’. (The standard likelihood
ratio test statistic is 8.7 with 1 degree of freedom, and the corresponding P-value
from the asymptotic x2-distribution is about 0.003. Thus the approximate Bayes
factor and the approximate P-value both support the MTD(2) model but, as usual,
the P-value suggests stronger evidence for the larger model.) The parameter esti-
mates from the GLIM algorithm described in Section 2.4 are identical, and the
minimum x?2 estimates are essentially the same.

In this example, the structure of the purine-pyrimidine sequence is captured by
the MTD model, rather than by the fully parameterized Markov model that was

TABLE 9

Estimated Q-matrix for the Markov model
Next base Last base

A G C T

A 0.23 0.23 0.30 0.19
G 0.34 0.32 0.06 0.30
C 0.25 0.27 0.34 0.28
T 0.18 0.19 0.30 0.23

TABLE 10
Estimated Q-matrix for the MTD(2)
model
Next base Last base
A/G C T
A/G 0.52 0.43 0.49
C 0.27 0.32 0.29
T 0.21 0.25 0.22
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TABLE 11
Estimated Q-matrix for the MTD(2) model
Next base Last base
A/G C/T
A/G 0.52 0.45
C/T 0.48 0.55

required for the earlier intron sequence. The parameters are )\1 =2.19 and
)\2 = —1.19, and the estlmated transition matrix Q is given in Table 11.

4.3. Comments

In these examples the emphasis is on model fitting to find (or approximate)
structure, rather than for prediction. We have seen that the MTD(2) model provides
a good description of the two intron sequences when they are coded in the {A/G,
C, T} alphabet. Some other sequence analysis examples in which the MTD model
has been applied appear in Tavaré and Giddings (1988). Although Markov models
are a useful first step in this context, their validity is often questionable because
of possible inhomogeneities in the sequence. This inhomogeneity is particularly
pronounced in coding regions (exons), where it is well known that the three codon
positions exhibit markedly different behaviour. To analyse such regions, more
sophisticated non-homogeneous Markov models may be required. Some of these
are described, for example, by Borodovsky efal. (1986) and Watterson (1992). The
models developed in the next section may also be useful for this.

5. Modelling Repeated Patterns: Song of Wood Pewee

The MTD model will not work for all data sets. Like the autoregressive models
for continuous data, it is designed for situations where the next observation is ‘like’
or ‘unlike’ the previous observations, but where there are not strong interactions
between the past and present observations in their effect on the next observation
(i.e. the effects are additive). This will not be the case when the data are dominated
by repeated patterns. An example of this is the song of the wood pewee described
by Craig (1943), parts of which were reanalysed by Chatfield and Lemon (1970)
and Bishop et al. (1975) by using conventional Markov chain methods. The wood
pewee is one of the song birds of eastern North America and its morning twilight
song has three distinct phrases, labelled 1, 2 and 3.

Here we reanalyse one of the records of the morning twilight song of length
n = 1327, reproduced in Table 12. The data are dominated by the pattern 1312,
which occurs 260 times. This pattern is of /length 4, but it can be specified by four
transitions of order 2, namely 2|13, 1|21, 3|12 and 1|31; we shall say that the
pattern is of order 2. It is therefore not surprising that a full Markov chain model
of order 2 fits much better than a full Markov chain model of any other order,
or than any MTD model; see Table 13.
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TABLE 12
Morning twilight song of the wood pewee, from Craig (1943)t

2222222211 2112112112 1121121131 2121121121 3121312121 3121312131 2131213121 2112121312 1312131213 1213121312
1312131213 1213121312 1312131213 1213121312 1311312131 2131131213 1213121312 1312131211 2131213121 2131213121
3121312131 2131213121 3121312121 1213121312 1312131213 1213112131 2131213121 3121312131 2131213121 3121312131
2131213121 3121312131 2131213121 2131213121 3121312131 2131213121 3121312113 1121213121 3121312131 2131213121
3121312131 2131213121 3121312131 2131212131 2131213131 2131231312 1312131213 1121312131 2131213121 2131213121
3123121312 1312131213 1213121312 1312121312 1312131213 1213121312 1312131213 1213121312 1312131213 1213121312
1312131213 1213121312 1312131213 1213121312 1312131213 1213121312 1312131213 1213121312 1312131213 1213121312
1312131213 1213121312 1312131212 1312131213 1213121312 1312131213 1213121312 1312131213 1213121213 1213121312
1312131213 1213121312 1312131213 1213121312 1312131213 1213121312 1312131213 1213121312 1312131212 1312131213
1213121312 1312131213 1213121312 1312131213 1213121312 1312131213 1212131213 1213131211 2131212131 2131211312
1312131213 1211312131 2131213121 1213121312 1312121312 1312131213 1212131211 2131121121 1321121131 2121312131
2131213121 2131213121 1213121312 1213121312 1312112131 1213121312 1131211211 2112112112 1112131211 2112131213
1211211213 1213121211 3121212112 1312121211 2311213121 1213121121 3121211121 1213121213 1212131211 2111121121
1211211211 2112112112 1112112

1To be read across the rows.

TABLE 13
Results for the wood pewee song datat
Model No. of parameters, k BIC
1, full model, order 0 2 2713.3
2, full model, order 1 6 1431.4
3, full model, order 2 18 866.6
4, full model, order 3 54 1096.1
5, MTD model, order 2 7 1338.9
6, MTD model, order 3 8 1343.6
7, 1312 pattern + MC(0)% 3 997.5
8, 1312 pattern + MC(1) 7 1021.1
9, 1312 and 112 patterns + MC(-1) 4 827.0
10, 1312 and 112 patterns + MC(0)§ 6 832.6
11, 1312 and 112 patterns + MC(1) 10 858.7

tn = 1327 phrases, starting from position 5; data in Table 12.

tMC(k) denotes the full model of order k. The order 0 model refers to an independent
sequence whereas the order —1 model refers to an independent and equiprobable
sequence. Model 7 is defined by equation (12).

§Model 10 is defined by equation (13).

The idea underlying the MTD model is that the predictive distribution of the next
observation is a mixture of predictive distributions that are defined by different
components of the past and current data. This can be used to define a different
parsimonious special case of the second-order Markov chain model that takes
account of repeating patterns. The basic idea is that, if the past and current states
belong to the pattern, the next state either continues the pattern with probability
o or else is randomly generated according to a Markov chain of order less than that
of the pattern, with probability 1 — «. If the previous states do not belong to the
pattern, the next observation is generated randomly from the same Markov chain.

For the pattern 1312 with a Markov chain of order 0, this model is defined as
follows. Let i = (iy|#;, i,). Then
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o ified,
p(i) = (1 - a)"rio/zji(j“l,iz)ﬂ‘iwj if iEB, (12)
iy otherwise,

where A = {2|13,1]21,3|12,1|31}, B = {i¢A:3jeA such that j, =i, j, = i,}
and 0S<T;<1 (j=1,2,3), m+m +m = 1.

Exact maximum likelihood estimators are available in analytical form for this
model, namely

ny
ny + nB’

;= ! >, n().

N = Naigaz,=;

N
a:

The model is easily generalized to allow for a Markov chain of order 1 rather than
order 0 in the non-pattern part of the model.

From Table 13, we see that neither of these models (models 7 and 8 in Table 13)
fit as well as the full second-order Markov chain. The reason for this is that there
is a second, less dominant, repeating pattern in the data, namely 112, which occurs
40 times. This is also a second-order pattern, defined by the transitions 2|11, 1|21,
1]12. It is quite straightforward to model both transitions at once: the data are
assumed to be generated by a mixture of the two patterns and a low order Markov
chain. There are two minor complications: the transition 1|21 is common to both
patterns and the conditioning sequence 12 appears in both patterns, but with dif-
ferent succeeding phrases (3 for 1312 and 1 for 112). We deal with these by counting
the transition 1|12 as part of the 1312 pattern only, and by assigning separate
parameters to the transition probabilities p(j|12) (j =1, 2, 3).

The full model is therefore

oy if iGAh,
s\ (1 - a,,)1r,- /Eji(j“l,iz)éAhW' if ieBh,
PO =1, ° D ifi =1, =2, (13)
i, otherwise

for h =1, 2, where 4, = {2|13, 1|21, 1|31}, A, = {2|11} and B, = {i¢A,:
3je A, with j, = iy, j, = i,}. Here h = 1 corresponds to the 1312 pattern and 4 = 2
corresponds to the 112 pattern. The model is easily generalized to a Markov chain
of order 1 for the non-pattern part, or of order —1 (the equiprobable case, obtained
by constraining m; = m, = ;). Exact maximum likelihood estimators are available
in analytical form for each of these models.

Model (13) and its equiprobable specialization (models 9 and 10 in Table 13) have
substantially better BIC values than the full second-order Markov chain model; the
equiprobable model (model 9) is the best according to BIC. It is extremely par-
simonious, using only four parameters to describe the full second-order structure.
For this model, the parameter estimates are & = 0.98, &, = 0.78, 4, = 0.16,
42, = 0.08 and 4, = 0.76. Note in particular the value of & close to 1, indicating
the strong persistence of the 1312 pattern. The 112 pattern is also persistent, but
much less so, as indicated by the lower &,-value of 0.78.
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The basic idea here may have potential for parsimoniously representing complex
repeating patterns embedded in noise in applications such as speech recognition
(where the number of states is large) and coding regions in DNA.

6. Discussion

Various generalizations of the MTD model have been proposed. Raftery
(1985a, b) proposed ways of modelling the case where m = oo, such as when the
observations are counts. Adke and Deshmukh (1988) showed that asymptotic
properties valid when m is finite also apply when m = oo. It seems that our estima-
tion method will work in that case also, provided that the (now doubly infinite)
matrix Q is modelled parametrically. If m = o and

lim inf{g(il)}=0 V., (14)

then constraints (5) are equivalent to the positivity assumption (6), and the computa-
tional problem is greatly simplified.

Mehran (1989) considered the infinite lag MTD model, / = o, where A, is a
parametric function of j. Our method seems applicable in this case also, although
calculating the likelihood, or the fitted values for minimum x? estimation, seems
difficult. It may be possible to model discrete-valued time series with the long
memory property by using this approach, by setting the \; equal to the w-weights for
the fractionally differenced autoregressive integrated moving average ARIMA(p, d,
q) process. Various continuous-valued environmental time series such as wind speeds
are of this kind (Haslett and Raftery, 1989), and it seems reasonable to suppose that
some discrete-valued time series might have this property also.

Martin and Raftery (1987) and Adke and Deshmukh (1988) pointed out that the
MTD model remains well defined for arbitrary state spaces, which need not be
finite, countable or even discrete. Equations (1) and (2) remain valid if p and ¢ are
interpreted as conditional densities, where g will usually have some parametric
form. Le etal. (1990) have shown that this provides a framework for modelling
bursts, outliers and flat stretches in continuous-valued time series, and that it is also
good at modelling time series that are well fitted by conventional Gaussian auto-
regressive moving average models. If condition (14) holds, then so does positivity
assumption (6). However, this is not always the case, even when the state space is
continuous. For example, in continuous-valued directional time series, condition
(14) does not necessarily hold. Craig (1989) has investigated MTD and other models
for this situation, and has studied the consequences if condition (14) does not hold.

Our code, which is called MTD, was written in Fortran and may be obtained free
of charge from Statlib by sending an electronic mail message to the Internet address
statlib@lib.stat.cmu.edu consisting of the single line ‘send mtd from general’. It calls
the Numerical Algorithms Group (1991) subroutine E04UCF, which must be
available to it.
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