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SUMMARY

In the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for
strokes, we apply Bayesian model averaging to the selection of variables in Cox proportional hazard mod-
els. We use an extension of the leaps-and-bounds algorithm for locating the models that are to be aver-
aged over and make available S-PLUS software to implement the methods. Bayesian model averaging
provides a posterior probability that each variable belongs in the model, a more directly interpretable mea-
sure of variable importance than a P-value. P-values from models preferred by stepwise methods tend to
overstate the evidence for the predictive value of a variable and do not account for model uncertainty. We
introduce the partial predictive score to evaluate predictive performance. For the Cardiovascular Health
Study, Bayesian model averaging predictively outperforms standard model selection and does a better
job of assessing who is at high risk for a stroke.

Keywords: Bayesian model averaging; Model uncertainty; Stroke risk factors; Variable selection

1. Introduction

Strokes are the third leading cause of death among adults in the USA. Much recent
research has attempted to identify stroke-related risk factors. Some of these fac-
tors, such as smoking, are life style choices that can be changed. Others, such as
hypertension, are conditions that can be treated non-invasively. Both types of factor
are therefore controllable (unlike an uncontrollable factor such as heredity), and the
strokes caused by these conditions could be prevented. In fact, many doctors believe
that most of the variables which determine one’s risk for stroke are controllable.
Gorelick (1995) estimated that as many as 80% of strokes could be prevented. This
suggests that a high priority should be placed on finding the risk factors for strokes
and thus on identifying the people whose future strokes can be prevented.
Traditional analysis of the time until a stroke identifies risk factors or other
independent variables as ‘significant’ by invoking a procedure for the selection of
variables. Subsequent prediction utilizes the single model selected by the procedure.
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Any such procedure ignores model uncertainty. Such procedures can underestimate
uncertainty about the parameters, overestimate confidence in a particular model
being ‘correct’ and lead to riskier decisions and poorer predictive ability (Draper,
1995; Chatfield, 1995; Madigan and Raftery, 1994). Bayesian model averaging
(BMA) selects a subset of all possible models and averages over the subset for all
inference and prediction. This paper aims to show that BMA leads to a better
evaluation of the risk factors for strokes, as well as improved risk assessment for
potential stroke victims.

Section 2 introduces the Cardiovascular Health Study (CHS), a highly censored
data set which investigates the risk factors for strokes in elderly people. Section 3
reviews the standard approach to modelling survival data of this type. Section 4
describes BMA as it applies to the selection of variables in the Cox proportional
hazard model. We define the subset of model space to be averaged over and we
identify the subset efficiently by using a modified leaps-and-bounds algorithm.
Section 5 interprets the results of the BMA analysis of the CHS. With two different
methods used to assess predictive performance, BMA is shown to be better at pre-
diction and risk assessment than the standard measures. Section 6 discusses some of
the interesting results of the study and how they relate to the prevention of strokes,
and describes how to access S-PLUS functions to implement these methods. We
conclude that taking account of model uncertainty by using BMA can enhance
predictive performance in survival analysis.

Although we know of no other work applying BMA to the selection of variables in
survival analysis, there has been much recent work on model uncertainty; see Kass
and Raftery (1995), Chatfield (1995) and Draper (1995) for reviews. Draper’s (1995)
idea of model expansion is not applicable directly to uncertainty about regression
variable selection but could be useful for uncertainty about the model for the base-
line hazard in parametric survival analysis. Clyde et al. (1995) looked at model
mixing through orthogonalization of the independent variables. George and Mc-
Culloch (1993) have developed the stochastic search variable selection (SSVS)
method, which is similar in spirit to the MC? algorithm of Madigan and York (1995).
This was developed for linear regression but could perhaps be extended to survival
analysis.

2. Cardiovascular Health Study

Risk factors for strokes have been extensively studied in the medical literature. In
the USA, several population-based studies have identified what are believed to be the
main risk factors: smoking, hypertension and irregular heart contractions known as
atrial fibrillation (Kannel et al., 1976; Matsumoto et al., 1973). However, the effects
of these factors may weaken with increasing age, or even have a protective effect in
the elderly (Kannel e al., 1976). The CHS is a longitudinal observational study,
funded by the National Institutes of Health, and started in June 1989 to study
cardiovascular disease in people aged 65 years and over. The 5201 participants are
from four US counties: Forsyth County, North Carolina; Sacramento County,
California; Washington County, Maryland; Allegheny County, Pennsylvania. It is
the most comprehensive source of data on stroke incidence in elderly people.

Previous studies have focused on the conventional risk factors mentioned above,
and the CHS augments them with non-invasive measurements of subclinical disease
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which may be related to heart attacks and strokes. Table 1 shows the explanatory
and dependent variables. Fried et al. (1991) described the complete sample design
and study methods as well as specific protocols for the classification of some of the
explanatory variables (e.g. congestive heart failure and abnormal ejection fraction).
The data used for this analysis are for 4504 people who were free of stroke at the
base-line, and who had complete data. The follow-up was for between 3.5 and 4.5
years, with an average of 4.1 years. Those who had not had a stroke by the end of the
study were censored at that time. Only 172 people experienced a stroke during the
period of the study.

The CHS contains a high proportion of censored data (96%) and many potential
risk factors. We therefore expect considerable model uncertainty. This paper uses
BMA to account for this model uncertainty.

3. Standard Methods

Methods for analysing survival data such as the CHS data often focus on
modelling the hazard rate, also called the instantaneous failure rate. The most

TABLE 1
Variables for the CHST
Variable Range Mean
Age (years) 65-100 72
Diuretic use 0=no, | =yes 0.24
Regular aspirin use 0=no, | =yes 0.24
Self-reported atrial fibrillation 0=no, | =yes 0.04
Diastolic blood pressure (mmHg) 0-116 70
Systolic blood pressure (mmHg) 79-230 135
Congestive heart failure 0=no, | =yes 0.02
Creatinine (mg dI™') 0.4-7.3 1.05
Diabetes 0 = normal, 0.70
1 = impaired glucose tolerance,
2 = diabetes

Electrocardiogram atrial fibrillation 0=no, 1 =yes 0.03
Left ventricular hypertrophy 0=no, 1 =yes 0.04
Fibrinogen (mg dI™") 109-872 320
Sex 0 = male, 1 = female 0.42
Fasting glucose (mg dI™") 53-657 109
High density lipoprotein (mg dI™!) 20-249 54
Low density lipoprotein (mg d1™') 28-340 133
Antihypertension medication 0=no, | =yes 0.43
Insulin (microunits d1~') 3-400 16
Abnormal ejection fraction 0=no, 1 =yes 0.09
Stenosis of common carotid artery 0=low, ..., 3=high 0.74
History of cardiovascular disease 0=no, | =yes 0.29
Pack-years smoked 0-204 18
Timed walk 0 = fast, 1 = medium, 2 = slow 0.29
Time observed (days) 7-1480 1209
Status 0 = censored, 1 = stroke 0.04

tn = 4504 patients; time observed until stroke is the dependent variable; status is the censoring
variable.
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popular way of doing this is to use the Cox proportional hazards model (Cox, 1972),
which allows different hazard rates for people with different covariate vectors and
leaves the underlying common base-line hazard rate unspecified. The parameters are
estimated and standard errors found by using the partial likelihood (Section 4.1).

Often, when many variables are collected, the Cox regression model is used in
conjunction with a selection of variables method to choose the subset of the full
variables list which gives the best fit in modelling the time to stroke. The most
popular such procedures are stepwise methods (Efroymson, 1960)

There are now many references exposing the problems with this general approach.
Freedman (1983) and Flack and Chang (1987) demonstrated the tendency of step-
wise methods to select pure noise variables as significant, especially when there is
multicollinearity among the explanatory variables or when the ratio of the number of
variables to the number of records is high. Derksen and Keselman (1992) provided a
literature review of studies which critique stepwise methods for linear regression. In
short, goodness-of-fit estimates are overestimated and the predictive power of the
models is poor.

Altman and Andersen (1989) described a bootstrap experiment of stepwise meth-
ods for Cox models. When applied to their full data set (primary biliary cirrhosis),
stepwise selection labelled 6 of the 17 explanatory variables as significant, yet differ-
ent bootstrap samples provided models which included many different variables.
Four of the six ‘significant’ variables were contained in fewer than 75% of the
bootstrap models, and each of the 17 variables appeared in some models. Clearly
there is model uncertainty here which one application of stepwise methods does not
account for. Although Altman and Andersen (1989) compared confidence intervals
of various methods, they did not have a direct comparison of predictive performance
as we have here.

Alternatives to stepwise methods include ridge regression (Hoerl and Kennard,
1970) and shrinkage models, which use all available explanatory variables but shrink
the estimates towards 0. The new biased estimates are often substantial improve-
ments over least squares. Miller (1990) used the ridge trace to reduce the number of
explanatory variables and to do subset selection. Another alternative is to investigate
all possible subsets of the available explanatory variables, known as all subsets
regression. When calculating all subsets is not feasible, a branch-and-bound pro-
cedure, first used by Beale er al. (1967), is often used. Also, there is the widely used
leaps-and-bounds algorithm of Furnival and Wilson (1974). Lawless and Singhal
(1978) extended leaps and bounds to non-linear models and Kuk (1984) applied this
extension to Cox regression. All these methods focus on optimal ways of finding the
single best model and neglect model uncertainty.

4. Methods

4.1. Cox Proportional Hazards Model
We use the Cox (1972) proportional hazards model, which specifies the hazard rate
for subject i with covariate vector x; to be

A(t1%)) = Xo(#) exp(xi )

where M\o(¢) is the base-line hazard function at time ¢, left unspecified in Cox’s
formulation, and 6 is a vector of unknown parameters.
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The estimation of 4 is commonly based on the partial likelihood, namely

PL(®0) = {exp(x ) / > exp(x,Te)}w, (1)

leR;

where R; is the risk set at time ¢ (i.e. the set of subjects who have not yet experienced
an event) and w; is an indicator for whether or not subject i is censored. Equation (1)
assumes that there are no ties between times of death; for simplicity, we do not
consider modifications needed when there are ties.

4.2. Bayesian Model Averaging

Cox proportional hazards modelling entails selecting explanatory variables. The
typical approach is to find the ‘best’ model (from now on, the term ‘model’ refers to
the specific collection of variables selected for use in the Cox model). However, this
approach ignores uncertainty about the model itself, and so uncertainty about
quantities of interest can be underestimated. For striking examples of this see Regal
and Hook (1991) Madigan and York (1995), Kass and Raftery (1995) and Raftery
(1996).

The standard Bayesian solution to this problem is to use a set of models, instead of
just one, for making all prediction and inference. Let A be any quantity of interest
such as a future observation or the utility of a course of action. If M =

{M,, ..., My} denotes the set of all models considered, then the posterior dis-
tribution of A given the data D is
K
pr(A|D) = " pr(A|My, D) pr(M| D). )

k=1

This is an average of the posterior distributions under each model weighted by the
corresponding posterior model probabilities.

For a problem with p potential explanatory variables, the number of models, K, in
the finite sum (2) can be enormous (K = 2° in the absence of other constraints).
However, most of these models have very little support from the data. Followmg
MadLgan and Raftery (1994), we average only over the best models as an approxi-
mation to averaging over all 2’ models, where best is determined by the posterior
model probability. Thus, only models belonging to the set

A {Mki max,{pr(M;|D)} < C}

pr(MeID) ®)

should be included in the sum in equation (2). We use C = 20 and hence average only
over models with posterior model probability at least 1/20 of that of the best model.
The value of C will depend on the context of the problem at hand.

Equation (2) has three components, each posing its own computational difficulties,
which are discussed in the following sections. The predictive distribution pr(A|AM,
D) requires integrating out the model parameter 6 (Section 4.3). The posterior
model probabilities pr(M|D) similarly involve the calculation of an integrated
likelihood (Section 4.4). Finally, the models that fall into .4 must be located and
evaluated efficiently (Section 4.5).
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4.3. Predictive Distribution and Maximum Likelihood Estimation Approximation
In equation (2) the predictive distribution of A given a particular model M, is
found by integrating out the model parameter 6;:

pr(A| My, D) = j pr(A|6k, M, D) pr(6e| My, D) 6. @

This integral does not have a closed form solution for Cox models. Here we use the
maximum likelihood estimate (MLE) approximation:

pr(A|My, D) = pr(A| My, bk, D). (5)

In the context of model uncertainty, this approximation was used by Taplin (1993)
who found it to give an excellent approximation in his time series regression problem;
it was subsequently used by Taplin and Raftery (1994) and Draper (1995).

4.4. Integrated Likelihood and Bayesian Information Criterion Approximation
The posterior probability of model M is given by

pr(M|D) o pr(D|My) pr(M), (6)

where
pI‘(DIMk) = J pI'(D|9k, Mk) pr(QkIMk) d0k (7)

is the integrated likelihood of model M and pr(6x|My) is the prior density of 6
under model M. In regression models for survival analysis, an analytic evaluation of
integral (7) is not possible in general, and an analytic or computational approxi-
mation is needed.

In regular statistical models (roughly speaking, those in which the MLE is
consistent and asymptotically normal), the integral in equation (7) can often be
approximated via the Laplace method (Raftery, 1996). This method yields

log pr(D| M) = log pr(D|0k, M) — (di/2)log n + O(1), ®)

where # is the number of records in the data and d; is the number of parameters in
model M. This is the Bayesian information criterion (BIC) approximation derived
by Schwarz (1978). In fact, equation (8) is much more accurate for many practical
purposes than its O(1) error term suggests. Kass and Wasserman (1995) showed that
when M; and M, are nested and the amount of information in the prior distribution
is equal to that in one observation then the error in equation (8) is O(n~'%), under
certain assumptions, rather than O(1). Raftery (1996) gave further empirical evidence
for the accuracy of this approximation.

Equation (6) requires the specification of model priors. When there is little prior
information about the relative plausibility of the models considered, taking them all
to be equally likely a priori is a reasonable ‘neutral’ choice: we adopt this choice for
the CHS analysis. With very large model spaces (up to 10'2 models) involving several
kinds of model and about 20 data sets, we have found no perverse effects from
putting a uniform prior over the models (Raftery et al., 1997, Madigan and Raftery,
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1994; Madigan et al., 1996). When prior information about the importance of a
variable is available, a prior probability on model M; can be specified as

P
i — 8
pr(M) =[] m' (1 —m)'™" ©)
Jj=1
where 7; € [0, 1] is the prior probability that 6; # 0 (for the CHS, j =1, . . ., 23) and

d; is an indicator of whether or not variable j is included in model M;. Assigning
m; = 0.5 for all j corresponds to a uniform prior across the model space, whereas
m; < 0.5 for all j imposes a penalty for large models. Using 7; = 1 ensures that
variable j is included in all models. Using this framework, the elicitation of prior
probabilities for models is straightforward and avoids the need to elicit priors for a
large number of models. For an alternative approach when expert information is
available, see Madigan et al. (1995).

4.5. Identifying Models in A

Our approach requires that we identify the best model and average over only those
models with posterior probability of at least 1/C of the posterior probability of the
best model (equation (3)). We define the best model as the model with the largest
BIC, corresponding to the model with the highest posterior model probability. A
quick way of screening the models, without fitting them all, and of targeting those
that are close in posterior probability to the best model is needed. We can then
average over this reduced set of models.

Such a procedure exists for linear regression. Regression by leaps and bounds
(Furnival and Wilson, 1974) is an efficient algorithm which provides the top g models
of each model size, where ¢ is designated by the user, plus the MLE 6, var(d;) and R?
for each model M, returned. For two models 4 and B, where 4 and B are each
subsets of the full parameter set, if 4 C B then RSS(4) > RSS(B). Using this fact, the
method eliminates large portions of model space by sweep operations on the matrix

(X,X X ) (10)
yX yy

Lawless and Singhal (1978) developed a modification of the leaps-and-bounds
algorithm for non-linear regression models, which provides an approximate like-
lihood ratio test (LRT) statistic (and therefore an approximate BIC value). The
method proceeds as follows: let § be the parameter vector of the full model and
let 6 be the vector for a given submodel k. Rewrite 6, as (6;, 6,) so that model M,
corresponds to the submodel 8, = 0. Also, let

V——I"'——(VU V12)
Vi Va

denote the inverse observed information matrix. If L(0) is the maximized likelihood
under the full (unrestricted) model and L(f) is the maximized likelihood under
6, = 0, then

A = —2{log L(f) — log L(6)}
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is the usual likelihood ratio statistic for the test of the submodel versus the full model
whereas

AN=0,v30,

is an approximation to A based on the Wald statistic. Finally, replace the matrix (10)

with
7 10
0T 0'70

and perform the same matrix sweep operators from the leaps-and-bounds algorithm
on this matrix. As a result the function provides

(a) an estimate of the best ¢ pr0portional hazards models for each model size,
(b) the LRT approximation A’ for each model,

(c) an approximation to §, the MLE for the parameters of the submodel, and
(d) the asymptotic covariance matrix Vi

As long as q is sufficiently large, this procedure returns the models in .4 plus many
models that are not in .4. We can use the approximate LRT to reduce the remaining
subset of models to those most likely to be in 4. This reduction step keeps only
the models whose posterior probabilities are at least 1/C" of the posterior model
probability PMP of the best model, where C’ is greater than C. We use C' = c,
which we have found to be sufficiently large virtually to guarantee that no models in
A will be lost.

Kuk (1984) first applied this algorithm to Cox models to find the single best model.
We use it to help to locate the models in A that are to be averaged over. We fit the
returned models by a standard survival analysis program, calculate the exact BIC
value for each one (which corresponds to a posterior model probability by equation
(8)) and eliminate those models that are not in .A. The posterior model probabilities
are then normalized over the model set. We calculate BMA parameter estimates and
standard errors by taking weighted averages of the estimates and errors from the
individual models, using the posterior model probabilities as weights.

Finally, we compute the posterior probability that the regression coefficient for a
variable is non-zero, by adding the posterior probabilities of the models which
contain that variable. Standard rules of thumb for interpreting this posterior prob-
ability are as follows: less than 50%, evidence against the effect; 50-75%, weak
evidence for the effect; 75-95%, positive evidence; 95-99%, strong evidence; greater
than 99%, very strong evidence (Kass and Raftery, 1995).

4.6. Assessment of Predictive Performance

We assess the relative values of our method (BMA) and those of competing
methods on the basis of their predictive performances. To assess performance, we
randomly split the data into two halves and use an analogue of the logarithmic
scoring rule of Good (1952). First, we apgly each model selection method to the first
half of the data, called the build data (D ) The corresponding coefficient estimates
define a predictive density for each person in the second half of the data (test data, or
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D"). Then, a log-score for any given model M, is based on the observed ordinate of
the predictive density for the subjects in D™

Z log pr(d|M,, D). (11)

deDT

Similarly, the predictive log-score for BMA is
3 log { S pr(diM, D) pr(MIDB)}, (12)

deDT MeM

where M is the set of BMA-selected models.

However, the Cox model does not directly provide a predictive density. Rather it
provides an estimated predictive cumulative density function which is a step function
(Breslow, 1975) and therefore does not lead to differentiation into a density. In the
spirit of Cox’s partial likelihood (1), we have designed an alternative to the predictive
density:

pr(d| My, DB) = {exp(x,-Ték) / Z exp(xfék)} .

leR,

By substituting this into expressions (11) and (12), we now have an analogue to a log-
score called the partial predictive score (PPS). Using the PPS, we can compare BMA
with any single model selected. The PPS is greater for the method which gives higher
probability to the events that occur in the test set.

We also compare methods based on their predictive discrimination, namely how
well they sort the subjects in the test set into discrete risk categories (high, medium
and low risk). We assess predictive discrimination of a single model as follows.

(a) Fit the model to the build data to obtain estimated coefficients 6.

(b) Calculate risk scores (x; §) for each subject in the build data.

(c) Define low, medium and high risk groups for the model by the empirical 33rd
and 66th percentiles of the risk scores.

(d) Calculate risk scores for the test data and assign each subject to a risk group.

(e) Extract the subjects who are assessed as being in a higher risk group by one
method rather than by another, and tabulate what happened to those subjects
over the study period.

To assess predictive discrimination for BMA, we must take account of the multiple
models that we average over. We replace the first steps above with the following.

(') Fit each model M, . . ., Mk in A to obtain estimated coefficients Or.
(b') Calculate risk scores (x; 6;) under each model in A for each person in the build
data. A person’s risk score under BMA is the weighted average of these:

K
> " (x76i) pr(M,| D).
k=1

A method is better if it consistently assigns higher risks to the people in the test set
who actually had strokes.
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5. Application to Cardiovascular Health Study

5.1. Results

The CHS, with over 95% censoring, provides an opportunity to compare BMA
with model selection methods in the presence of heavy censoring. The model chosen
by a stepwise (backward elimination) procedure, starting with the variables in Table
1, included the following 10 variables: age, diuretic, aspirin, systolic blood pressure,
creatinine, diabetes, atrial fibrillation (by electrocardiogram), stenosis, timed walk
and left ventricular (LV) hypertrophy. The model with the highest approximate
posterior probability was the same as the stepwise model except that LV hypertrophy
was not included.

In the list of models provided by BMA, the stepwise model appears fourth. Table 2
contains the variables included in any of the top five models. Inference about
explanatory variables is expressed in terms of the posterior probability that the
parameter does not equal 0. Table 3 contains the posterior means, standard
deviations and posterior probabilities of the variables.

Fig. 1 shows the posterior probability that each regression coefficient is non-zero,
plotted against the corresponding P-value from stepwise selection of variables.
Overall, the posterior probabilities imply weaker evidence for effects than do the P-
values. This is partly due to the fact that P-values overstate confidence because they
ignore model uncertainty. However, even when there is no model uncertainty, P-
values arguably overstate the evidence for an effect (Edwards ez al., 1963; Berger and
Delampady, 1987; Berger and Sellke, 1987).

For the four variables systolic blood pressure, timed walk, diabetes and daily
aspirin, the posterior probabilities and the P-values agree that there is very strong
evidence for an effect (P < 0.001 and pr(d # 0) > 99%). For the eight variables in
Table 4, however, the two approaches lead to qualitatively different conclusions.
Each P-value overstates the evidence for an effect. For the first four of the variables,
the P-value would lead to the effect being called ‘highly significant’ (P < 0.01),
whereas the posterior probability indicates the evidence to be positive but not strong.
For the next two variables (LV hypertrophy and diuretic use), the P-value is
‘significant’ (P < 0.05), but the posterior probabilities indicate the evidence for an
effect to be weak. For the last two variables (sex and low density lipoprotein), the P-
values are ‘marginally significant’ (P < 0.06), but the posterior probabilities actually
indicate (weak) evidence against an effect.

TABLE 2
Top five models (in terms of BIC) chosen by BM A, with PMPst

Model Age Diuretic Aspirin Systolic Creat- Diabetes Atrial Ejection Stenosis Timed LV PMP

blood  inine fibrilla- walk  hyper- (%)
pressure tion trophy
1 v v v v v v v v v 1.7
2 v v v v v v v v/ v 1.6
3 v v v v v/ v v v 1.4
4% v v v v v v v v v v 1.4
5 v v v v v v v v v 1.1

tModel chosen by stepwise selection of variables.
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TABLE 3
Posterior parameter estimates (means), standard deviations and probabilities that the
coefficients are non-zero for the variables in the CHS data sett

Variable Mean Standard deviation — pr(0 #0)
Age 0.04 0.01 89
Diuretic use 0.40 0.17 59
Aspirin 0.52 0.16 99
Self-reported atrial fibrillation 0.62 0.31 18
Diastolic blood pressure 0.01 0.01 0
Systolic blood pressure 0.02 0.00 100
Congestive heart failure 0.79 0.37 24
Creatinine 0.43 0.14 64
Diabetes 0.42 0.10 100
Electrocardiogram atrial fibrillation 0.83 0.30 66
LV hypertrophy 0.60 0.25 50
Fibrinogen 0.00 0.00 0
Sex 0.37 0.18 21
Glucose 0.00 0.00 0
High density lipoprotein —0.01 0.01 7
Antihypertensives 0.05 0.23 0
Insulin 0.00 0.00 0
Low density lipoprotein 0.00 0.00 24
Ejection 0.46 0.22 26
Stenosis 0.34 0.12 90
Disease 0.24 0.17 5
Smoking 0.00 0.00 0
Timed walk 0.47 0.10 100

tMeans and standard deviations are averaged over all models included in the BMA analysis.

TABLE 4

P-values and posterior probabilities that the coefficient is non-zero for
eight of the explanatory variables in the CHS

Variable P-value pr(0#£0) (%)
Creatinine 0.0021 64
Stenosis 0.0041 90
Electrocardiogram atrial fibrillation 0.005t 66
Age 0.007+ 89
LV hypertrophy 0.022% 50
Diuretic use 0.026% 59
Sex 0.053 21
Low density lipoprotein 0.058 24

TP < 0.01.

1P < 0.05.

For the remaining 11 variables, P-values and posterior probabilities agree in
saying that there is little or no evidence for an effect. However, posterior probabilities
enable us to make one distinction that P-values cannot. We may fail to reject the null
hypothesis of ‘no effect’ because either

(a) there are not enough data to detect an effect or
(b) the data provide evidence for the null hypothesis.



444 VOLINSKY, MADIGAN, RAFTERY AND KRONMAL

,Sysbp walk  giabetes aspirin
stefiosis ° | age
75
atfp.ecg
:\? cregt .
z diur
B .
[3
Fe)
<4
o 50 *tvhyper
o
S
[7:d
o
o
gjection
% e
« o Chf
§gex o
® atfib.self
hdl .
.
°® a0
.001 .01 .05
P-values

Fig. 1. P-values versus posterior probabilities that the coefficient is non-zero for the variables in the
CHS: the lines at P-values of 0.05, 0.01 and 0.001 indicate the standard limits for significant, highly
significant and very highly significant; lines at 50%, 75%, 95% and 99% posterior probability indicate
weak evidence, positive evidence, strong evidence and very strong evidence

P-values cannot distinguish between these two situations, but posterior probabilities
can. Thus, for example, for the ejection fraction, pr(f # 0) = 26%, so the data are
indecisive, whereas, for diastolic blood pressure, pr(f # 0) = 0%, indicating strong
evidence for the null hypothesis of no effect. The posterior probability of no effect
can be viewed as an approximation to the posterior probability of the effect being
‘small’, namely pr(|0] < €), provided that € is at most about half of a standard error
(Berger and Delampady, 1987).

Six of the variables are known to be risk factors for the general population: age,
systolic blood pressure, diabetes, atrial fibrillation, antihypertensive medication and
smoking (Kannel et al., 1976). We performed an analysis increasing the prior
probability for these variables to 75%. The results showed no change in the con-
clusion for diabetes and blood pressure (both stayed at 100%) or for smoking
and antihypertensive medication (both remained under 10%). However, for atrial
fibrillation as measured by electrocardiograms, the posterior probability is 92% (in
the original analysis it was 66%). This sensitivity is probably because only about 3%
of the subjects had this condition. The posterior probability for age jumps from 90%
in the original analysis to 99%.
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5.2.  Predictive Performance

For assessing predictive performance, we randomly split the data into two parts
such that an equal number of events (86 strokes) occurred in each part. We compare
the results for BMA with those for stepwise model selection and for the single model
with the highest posterior probability. Table 5 shows the PPSs for the competing
methods; a higher score (less negative) indicates better predictive performance. The
top model and stepwise model may be different from those in the previous section
since they are built using only half the data.

The difference in PPS of 11.7 can be viewed as an increase in predictive per-
formance per event by a factor of exp(11.7/86) = 1.15 or by about 15%. This means
that BMA predicts who is at risk of strokes 15% more effectively than a method
which picks the model with the best posterior model probability (or 3.5% more
effectively than a stepwise method).

Predictive discrimination shows the benefit of using BMA in another way. Table 6
shows the classification of the 2252 people in the test data and whether or not those
people had a stroke in the study period. The people assigned to the high risk group
by BMA had more strokes than did those assigned high risk by other methods;
similarly those assigned to the low risk group by BMA had fewer strokes. Table 7
summarizes the outcome for the people who were given higher risk by one method
over another. The people assigned to a higher risk group by BMA had more strokes
and were stroke free for a shorter period of time. Both Table 6 and Table 7 show that
BMA is better at indicating which people are at risk of strokes.

TABLE §
PPSs for the model with the highest
PMP, the stepwise chosen model and

BMA
Method PPS
Top model —641.6
Stepwise —632.8
BMA —629.9

TABLE 6
Test data cross-classification of assigned risk group versus stroke occurrencet

Assigned risk No. of people under the following classifications:
group
Model averaging Stepwise Top PMP
Stroke free Stroke Stroke free Stroke Stroke free Stroke
Low 751 7 750 8 724 10
Medium 770 24 799 27 801 28
High 645 55 617 51 641 48

tStroke risk for each subject in the test data is assessed from the 33rd and 66th percentiles of the risk scores from the
build data. Risk groups are determined separately for the three methods BMA, stepwise and top PMP.
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TABLE 7
Predictive discrimination of BMA compared with the top PMP model and the
stepwise modelt

Estimated risk No. of strokes No. of subjects Mean survival time
BMA >top PMP 11 147 1169
BMA <top PMP 1 160 1243
BMA > stepwise 10 165 1191
BMA <stepwise 5 133 1243

+The table is a breakdown of the patients into different risk groups (low, medium or
high) for two competing methods. The mean survival time is the mean stroke-free time
for the patients in that group.

6. Discussion

Although there are many references regarding the dangers of model selection and
of stepwise methods in general, a glance at popular survival analysis texts (Fleming
and Harrington, 1991; Kalbfleisch and Prentice, 1980) indicates that the stepwise
method is still the status quo for the selection of variables in Cox models. Similarly,
P-values from the final model are the standard reported evidence for a variable’s
importance. By applying BMA to Cox models, we have accounted for the model
uncertainty ignored by stepwise methods, and we have provided a function
bic.surv to facilitate the application. BMA shifts the focus away from selecting
a single model. Whereas stepwise methods lead to hard inclusion or exclusion of each
variable, the posterior probability that the parameter is non-zero supplied by BMA
can be more informative.

Also, there may be some evidence for the predictive value of a variable, even if it is
not in the best selected model. For example, the variable ‘ejection fraction’ is not in
either the stepwise selected model or the model with the highest posterior probability,
but the posterior probability that the parameter is non-zero is an indecisive 0.26,
indicating that it should not necessarily be discarded in future work. In fact it is
included in any prediction with weight proportional to its posterior probability. This
indecisive result may be because of a lack of power in the data rather than because
the variable does not have appreciable predictive value.

The PPS allows a direct comparison of predictive performance of one Cox model
with another, and for the CHS it shows increased predictive performance for BMA
over model selection techniques. Altman and Andersen (1989) claimed that the
choice of model used for prediction ‘appears of limited importance’ in their example.
On the contrary, for the CHS the predictive discrimination analysis appears to show
that a substantive difference can be made in evaluating who is at high risk for strokes.
Thus, it may ultimately allow better targeting of people who are susceptible to
strokes so that preventive resources can be allocated more efficiently.

Our approach is approximate in several respects. The method could be improved
by using a better approximation to posterior model probabilities than that based on
equation (8). The models considered here can be written as generalized linear models
(Aitkin et al., 1989), and so the more accurate approximations of Raftery (1996)
should be applicable. Also, the MLE approximation (5) to the predictive distribution
could be improved, perhaps by using a Laplace approximation to the integral (4) or
by a Monte Carlo method.



BAYESIAN MODEL AVERAGING 447

We have considered only one component of model uncertainty: which explanatory
variables to include in the model. There are other components also including
uncertainty about functional forms of the explanatory variables and uncertainty
about the Cox model itself. Our approach could be extended to take account of
those, as has been studied for linear regression by Raftery et al. (1997).

The benefits of using BMA to account for model uncertainty have now been
assessed for several different classes of model, e.g. linear regression, exponential
survival models, logistic regression and discrete graphical models. The results of
these studies were summarized in Raftery et al. (1995). For each class model
averaging improved predictive performance, by amounts that ranged from modest to
substantial. We emphasize that the use of BMA for any model class should be
backed up by standard diagnostic checks of goodness of fit, as averaging over a
model class is only beneficial when that model class is appropriate.

We have written a series of S-PLUS functions using the approximations outlined
here to implement BMA for proportional hazard models. The function bic.surv
performs the BMA and outputs all information about the models selected, whereas
summary.bs condenses this information to output only posterior model prob-
abilities, posterior variable probabilities and the variables included in the selected
models. The functions allow user specification of parameters to limit the number of
models returned and of priors for independent variables. All the software can be ob-
tained by sending the message ‘send bic.surv from S’ to statlib@stat.cmu.edu
or at the universal resource locator: http://lib.stat.cmu.edu/S/bic.surv
on the World Wide Web.

Acknowledgements

We thank the US Office of Naval Research (grant N00014-96-1-0192), which
funded the contribution of Volinsky and Raftery. The National Science Foundation
funded Madigan’s work. The CHS is funded by contracts NO1-HC-85079-NO1-HC-
85086 from the National Heart, Lung and Blood Institute.

References

Aitkin, M., Anderson, D., Francis, B. and Hinde, J. (1989) Statistical Modelling in GLIM. Oxford:
Clarendon.

Altman, D. G. and Andersen, P. K. (1989) Bootstrap investigation of the stability of a Cox regression
model. Statist. Med., 8, 771-783.

Beale, E. M. L., Kendall, M. G. and Mann, D. (1967) The discarding of variables in multivariate
analysis. Biometrika, 54, 357-366.

Berger, J. O. and Delampady, M. (1987) Testing precise hypotheses. Statist. Sci., 2, 317-352.

Berger, J. O. and Sellke, T. (1987) Testing a point null hypothesis (with discussion). J. Am. Statist. Ass.,
82, 112-122.

Breslow, N. (1975) Analysis of survival data under the proportional hazards model. Int. Statist. Rev.,
43, 45-48.

Chatfield, C. (1995) Model uncertainty, data mining and statistical inference (with discussion). J. R.
Statist. Soc. A, 158, 419—466.

Clyde, M., DeSimone, H. and Parmigiani, G. (1995) Prediction via orthogonalized model mixing. J.
Am. Statist. Ass., 91, 1197-1208.

Cox, D. R. (1972) Regression models and life-tables (with discussion). J. R. Statist. Soc. B, 34, 187-220.

Derksen, S. and Keselman, H. (1992) Backward, forward and stepwise automated subset selection
algorithms: frequency of obtaining authentic and noise variables. Br. J. Math. Statist. Psychol., 45,
262-282.



448 VOLINSKY, MADIGAN, RAFTERY AND KRONMAL

Draper, D. (1995) Assessment and propagation of model uncertainty. J. R. Statist. Soc. B, 57, 45-97.

Edwards, W., Lindman, H. and Savage, L. J. (1963) Bayesian statistical inference for psychological
research. Psychol. Rev., 70, 193-242.

Efroymson, M. (1960) Multiple regression analysis. In Mathematical Methods for Digital Computers
(eds A. Ralston and H. Wilf). New York: Wiley.

Flack, V. F. and Chang, P. C. (1987) Frequency of selecting noise variables in subset regression
analysis: a simulation study. Am. Statistn, 41, 84-88.

Fleming, T. R. and Harrington, D. H. (1991) Counting Processes and Survival Analysis. New York:
Wiley.

Freedman, D. A. (1983) A note on screening regression equations. Am. Statistn, 37, 152-155.

Fried, L. P., Borhani, N. O., Enright, P., Furberg, C. D., Gardin, J. M., Kronmal, R. A., Kuller, L. H.,
Manolio, T. A., Mittelmark, M. B., Newman, A., O’Leary, D. H., Psaty, B., Rautaharju, P., Tracy,
R. P. and Weiler, P. G. (1991) The Cardiovascular Health Study: design and rationale. Ann. Epidem.,
1, 263-276.

Furnival, G. M. and Wilson, R. W. (1974) Regression by leaps and bounds. Technometrics, 16, 499-511.

George, E. and McCulloch, R. (1993) Variable selection via Gibbs sampling. J. Am. Statist. Ass., 88,
881-889.

Good, 1. J. (1952) Rational decisions. J. R. Statist. Soc. B, 14, 107-114.

Gorelick, P. D. (1995) Stroke prevention. Arch. Neurol., 52, 347-355.

Hoerl, A. E. and Kennard, R. W. (1970) Ridge regression: biased estimation for nonorthogonal
problems. Technometrics, 12, 55-67.

Kalbfleisch, J. and Prentice, R. L. (1980) The Statistical Analysis of Failure Time Data. New York: Wiley.

Kannel, W. B., McGee, D. and Gordon, T. (1976) A general cardiovascular risk profile: the Fram-
ingham study. Am. J. Cardiol., 38, 46-51.

Kass, R. E. and Raftery, A. E. (1995) Bayes factors. J. Am. Statist. Ass., 90, 773-795.

Kass, R. E. and Wasserman, L. (1995) A reference Bayesian test for nested hypotheses with large
samples. J. Am. Statist. Ass., 90, 928-934.

Kuk, A. Y. C. (1984) All subsets regression in a proportional hazards model. Biometrika, 71, 587-592.

Lawless, J. and Singhal, K. (1978) Efficient screening of nonnormal regression models. Biomeltrics, 34,
318-327.

Madigan, D., Andersson, S. A., Perlman, M. and Volinsky, C. T. (1996) Bayesian model averaging and
model selection for Markov equivalence classes of acyclic digraphs. Communs Statist. Theory Meth.,
25, 2493-2520.

Madigan, D., Gavrin, J. and Raftery, A. E. (1995) Elicting prior information to enhance the predictive
performance of Bayesian graphical models. Communs Statist. Theory Meth., 24, 2271-2292.

Madigan, D. and Raftery, A. E. (1994) Model selection and accounting for model uncertainty in
graphical models using Occam’s Window. J. Am. Statist. Ass., 89, 1535-1546.

Madigan, D. and York, J. (1995) Bayesian graphical models for discrete data. Int. Statist. Rev., 63, 215~
232,

Matsumoto, N., Whisnant, J. P., Kurland, L. T. and Okazaki, H. (1973) Natural history of stroke in
Rochester, Minnesota, 1955 through 1969: an extension of a previous study, 1945 through 1954.
Stroke, 4, 20-25.

Miller, A. J. (1990) Subset Selection in Regression. London: Chapman and Hall.

Raftery, A. E. (1996) Approximate Bayes factors and accounting for model uncertainty in generalised
linear models. Biometrika, 83, 251-266.

Raftery, A. E., Madigan, D. and Hoeting, J. (1993) Bayesian model averaging in linear regression
models. J. Am. Statist. Ass., 92, 179-191.

Raftery, A. E., Madigan, D. and Volinsky, C. T. (1995) Accounting for model uncertainty in survival
analysis improves predictive performance (with discussion). In Bayesian Statistics 5 (eds J. M.
Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 323-349. Oxford: Oxford University
Press.

Regal, R. and Hook, E. B. (1991) The effects of model selection on confidence intervals for the size of a
closed population. Statist. Med., 10, 717-721.

Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464.

Taplin, R. H. (1993) Robust likelihood calculation for time series. J. R. Statist. Soc. B, 55, 829-836.

Taplin, R. H. and Raftery, A. E. (1994) Analysis of agricultural field trials in the presence of outliers
and fertility jumps. Biometrics, 50, 764-781.



