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We consider the problem ot detecung minenields usimg aerid images, A first stage of image processing
s reduced the image o a set of points, each one representing a possible mine. Our task is to decide
which ones are actuil mines, We assume that the mineficld consists of approximately pirallel rows ol
mines lad oot according 0 a probability distnbution thut encournges evenly spaced, linear paiterns.
The norse points are assumed 10 be distributed as o Poisson process. We construet o Markov ¢hain
Monte Carlo algonthm o esunmute the model and obtain posterior probabilines for each point being a

mine. The algorithm performs well on several real minefield datasets,
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1. INTRODUCTION

Detecting minefields. and individual mines, is of interest
to civilians and military for purposes of. for example. mine
removal in peacetime after the end of conflicts, particularly
in countries that have been extensively mined such as Egypt.
Cambodia, and Bosnia, or for possible demining in the context
of military operations.

Among several ways of detecting mines, one that shows
promise is aerial reconnaissance. An aireraft. often unmanned,
flies over an area and images it: the images are then analyzed
offline or in real time to detect minefields and identify indi-
vidual mines. This method allows one to survey large areas
at relatively low cost and. in puarticular, at low risk to the
personnel involved. One system for doing this is described in
the next section.

Critical technical problems arise with this methodology.
however. The images produced are often noisy. and mines
are hard to identify unambiguously in them. As a result, a
first stage of image processing identifies potential mines. This
stage often succeeds in identlfying many of the mines, but it
also tends to identify many other objects as possible mines,
such as metal or plastic ohjects that “look™ somewhat like
mines to the initial image processing algorithm. The result is
a spatial point pattern of possible mine locations. We address
in this paper the problem of identifying actual mines in a
spatial point pattern containing both mines and cluttey,

We distinguish between two related problems, The first is
the “fhield of regard™ problem, in which a large area is sur-
veyed aerially. large enough that it can be assumed to contain
any minefield in the area (Muise and Smith 1992). Thus the
minefield will occupy one part of the image. and the rest of
the image will have only clutter and no mines. The analyst’s
goal is 1o divide the image into two parts: one with a low
intensity spatial point pattern in which only clutter is present,
and the other with a higher intensity point process in which

Bavesian inference; Classificanion: Image analysiss Markov cham Monwe Carlo;

hoth mines and clutter are present. This problem can be solved
by assuming that the data are generated by a mixture of two
spatial Poisson processes with different intensities and per-
forming statistical inference for this model. Solutions to this
problem under different assumptions have been proposed by
Allard and Fraley (1997), Byers and Raftery (1997, 1998).
Stanford and Raftery (2000). Dasgupta and Raftery (1998),
and Fraley and Raftery (1998). The methods proposed worked
well. with high detection rates and low false positive rates.
Allard and Fraley (1997) provided evidence that the perlor-
mance of this approach is quite robust to departures from the
Poisson assumption.

Here we address the “field of view” problem, in which the
area surveyed 18 much smaller and is likely to be completely
or largely contained within the minefield. if o minehield is
present. The goal here is to ascertain which of the points
reported as mines in the first stage of image processing actu-
ally are mines. This is a harder problem. because we can-
not use a contrast between intensity levels to solve it. Also,
unlike many image analysis problems, it baffles the human
eye, which typically cannot pick out mines in such an image.
Figure | shows one point pattern that we analyzed. The noise
level is considerable and the location of the mines is nol appar-
ent to the eye.

The minefields of concern here are characterized by nearly
parallel. almost linear rows of roughly evenly spaced mines.
For several reasons this kind of minefield configuration is
common in naval practice and needs o be detected reliably.
First, mine-laying forces can remove the mines later more eas-
ily, either to facilitate their own operations or to avoid harming
civilions, if they have been laid in a regular pattern. A second

© 2002 American Stallstical Association and
the American Society for Quality
TECHNOMETRICS, FEBRUARY 2002, VOL. 44, NO. 1



DETECTING MINES IN MINEFIELDS 35

+
++ +
+
*+ i 4 + +
+ + + + + + +
+ + g
+ + +
+
+ + +F F +
W + +
: Toher # N + o+
+ + 4+ + +
+ + + +H *
+ + + " +
+ + +
gt + w+ i ¥ + +
+ ig 4 *
+ o+
+ * + + *ig
+ + + * o+
+ g +
=
+ 4 + ; + *
+ -
byt : ¥
+
+ + + * 1 i * 4+
+ + +
44 + + -+
+ + 4
'F + + ++ +
* ¥ 4 S +
+ + + F + o+ 4 g
+ + +
+
+ +
+
Figure 1. Eglin Air Force Base Minefield Data.

reason is efficient use of assets: The same number of mines
can cover a greater area if laid in a regular pattern than in
a random or clustered pattern. Third, mines are often laid by
machines, which tend to operate in a regular way. Lake and
Keenan (1995) summarize why such mine laying procedures
are commonly observed:

From the point of view of military docirine (e.g., place mines in nn rows .
meters apart), tactical efficiency (e.g.. economic use of resources [0 ensure
coverdge against enemy movement), and from inherent limitations in the mine
laying process (e.g.. safety, inability of humans to emulate a truly random pro-
cess). it is certuinly plausible to hypothesize minefield models which exhibt
collinearity, equal spacing, and/or other forms of regularty

Working at the Naval Coastal Systems Station. Muise and
Smith (1995) developed an algorithm for detecting minefields
“under the assumption that the minefield has been emplaced
such that the mines are laid in a linear pattern, which is a very
common mine laying doctrine.”

Here we present a method for detecting mines from aerial
reconnaissance images in the “field of view™ situation. We
assume that the images have been preprocessed to produce a
collection of points, each one representing the location of a
possible mine. Our task is to distinguish between the mines
and the false alarms (hereafter referred to as noise or clutter).
We develop a flexible model for this type of minefield, namely
the sequential placement model. The goal of our approach is to
obtain the posterior probability of each point being a mine. We
estimate these probabilities and the parameters of the model
via Markov chain Monte Carlo in a fully Bayesian framework.

The point pattern from Figure 1 is shown in Figure 2(a)
with the mines identified. The results of applying our method
to it are shown in Figure 2(b). For these data, the method
worked well. The rows of mines were all correctly identified.
One false row was detected.

[n the next section we describe the datasets we analyzed,
In Section 3 we present the sequential placement model,

Section 4 outlines the Markov chain Monte Carlo algorithm,
and results from applying it to the datasets are presented in
Section 5. In Section 6. we discuss the model and possible
avenues of future work.

2. COBRA DATA

The Coastal Battlefield Reconnaissance and Analysis
(COBRA) program, developed by the U.S. Marine Corps,
is intended to detect minefields in coastal areas before
troop deployment. An unmanned aerial vehicle, fitted with
multispectral video cameras. is flown over the area of interest
(see Fig. 3). The video images are either stored or transmitted
for processing and analysis. A more detailed description can
be found in Witherspoon, Holloway Jr., Davis, Miller, and
Dubey (1995).

We base our work on three real datasets, one created by
each of the U.S. Air Force, Marine Corps, and Army as rep-
resentative of at least one kind of situation that they expect
to encounter in practice, and brought together and provided
to us by the Navy. To create these datasets. landmines were
first laid by service personnel in patterns that they viewed as
realistic, in the sense of being typical of patterns that might
be encountered in peacekeeping or littoral operations, based
on actual experience with mines. Then an unmanned aerial
vehicle was flown over the area where the mines had been
laid. Finally, an initial stage of image processing was applied
to obtain a first estimate of possible mine locations, These
initially estimated mine locations constitute the raw data for
our own work. These data have the advantages of being real
and realistic, but with the ground truth known, so that the
actual performance of our methods can be assessed on real
rather than simulated data.

Eglin Air Force Base and Camp Lejeune

A COBRA image database was obtained from the Navy's
Coastal Systems Station, Dahlgren Division, Panama City.
Florida. Raw images, ground truth, and the results of their
own image processing method were available for two different
sites, Eglin Air Force Base, Florida and Marine Corps Base,
Camp Lejeune, North Carolina.

The test site at Eglin AFB was contained in an environ-
ment cluttered with clumps of grass and patches of sand.
One COBRA image from there is shown in Figure 4: the full
dataset shown in Figure | was obtained by combining 10 over-
lapping images of this type. The imaged area is approximately
30 meters across. The test site at Lejeune was a moderately
cluttered coastal area (see Fig. 5).

The image processing technique used (described in Holmes,
Schwartz, Seldin, Wright, and Witter 1995) searched for local
anomalies in the multiband images based on a measure of
spectral-spatial contrast, This algorithm had been applied to
the database, and the top 25 targets for each image were iden-
tified. At each site there were 10 overlapping images available.
We aligned the images by eye in order to obtain the relative
horizontal and vertical displacements of neighboring images.
We then concatenated the top 25 targets from each image into
a spatial point pattern on a common scale. Given the typical
distance between targets, duplicates (targets that were detected
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Figure 2. MCMC Results—Eglin Air Force Base. (a) Force base data—mines shown (o = mines, + = noise). (b) Edge classification—Eglin Air
Force Base. The widths of the edges are proportional to their posterior probabilities.

in multiple images) were easy to identify and were removed.
In the Eglin AFB dataset shown in Figure 2(a). the image pro-
cessing identified 173 points, of which 35 are mines and 138
are noise points, In the Lejeune dataset, shown in Figure 6(a),
168 points were identified. of which 28 were mines and 140
were noise points,

Surf Zone Data

This dataset (Fig. 6(b)) was produced by processing one
spectral band from a multispectral camera showing a ground-
based scene of mines laid out in a regular pattern on a
surf zone (Lake and Keenan 1995; Lake, Sadler, and Casey
1997). The processed image contained 50 points, which they

considered to be clutter-free (i.e., all mines). To test their own
minefield detection algorithms they added 50 random points.
Thus this dataset 1s partly real and partly synthetic: The mines
are real, but the clutter points are synthetic.

3. A MODEL FOR MINE LOCATIONS: THE
SEQUENTIAL PLACEMENT MODEL

In this section, we present the sequential placement model
for mine locations. The basic idea is that the mines are laid
sequentially, roughly a constant distance apart, in approxi-
mately parallel rows: earlier we explained why this is a rea-
sonable expectation. The distances between sequential mines,
the mean distances between rows, and the direction of the
rows are parameters to be inferred.

Figure 3. COBRA Operational Concept.
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Figure 4.

COBRA Image BB0B1037, Band #1, Right Camera—Eglin
Air Force Base.
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Figure 5. COBRA Image LB560069, Band #1, Left Camera—Camp
Lejeune,

3.1 Mode! Specification

Let A be the sample space or study region, whose area is
denoted by |A]. Let N be the total number of points. let n, be
the number of noise points, and let m be the number of mines.
The data, i.e.. the coordinates of all the points, are denoted
by v.

We assume the n,; noise points are distributed uniformly
throughout the study region. This is a simplifying assumption
which we have Jound to work well, It may be, though, that the
noise points have their own underlying structure which could
be due to. for example, the terrain. trees. or surf. Although
possibly more difficult. explicit incarporation of such knowl-
edge could be beneficial.

Suppose that the minefield consists of & rows, and that the
ith row contains g, mines. Thus we have
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The Sequential Placement Model (s = Mines, « = Noise),

Figure 7,
Dashed lines represent bands.

The mines in each row are ordered and the position of each
mine depends on the position of the preceding mine. Let d,
be the Euclidean distance from the jth point to the jth point,
and let «, be the corresponding angle, measured in radians,
with horizontal right as a baseline (0 radians). We shall use
the notation i — j if the ith and jth points are both mines
and point j 1s the next mine after point { in the same row. We
assume that, if ¢ — ., then
d,, ~Normal(u, o). (n
a,, ~ von Mises(#, k). (2)
A schematic of the sequential placement model is shown in
Figure 7.
The parameters of the model are described in Table | and

are denoted by © = (p, o, 0. &, p, A, v, ¥). To prevent rows
from overlapping, we add the following constraints, Each row
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Figure 6. COBRA Datasels. (a) Camp Lefeune data—mines shown (o = mines, + = noise). (b) Surf zone data—mines shown (o = mines,

+ = noise).
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Tabie 1. Parameters of the Sequential Placement Mode!

i Mean intermine distance

r Standard deviation of intermine distance

i Mean intermine distance

i Standard deviation of intermine angle

e Row repulsion radius

A Mean number of rows

p Mean number of noise points per unit area
vy Mean number of mines per line

is assumed to have at least three mines to ensure that the
model favors linear features, and each has a “band” of width
p within which each mine in the row must lie. Each band is
centered (perpendicular to #) on the first mine of each row.
Finally. we assume that the first mine in each row is uniformly
distributed over the area imaged.

Figure 8 illustrates four possible types of minefield that can
be generated with this model. ranging from least to most linear
and evenly spaced. The plot shows four rows with 10 mines
each. Each row has the same p and 6. but o and x increase
from the bottom row to the top row. In the bottom row, both
standard deviations are equal to zero, so that all the mines
lie on a straight line, and consecutive mines are the same
distance apart,

The identities of the mines and their orderings within each
row are given by the latent variable. Z. an N x N matrix,
whose individual entries are

_ [

R VR

ifiE—=> 4]

otherwise.

The variable Z can be thought of as a parameter about which
we wish to make inference.

L T T T T T T
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Figure 8. Realizations From the Sequential Placement Model — =
2, 1 =07 (Horizontal right), « is Converted to Degrees for Convenience.
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3.2 Likelihood

The joint probability distribution of the data y and the latent
variahle Z can be written as

P(y.Z|O.N.A)Y=P(v|Z,O.N, A)P(Z | @, N, A).

We condition on the number of points (N) and the area of the
study region (A), and assume that at least one row of mines
is present.

The likelihood for the data conditional on Z and the model
parameters, P(y | Z. ©, N, A), is given below and is simply a
product of the likelihoods of the lengths and the directions of
each edge in the minefield, with a term to account for the noise
points and a term to ensure that the minefield configuration is
allowable. Here dy is the normal (Gaussian) density function,
and Py, is the von Mises density function:

P(Y|Z. O.N, A) = A" [] dy(d, | p.o)

Fyss)
x Dyy(a, | 0.6)1(y, Z. p).

where
I. if all mines lie inside the correct,
Iy p)= bands and no bands overlap,
), otherwise.

Our search for roughly linear structures implies that we
expect the standard deviation of the intermine angles to be rel-
atively small. Consequently we parameterized the von Mises
distribution in terms of the standard deviation (). rather than
the usual concentration parameter:

| I .
——————exp| < cos(x—#) |,
2l (1/x%) K-

where /() is the modified Bessel tunction of the first kind
of order zero. This parameterization made it easier to spec-
ify priors that give nonzero density to the lower bound of x
(k=0), which corresponds to a “perfectly laid” minefield. The
conditional distribution of Z given @, N, and A then factors
as follows:

PIZ|I|ON,A)=P(Z| Awy. v, N, A)
=P(K, o r s e | A, vy, N A)
=Py, ... ng | K, v p, N, A)P(K | A, N).

(I')VM [ .l') =

This distribution gives the same probability to the Z matrix
for all minefields with the same number of rows and the same
number of mines per row. P(uy. ... 1y |-) is a multinomial
distribution, truncated to ensure that all rows have at least
three mines:

Plag,.... ne | Kovovga N, A)
vylA|

N ' o
o W
(”{r"'”x | Al -+ Kp

8. g 1L AL
Xn(_rn.JAHm,) Al )

Hopvgaimny L
ny s eong ) (wl Al Keyy 5
where A = {(n, ... . ng) min{n, ..., ng) = 3).
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The prior on the number of rows is a Poisson distribution,
truncated such that the number of rows is at least one and no
more than N /3, namely

Abe4
] "l s -
P(K | A.N) Xl 1y (K).

where B=[K:1 <K = [X]].

3.3 Simulating From the Sequential
Placement Model

A spatial point process is “any stochastic mechanism which
generales a countable set of events in the plane” (Diggle
1983). For the sequential placement model to be a valid point
process, it must be possible to generate realizations from it.
A simple procedure to accomplish this is rejection sampling.
Using this. o realization from the sequential placement model
with parameters ¢ can be generated as follows:

1. Sample the number of rows, K, from P(K | A, N).

2. Sample the number of neise points, n,. and the num-
ber of mines per row. n..... g from Plng,....ong |
K.y, NOA).

3. Sample K points uniformly from A to denote the loca-
tions of the starting mines in each row.

4. For each value i from | to K, draw n, samples from
the inter-mine distance and angle distributions (Equations (1)
and (2)). Use these distances and the locations of the starting
mines to create the locations the mines.

5. Sample n, points uniformly from A to denote the loca-
tions of the noise points.

6. Concatenate the locations of the mines and the noise
points to form the data, v.

7. Calculate the value of the wdicator function, 1(y, Z. p).
If this is 1, then stop; else return to step 1.

4. BAYESIAN ESTIMATION VIA MARKOV
CHAIN MONTE CARLO

We now describe a fully Bayesian approach to estimate
the parameters for the sequential placement model via a
Markov chain Monte Carlo (MCMC) algorithm (specifically
a  Metropolis-Hastings algorithm (Hastings 1970)). See.
e.g. Gilks, Richardson, and Spiegelhalter (1996). for an
introduction to MCMC methods.

4,1 Priors

The prior distribution is decomposed as follows:
TN Ay=m(pw.o, 0.k, p. A vy | NOA)
=m(p)m(a)m(f)ymi)m(p)m(A)miv)miy).

This decomposition is chosen mostly for simplicity, but it
also allows us to take account of the prior information that
was available to us, For simplicity, we specified all the prior
distributions to be uniform. We attempted to create priors for
each dataset that might correspond to the knowledge that an
expert would have. In particular we assumed that the terrain of
the imaged region would provide some prior knowledge about
the direction of the minefield. Thus we used priors on  with
width 90° in each case. Note that a totally uninformative prior

Table 2. Priors Used for the Sequential Placement Model

Parameter Bounds

i (.06, .12)

o (.0, .04)

# (Eglin and surf zone) (1357, 225°)
f (Lejeune) (45°, 135%)
K (0, 1.5%)

It (.08, .12)

A (2, 4)

w (10, 15)

o (30, 150)

NOTE: Al priors are uniform with the bounds' shown.

on # would have width 180°, since a given minefield would
be equally well modeled by # or 64 180°. The priors for each
dataset were the same (except for #) and are given in Table 2.

4.2 Proposal Distributions

For the non-negative-valued univariate parameters (o, &, p,
A, v, py). a new value was generated by multiplying the current
value of the parameter by exp(U) where U ~ Normal(0, 7).
Note that T can be different for each parameter and should not
be too large. as otherwise no move will be accepted.

For o a new value was proposed by adding a normal ran-
dom variable to its current value. We proposed new values
for # by adding a normally distributed random variable to it
(modulo 2m).

For the edge matrix Z, six different types of proposals are
used: Add, Delete, Swap. Grow, Kill, and Jump. At any given
iteration of the MCMC algorithm. either all the univariate
parameters are proposed to be updated (individually, in ran-
dom order), or one of the edge matrix moves is proposed.
The different edge proposals are described below and are rep-
resented schematically in Figure 9. The first five moves are
designed 1o explore the current mode of the posterior locally.
The Jump move is intended to enable the chain to make large
jumps from one posterior mode to another. Which type of
move is proposed depends on a specified probability vector
.'ﬂf'rnp = [.P]‘nr‘ Paddr Poctee s Pswap PGrows Prii .!”.Iurnp]' For all sim-
ulations, pp., = (.15,.15,.15,.15. .15, .15, .10).

Add: An end mine (the first or last mine in a row), point
i say. is selected at random. A noise point is then proposed to
be added to the end (or beginning) of the row. The probability
of proposing noise point j (p,;) is proportional to /;, where
I, is the likelihood of the new edge created by adding the
proposed noise point; i.e.,

Py & "'rf = q}N[dU .lJu“ (T](DVM[au' | H" K]'

The proposal probabilities depend on the current parameter
values, which increases the mixing ol the chain.

Delete:  An end mine is chosen at random. Rows with only
three mines are ignored. If the move is accepted. the selected
end mine is changed to a noise point.

TECHNOMETRICS, FEBRUARY 2002, VOL. 44, NO. 1
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Figure 9. Schemaltic Representing the Result of Accepting the Dii-
ferant Proposal Moves for Z. Current minefields are shown on the left,
and the result of accepting the move is shown on the right. Mines are
represented by solid circles while the noise points are represented by

open circles. Edges are represented by directed arrows. (a) Add, (b)
delete, (c) swap, (d) grow, (e) kill, and () jump.
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Swap: A mine is chosen at random. A noise point is then
proposed to be swapped for this mine. Like Add. the proba-
bility of proposing u particular noise point is proportional to
the likelihood of the new edge(s) that would be created by
replacing the proposed noise point and the selected mine.

Grow: A noise point is selected at random; denote its
location by (x',v'). The closest two noise points to (x' —
preos B v =t sind*) and (x'+ pcos 0, v 4 posin ) are then
selected. where p* and ¢° are the current values of u and
0. respectively. These three points form are proposed as a
new row.

Kill: A row with exactly three mines is selected at random
from all rows with exactly three mines. if any. If the move is
accepted all three mines in this row will be changed to noise
points. This move is not proposed if there is only one row in
the minefield.

Jump:  The Jump move proposes new model parameters
and “grows” a new minefield based on these parameters. This
move allows the Markov chain to make large jumps through-
out the parameter space. The details ol the move can be found
in the Appendix.

43 MCMC Implementation

The MCMC algorithm was run on the three datasets. In
each case, the chain was initialized by drawing the univariate
parameters from the priors and creating an initial minefield
with a Grow move. Thus the chain started with one row con-
sisting ol three mines,

In each case. the chain was run for 1.6 million iterations.
This large number was needed due 10 the slow mixing of

TECHNOMETRICS, FEBRUARY 2002, VOL. 44, NO. 1

the chain. Only every 400th iteration was recorded to reduce
storage space. Convergence of the chain to the equilibrium
distribution was monitored by running multiple chaing from
different starting points, which all converged to the same solu-
tion. More formally, the Gelman—Rubin R statistic (Gelman
and Rubin 1992) was consislent with convergence,

The gibbsit software (Raftery and Lewis 1992, 1996) was
used to assess the number of iterations needed to estimate
the posterior quantiles of interest alter reaching the region
of high postenior probability and verified the sufficiency of
this number of iterations. Note that convergence and adequacy
of the number of iterations are different issues. Convergence
is achieved once the chain has reached the region of high
posterior probability for the first time; estimation accuracy
depends on the number of iterations after convergence has
heen achieved.

5. RESULTS

For each dataset we plotted the posterior probabilities of
each edge over the point pattern (Figs. 2(b) and 10. (a) and
(b)). It is clear that the method has been quite successful in
identifying the rows of mines. In the Eglin AFB dataset, all
the rows of mines were identified quite decisively, and most
of the false positives produced by the initial image processing
were eliminated. For the Camp Lejeune dataset, the rows of
mines were correctly identified. and most of the remaining
false positives lay close to the actual rows of mines. Opera-
tionally, this means that most of the safe arcas were correctly
identihed. In the surf zone dataset, where the mines are less
systematically laid out, four of the five rows of mines were
still correctly identified, The bottom row of mines, which was
far from linearly laid out, was not identified.

Figure 11, (a)—(c). plots the posterior probabilities that each
point was a mine for each dataset. The distinction between
mines and clutter is clear and accurate for the Eglin AFB
dataset. For the Camp Lejeune dataset, almost all the mines
had substantial probabilities of being mines, but so did several
of the clutter points, because many clutter points were aligned
with the main rows ol actual mines. For the surf zone datasel.
almost all the points with substantial probabilities of being
mines actually were, which is good, but quite a few actual
mines had low probabilities of being mines. Operationally, this
is still useful: A good initial estimate of mine rows and sale
areas could be obtained for demining and planning purposes.
but care would still need to be taken throughout the area.

These plots are summarized by Receiver Operating Char-
acteristic (ROC) curves in Figure 11(d). The ROC curves are
created by ploting the detection rate versus the false alarm
rate for many different thresholds of the posterior prababilities
that each point is a mine. The ideal curve will be vertical
from the origin to (0. 1) and then horizontal. The curve for
the Eglin AFB data approximates this ideal rather well, while
the results for the noisier Camp Lejeune and surf zone data
do not come as close,

Table 3 shows detection and false positive rates from our
method. The false positive rate is defined as the empirical
conditional probability that a point is declared to be a mine
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Figure 10. MCMC Results—Camp Lefeune and Surf Zone Datasels. (a) Edge classification—Camp Lejeune. (b) Edge classification—surf
zone. The widths of the edges are proportional (o their posterior probabilities.

given that it is not one. A conservative 20% probability thresh-
old was chosen for illustrative purposes; the results are rela-
tively insensitive to the precise threshold selected. We consid-
ered other thresholds, and 20% does seem to give satisfactory
results. For the Eglin AFB data, our method detected all the
mines and had a false positive rate of 10%: i.e., it reduced the
number of false positives by 90%. Thus it reduced the number
of clutter points in the image from 138 to 14, without missing
a single mine.

For the Camp Lejeune data, our method also had a 100%
detection rate, but a higher false positive rate. This seems to
reflect the noisier nature of the data: Many of the false posi-
tives were on or close to the actual rows of mines. For the surf
zone data, the false positive rate was low, but the detection rate
was also disappointingly low, at 66%. Of the 50 mines present,
17 were not detected, including the 6 mines at the bottom of
the picture, laid out in a nonlinear pattern, This nonlinearity is
the most significant violation of our central assumption in any
of the three datasets. The other |1 nondetected mines missed
lay for the most part on or very close to the rows of mines
that were detected by the algorithm, so their nondetection was
less serious in a practical sense,

6. DISCUSSION

We have presented a model for representing the locations
of mines in a minefield characterized by nearly parallel rows
of roughly equally spaced mines, in the presence of noise. We
also outlined a method for fitting this model via Markov chain
Monte Carlo. When applied to real data with a substantial
amount of noise, the discrimination between the mines and
the noise ranged from excellent (Eglin) to moderately good
(Lejeune and surf zone), but in each of the three cases the
rows of mines were correctly identified, except in the case

of one of the five rows of mines in the surf zone dataset.
We should note, however, that success here may or may not
translate to other datasets and would have to be confirmed by
further studies.

MCMC methods are computationally intensive. However,
our simulations ran reasonably quickly. For instance the Eglin
dataset took about 2,000 CPU seconds for 1.2 million itera-
tions on a DEC Alpha workstation. It may well be possible
to reduce the number of iterations without adverse effect. In
any event, this time is well within the desired operational
specifications. The time required is @(n), where n is the total
number of points.

Prior selection is an important issue. Here we have used
rather weak or diffuse prior information, but in practice, con-
siderable prior information is often available. For instance, the
terrain of the study region will be known and may influence
the orientation of the minefield and the spacing of the mines.
The results shown here assume that prior information has nar-
rowed the possible orientation angles to a 90° span. This is
rather broad, and in practice more precise expert information
might well be available which would improve the algorithm’s
performance.

Here we have focused on the post-image-processing phase
of mine detection. Improvements in mine detection results
could also be achieved by improving the image processing
algorithm itself. The MM-MNF algorithm (Banerji and Gout-
sias 1995; Braga-Neto and Gousias 1998) has been success-
fully applied to COBRA images. The false alarm rate in their
processed images is lower than in the point patterns we con-
sidered, which were obtained with a different and more widely
used algorithm. Clutter does remain, however, so there will
continue to be a need for methods such as the one we have
outlined here.

TECHNOMETRICS, FEBRUARY 2002, VOL. 44, NO. 1
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(d) ROC Curves.

Our approach is to model the output of an image process-
ing algorithm as a poinmt process. In doing so, we combine
two ideas used in the minefield literature: modeling approx-
imate linearity and regularity of the minefield, and using :
Bayesian framework to obtain posterior probabilities of each
point being a mine. Cressie and Lawson (2000) also fitted a
Bayesian hierarchical point process model via MCMC 1o a
subset of the Camp Lejeune dataset. The linear structure of
the minefield was not as obvious in this smaller dataset, but
the mines were more regularly spaced than the noise points.
Their implementation of the model aimed 10 detect minefields
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displaying this local inhibition. Those analyzing this dataset
in practice would have had access 10 the full data that we have
used, and so they could have taken advantage of the linear
features that underlie our method and whose presence in the
data becomes clearer when the full dataset is used.

A different way of detecting approximate linearity and reg-
ularity was developed by Lake and Keenun (1995) and Lake
et al. (1997). They developed a two-stage algorithm. First,
approximately collinear points were identified using a variant
of the Hough transform (Hough 1962), and then the spac-
ing of the mines was estimated using a modified Euclidean
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Table 3. Detection and False Positive Rates (for a 20% threshold) for
Each Dataset

APPENDIX: JUMP PROPOSAL MOVE DETAILS

The Jump move allows the Markov chain to move large
distances in the parameter space in a single iteration. The steps
involved in the Jump move are:

Dataset Detection rate False positive rate
Eglin 100 10
Lejeune 100 42
Surf zone 66 B8

I. Propose new univariate parameters.
2. Propose a new number of rows and mines per row
(K" and ny, . .

)

algorithm. Muise ad Smith (1995) developed an algorithm for
minefield detection that also exploits linear patterns, A critical
difference between this approach and ours is that ours is based
on an explicit statistical model. This leads directly to good
estimation methods using established statistical principles and
also gives one an idea of when the approach is likely to work
well and when it is not. It also suggests ways of improving
the method’s performance in different situations, by modify-
ing the model so as to exploit background knowledge more
effectively.

We have assumed throughout that a minefield is present in
the region imaged, and that the analyst’s task is to detect the
mines. Another important question is to determine whether the
region surveyed is part of a minefield or not. A fairly straight-
forward solution to this problem is available by casting it as
one of comparing the minefield model that we have developed
with a model for clutter only, such as a homogeneous Pois-
son process. This can be done by computing the Bayes factor
(Kass and Raftery 1995) for one model against the other.
There are now several effective ways of computing Bayes fac-
tors from MCMC output, e.g., Raftery (1996), DiCiccio, Kass,
Raftery, and Wasserman (1997), and references therein.
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3. Propose new start mines.
4. Grow new rows,

In our simulations for steps 1 and 2 above, we proposed
new values only for the minefield orientation parameter 6.
The proposed value 8 was drawn from the prior on #. When
proposing new start mines, it is important to ensure that the
proposed mines are valid, i.e., that the bands of width p cen-
tered on the start mines in direction # do not overlap. A
secondary concern is that the calculation of the probability of
the proposed mines not be too computationally expensive.

Our approach is to first project all points onto a line perpen-
dicular to @, and sort each point by its distance along this line.
Next, associate a selection probability p; to each point. We
based p, on the distance to the projection line. If this distance
is small (in the lower quartile of all such distances) we set
p, = 0.9; else we set p, = 0.1. This is to encourage starting
mines to be near the “front” of the data.

We now select K" mines sequentially from left to right along
the projection line. To do this, we first place K" — | nonover-
lapping bands as far to the right as possible while being cen-
tered on a point in the direction €' as in Figure A.l(a). We
then select one of the points to the left of the bands (the solid
circles in the figure) with probability proportional to p;. This
point is the first start mine. We now move the leftmost band
and place it on this point (Fig. A.1(b)). This creates a new
set of candidate points from which the next start mine can be
selected (Fig. A.1(c)). This procedure is repeated until K" start
mines are selected. Once the start mines have been selected,
the remaining mines in each row are added sequentially with
probability proportional to the likelihood of edge created, as
in the Add move.

[Received September 1999, Revised May 2001}
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Figure A.1. Selection of the First Two Start Mines: K' = 3, « = candidate point, S = start mine. (a) Before selection of the first start mine. (b)

First start mine selected. (c) Second start mine selected.
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