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Nearest-Neighbor Variance Estimation (NNVE):
Robust Covariance Estimation via
Nearest-Neighbor Cleaning

Naisyin WANG and Adrian E. RAFTERY

Robust covariance estimation commonly proceeds by downweighting outliers. In this article we measure the “outlyingness” of a data
point by the standardized distance between the point and its K'th nearest neighbor. The appropriate weights for robust estimation are
found by a model-based mixture modeling approach that follows from considering the data cloud as a realization of a high-dimensional
point process. To correct a potential bias when there are no outliers, we introduce a boundary correction procedure that artificially adds
in extra outlying points; the resulting methodology is called nearest-neighbor variance estimation (NNVE). The strength of NNVE is
its robustness against a large proportion of noise points and against deviation from normality of the signal. A consistency result for
the method is established. Under some reasonable assumptions, it is shown that the covariance estimate is bounded and that each point
has only bounded influence on the final estimates. NNVE outperformed the popular minimum volume eilipsoid (MVE) estimator in
simulation studies, with a big improvement when the proportion of outliers was very large (>50%). In our simulation study, when the
proportion of outliers was >50%, the mean squared error of the NNVE estimator of variance was at least 100 times smaller than that
of the MVE estimator. The proposed estimator also outperformed MVE in cases where the underlying data distribution was not normal.
Good performance of NNVE in several real examples is demonstrated. A potential drawback of NNVE is that data points condensed in
moderate-sized clusters would be classified as signal. Even though we do not support approaches discarding moderate-sized clusters as
outliers without checking, this feature of NNVE could be problematic, particularly when only the main data cloud is of interest. A simple
diagnostic tool built on existing model-based clustering procedure is proposed. This procedure allows us to check whether there is more
than one separate data cloud in the data after cleaning. It also supplies the central locations of the separated moderate-sized clusters,
which allows further investigation. Finally, because NNVE reduces the problem of finding the robustness weights to a one-dimensional
problem, it may be useful in high-dimensional problems, such as those encountered in data mining.

KEY WORDS: EM algorithm; M estimator: Minimum volume ellipsoid estimator; Mixture model.

1. INTRODUCTION would not be automatically classified as outliers because of
our belief that a moderate size cluster may not arise simply
by chance and could instead be an interesting feature of the
data. A simple procedure is then used to locate these clusters,
after which further action can be taken. This idea was first dis-
cussed by Byers and Raftery (1998), hereafter referred to as
BR, who proposed a nearest-neighbor cleaning (NNC) proce-
dure to remove clutter from a dataset comprising both “main”
data and irrelevant clutter. Their work was motivated by the
problem of detecting minefields from noisy images collected
by an aircraft in which many objects are identified as possible
mines; some are mines, whereas many others are just clutter.

Outliers are observations that do not follow the pattern
of the majority of the data. It is well known that the pres-
ence of outliers can damage the quality of estimates. In
this article we address the problem of robustly estimating a
covariance matrix. There is a substantial literature on this
problem (see, e.g., Campbell 1980; Huber 1981; Lopuhai
1989; Maronna 1976; Maronna and Yohai 1995; Poston et al.
1997; Rousseeuw and Leroy 1987; Ruppert 1992; Tyler 1994;
Woodruff and Rocke 1994). In this article we consider a
“weighted” covariance matrix for robust covariance estimation
in which the weight for each data point depends on a measure

of “outlyingness.” However, the nature of this estimator and
the way in which we define outlyingness are very different
from the previous approaches.

After ensuring scale standardization of each variable, we
measure the outlyingness of a point by the distance from the
point to its Kth nearest neighbor. If a point, or a small group
of points, with a number less than K is far from the rest of
the data, then it tends to have a large Kth nearest-neighbor
(NN) distance and is viewed as an outlier. On the other hand,
a tight cluster containing a moderate number of data points
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In such cases, the proportion of outliers is unknown and can
be much greater than 50%—a scenario under which traditional
covariance estimators are not applicable.

BR mentioned the possibility of using their method to pro-
duce robust covariance estimates, and carried out an intrigu-
ing simulation study (BR, table 3). This compared the perfor-
mance of NNC with that of the minimum volume ellipsoid
estimator (MVE) (see Rousseeuw and Leroy 1987), probably
the most commonly used robust covariance estimator in prac-
tice. In BR’s example, signal and noise points are both nor-
mally distributed. and the noise points are assumed to have
a larger variance. BR found that the performance of MVE
started to deteriorate markedly when the proportion of out-
liers came close to 50%, whereas NNC remained steady. How-
ever, when there are no outliers, the NNC covariance estimator
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tends to underestimate the true variances. The good perfor-
mance of NNC with very large numbers of outliers is inter-
esting, but the bias shown in BR’s study makes it impossible
to recommend it as a general procedure.

In this article we investigate the potential of using NNC
as a general method for robust covariance estimation. Exam-
ples in Section 4 suggest that traditional ellipsoid-based meth-
ods, such as MVE, could lead to dubious conclusions when
the underlying distribution of the signal points deviates from
normality. Exploring an alternative concept of “outlyingness”
beyond the usual approach of covering the central 50% of
the data with an ellipsoid is a main theme of this article. In
light of BR’s study and our own findings in Sections 3 and 4,
our goal is to provide an estimator that performs as well as
the original NNC when there are outliers, but does not sufter
much from bias when there are no outliers. In Section 2 we
describe our approach, which is based on artificially adding
extra outliers to the data. We refer to the resulting methodol-
ogy as nearest-neighbor variance estimation (NNVE). We give
theoretical findings to support the use of NNVE in Section 3.
In Section 4 we report on several simulation studies and data
analyses that compare the performance of various estimators.
We provide concluding remarks in Section 5.

2. METHODOLOGY

2.1 Nearest-Neighbor Cleaning

The original NNC procedure was proposed by Byers and
Raftery (1998). They suggested viewing the data as a mixture
of two components, one arising from the outliers or clutter
and other arising from the data that are not outliers. We refer
to these two types of data as noise points and signal points.
BR proposed basing the decision as to whether to view a data
point as signal or noise on the distance from it to the Kth
nearest data point, that is, the Kth nearest-neighbor distance,
D,. They then pointed out that under certain assumptions, the
distribution of D is approximately a mixture of two general-
ized gamma distributions,

Dy ~1T'"7(Dg; K, Na,) + (1 — I (Dg K, Ma,), (1)

where T indicates the mixture proportion; A, and A, character-
ize the distributions corresponding to signal and noise points;
a, is the volume of the p-dimensional unit hypersphere, with
p being the dimension of the data; and D ~ I''/?(-; a, b) indi-
cates that D? ~ I'(:; a, b). The intuition is that the density of
points is lower outside the region of p space in which the sig-
nal points are concentrated, and hence that outliers have a less
dense distribution, and thus a large Kth NN distance, on aver-
age. The distribution in (1) was derived by BR based on the
assumption that the original data, X, could be approximately
modeled as a mixture of two Poisson processes.

By modeling the distribution of Dy, BR reduced the dimen-
sionality of the mixture modeling problem from p to 1. Denote
the density of I''/7(-; K, Aa,) by fp, (-, A), let 0 = (7, A, L),
and define

7/, (d: A1)
Tfo (d M)+ (1= 1) fp, (d, X))’

h(d, ) = (2)
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which is the probability of a datum being a signal point given
that its D, is equal to d. A simple EM algorithm can be
used to obtain the estimates of the parameters A, A,, and 7.
The “missing data” in this problem is the binary 0-1 indicator
variable, Z;,, where Z, = 1 if the ith datum is a signal point.
On convergence, we obtain

- K h(Dyg 6)

Al = KA P 1) (3)
@, > h(Dy;. 0) Dy}

. KY.{1—h(Dy,, 6

A:Z Zl{ ( KIA )}p , (4)
o, >i{1—h(Dy;, )} Dy,
and

#=n"Y h(Dg 0). (5)
Let &, = h;() = h(Dy;, 0) and @&, = h,/ Y, h;, where 8

denotes the maximum likelihood estimator, obtained by the
EM algorithm. The mean, u,, and covariance, X, of the dis-
tribution of the signal points can be estimated by fi, yy =
> w;X; and

E1,NN :Zli)i(xi—/:LLNN)(X,'—/Q‘I,NN)/' (6)
2.2 Boundary Correction and Estimation Algorithm

It is well known that when a two-component mixture model
is fit to data that have only one component in reality, the max-
imum likelihood estimator (MLE), when it exists, tends to
falsely indicate that there are two components (see Day 1969;
Bryant and Williamson 1978). For example, a simulated study
that we conducted with normal data suggested that the mis-
classification rates varied from 5% to 25% when the data were
assumed to be from a mixture of two normals. When there is
only one component, we have 7 = 1, which is on the bound-
ary of the parameter space, 7 € (0, 1). It is well known that
the MLE tends to perform less well in such situations than
when the true parameter value is inside the parameter space
(e.g., Feng and McCulloch 1992). In our setup, this misclas-
sification causes underestimation of the covariance matrix of
the signal distribution when there are no outliers. When there
are outliers, the parameter of the mixture model is in the inte-
rior of the parameter space, and the original NNC procedure
works well. Our goal is to find a method that works similarly
to the original NNC when 7 < 1, but corrects the underesti-
mation when 7= 1.

Our idea is quite simple. Because NNC tends to misclassify
signal points as noise when there is no noise, we propose to
artificially add extra noise to the original dataset, so that the
true 7 can be moved away from the boundary. We first give
some numerical illustrations to show how the method works,
and then give a more systematic description of it.

A conventional measurement of distance from a data point
to the center is the Mahalanobis distance, d,(x,p,2) =
[(x=p)Z " (x— )} Let fi,, and T, be the sample mean
and covariance of the entire dataset. Then one way to obtain
new outliers is to generate data points with squared Maha-
lanobis distances, d,(x, fi, 2.), €qual to some prespecified
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value, g. Here we simply choose g to be the { quantile of
the chi-square distribution with p degrees of freedom; that is,
qg= X,z,_;v with { being a prespecified probability close to 1.
Various other choices could be made; this particular choice
worked well in all of our numerical studies.

To illustrate our method, we use the two-dimensional situa-
tion considered in BR where both signal and noise points have
bivariate normal distributions with mean 0, the signal covari-
ance matrix is diag(4, 25), and the noise points have the same
distribution, only multiplied by 10. We consider two scenarios:
data with no outliers, and data with 10% outliers. Six differ-
ent values of ¢ were used; these were equally spaced between
X3 o9 =9.2and x3 g9 = 18.4. For each ¢, M data points with
the desired squared Mahananobis distance, ¢, were added to
each of the two datasets, where M = 5% of the original sam-
ple size. These were chosen by selecting the M points in the
dataset with the largest Kth NN distances, and then project-
ing each of them to a randomly chosen direction such that the
squared Mahalanobis distance between the new location and
. 1s equal to ¢g. In each case, a new data point is added at
that location. The NNC procedure was then used to estimate
the signal covariance in each case. Our numerical experiments
indicate that the results are relatively insensitive to the choice
of the M artificial data points. We refer to this overall method-
ology as NNVE.

Figure 1 plots the resulting variances of the two variables
against the corresponding g values. In each plot, the original
variance without the added noise is indicated by the y coordi-
nate of the triangle. When there were no outliers, the original
NNC underestimated the true variances. The estimated vari-
ance of the first variable was 2.3, whereas the truth is 4.0. The
top two plots of Figure | show that NNVE reduces the under-
estimation; when g = x;j . the estimate is 3.1. The results
improve as ¢ increases, reaching an estimate of about 3.5;
the improvements become negligible after about ¢ = 15. On
the other hand, with 10% outliers, the added noise appears to
have little or no effect on the estimated variances, and NNVE
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Figure 1. Plots of Changing Variance Estimates for Various Values,

q, of the Artificial Added Data. (a) and (b) are for data with no outliers,
and (c) and (d) are for data with 10% outliers. The true variance for
the first variable [(a) and (c)] is 4, and that for the second variable [(b)
and (d)] is 25. The y coordinate of the triangle shows the original NNC
variance estimate. The solid horizontal lines indicate the true variances.

Journal of the American Statistical Association, December 2002

0% 10%
. | §
S Sy
S (=}
(@)
2 2
5o 5 2
(O O O
=% =]
2 S E
| 1
< | < | L
ol . ol T
0 100 300 500 0 100 300 500

Figure 2. Estimated Weights versus the Ranks of Kth NN Distance
for the Original Data and Six Augmented Versions Corresponding to
Different Values of q Described in Figure 1.

gave results very similar to the original NNC method. This is
exactly the kind of adjustment to NNC that we sought.

The explanation for this behavior is shown in Figure 2,
where the estimated weights, w;,, in (6) for each data point
against the rank of its Kth NN distance are given for both sce-
narios. In each plot there are seven curves, corresponding to
the original dataset and the six augmented datasets described
in Figure 1. For the augmented datasets, only the w; and the
Kth NN distance of the original 500 data points were used to
construct the curves. The weights for the added outliers are
practically zero. By design, they have large NN distances.

The curve for the no outlier case is clearly separated from
the curves for the augmented data cases. This no-outlier curve
indicates that signal points with large K'th NN distances (about
the top 16% in ranking) were classified as outliers and con-
tributed close to zero weights in (6). With the original sig-
nal points being normally distributed (unimodal), a point far
away from the mean (mode) usually belongs to a low-density
area and tends to have a larger Kth NN distance compared
to a point close to the mode. Consequently, such a point is
more likely to be downweighted by the original NNC and to
cause underestimation of the variances. As shown by the other
curves, the added noise helps the signal points that were origi-
nally misclassified as outliers to regain substantial weight. On
the other hand, when there are 10% outliers, these outliers
are correctly downweighted. The weights used to calculate the
estimated covariance hardly change, as desired, even with the
added points. We observed similar graphs when the propor-
tion of outliers was >10%. For an easy graphical presentation,
Figures 1 and 2 were simply obtained based on two origi-
nal datasets. Nonetheless, our simulation study in Section 4
under the same structure indicates that similar behavior is to
be expected in general.

Some further aspects of the practical implementation of
NNVE are as follows. When calculating the NN distances,
each variable in the data was standardized by subtracting its
sample median and then divided by its median absolute devi-
ation (MAD). This step provides scale invariance when cal-
culating the NN distances. As a result, NNVE is equivariant
for scale multiplication of each variable, due to, for example,
changes of scale in the coordinates.

When ¢ is increased past a certain point, eventually some
original outliers get misclassified as signal points. In that case,
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we observe a surge in the estimated variance as ¢ increases. To
avoid misclassifying influential outliers as signal points, if any
estimated variance increases by a factor of x or more between
two consecutive values of g, we stop the procedure and use
the results obtained with the previous value of ¢ as the final
answer. The variance ratio of a normal random variable and a
truncated normal with the central 80% and 85% are 2.39 and
1.92. Motivated by this, we use x = 2, which lies between the
two values. Note that this surge can happen only when there
are outliers with moderate influence, a situation in which even
the original NNC provides a reasonable answer. Therefore, the
choice of « is not very crucial.

We let O be the set of values of g used. Extending g outside
the range of Q improves the resulting estimates when there
are no outliers. Therefore, we can consider extending g using
the same consecutive addition as for the ¢’s in Q and stop
the procedure either when a variance increases by a factor of
more than « as before or when none of the estimated variances
changes much (we define this as being a change of <1%).

Our NNVE procedure can be summarized as follows:

. Standardize each variable by subtracting its sample
median and dividing by its MAD.

2. Use the Kth NN distance and the EM algorithm to obtain
w; and calculate the resulting NNC weighted covariance
estimate.

3. Choose @, as the set of six chi-square quantiles descri-
bed earlier, by themselves or augmented with the exten-
sion points.

4. For each ¢, in Q, generate M extra outliers, add them
to the dataset, and obtain the resulting new weighted
covariance estimate.

5. Stop incrementing ¢ when the maximum value in Q has
been reached, or when one of the estimated variances
increases by a factor of 2 or more for one increment of
g, or when none of the estimated variances changes by
much. Otherwise, increment ¢ and repeat the procedure.

In the numerical examples throughout this article, we used
M = max(2, .05%n), where n is the sample size. The 5% was
chosen to represent a small proportion; thus in each augmented
dataset, the original data comprise the vast majority. Numer-
ical studies were conducted to compare the effects of using
different proportions ranging from 3% to 8%. The results are
insensitive to changes in M, indicating that there is little to be
gained by developing a method for choosing M optimally.

2.3 Remarks on the Estimation Procedure

Remark 1. The reason for using more than one value of g
is simply to improve the estimation when there are no influen-
tial outliers. A simpler version of the method would just use
a single value of ¢, such as g = x; ; this would provide a
reasonable and fast option. Nevertheless, using several values
of ¢ leads to better performance when there are no outliers, at
the cost of a modest increase in complexity.

Remark 2. BR proposed an entropy-based method for
choosing K. They suggested calculating a negative entropy-
based measurement of the signal-outlier classification £(K) =
>~ h;log(h;) for each K, where hlog(h) is defined to be 0
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when 4 = 0. It is motivated by the fact that the classifica-
tion of the ith data as signal or noise can be described by
the binary indicator variable Z; as in Section 2.1. The nega-
tive entropy, h,log(h;), of the binary distribution of Z, pro-
vides information on classification certainty and will reach a
supremum 0 in the extreme case where there is no classifica-
tion uncertainty and where #; is either 0 or 1. £(K) therefore
summarizes the amount of classification certainty inherent in
the classification probabilities for all data points. BR proposed
plotting £(K) against K, and choosing the smallest value of
K beyond which £(K) increases little. That is, to choose the
smallest value of K which approximately provides the lowest
classification uncertainty. We have found that our results do
not change much when K is varied within a reasonable range;
BR reported the same thing. As a result, visual inspection of
the £(K) plot may well be sufficient to choose a reasonable
K:; BR also proposed a more formal method based on change-
point estimation.

For the first two examples in Section 4, where the estimated
proportion of outliers is smaller than 50%, we used K = 8.
For both examples, the entropy approach suggests that one use
a value of K in the range 8 to 15, and similar results were
obtained for all the values of K in this range. An entropy plot
is also given in the first example of Section 4 below.

Remark 3. In classifying signal and noise, the choice of K
has certain practical implications. For example, using K = 8
would tend to classify a cluster of size smaller than 8 as
noise, but points in a tight cluster of a larger size as sig-
nal. This is in spite of the signal being from one major data
cloud. In practice, however, it would seem wise to investi-
gate further before classifying any tight cluster of moderate
size as noise, since such groupings may indicate some fea-
ture of interest in the data and are unlikely to arise by chance.
One way of identifying such moderate-sized tight clusters is
to apply a clustering procedure to the initally identified sig-
nal points after cleaning. The cleaning step is important here
because it makes the clustering procedure feasible. In the last
example of Section 4, where the proportion of noise points is
extremely high, we illustrate how to implement such a proce-
dure using a publicly available software package, MCLUST
(Fraley and Raftery 1999), to check whether there is more
than one data cloud. If prior knowledge indicates that the sig-
nal comprises one major data cloud (a2 common assumption
taken by many robust methods, e.g., MVE), then one either
calculates the covariance from the largest data cloud or reap-
plies NNVE to the data after the first cleaning. More details
are given in Section 4.

3. THEORETICAL JUSTIFICATIONS

In this section we derive some theoretical results that sup-
port the use of NNVE. We start by reformulating NNVE as
the solution to a set of estimating equations. We then provide a
consistency result for the NNVE estimator. We also show that
under certain reasonable assumptions, each data point has only
bounded influence on the final estimates. Finally, we show that
the NNVE estimates remain bounded, even when the propor-
tion of outliers is >50%.

Without loss of generality, we assume that A, > A, > 0, with
A, corresponding to the noise population. More precisely, we
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assume that # = (7, A, A,) is an interior point of @, where
Ois {(1,A,A,); 7€ (0,1) and A, > A, > 0}. Let A,(A) =
fp,(Dg;. A) and define

A(A) —A(dy)
1A, (X)) +(1—7)A,(A)
Wy, = ¥y(Dy;, 0) = h[(e)(_aPDZi +K/A) "
{1- hi(O)}(—apDZ,-‘l”K/Az)
and

Wy, =W (X, Dgin 1, %, 0)

~ [ h{(0)(X, — ) }
hi()vecS — (X, —p)(X, —p)'} |

where g and 2 are the mean and covariance of the signal
points and “P” and “N” correspond to “primary” and “nui-
sance” (parameters). Then NNVE can be reformulated as the
solution to a set of estimating equations by noting that 0,
i, yy» and =,y can be written as a solution to ) ; ¥; =0,
where W, = (W, W/ )7. The basic idea here is to use (7) to
obtain 6. Weights based on the 6 are then used to obtain the
estimates of primary interest, (i, yy and 2, y.
To avoid extraordinary issues, we assume the following:

(A1) There exists a 6* = (7%, A}, A})" in the interior of the
parameter space and an 1 > 0, such that n"(6 — 6*) =
0,(1).

Proposition 1. Let u} = E{(t*)"'h(Dy, 6*)X} and 3} =
E{(7")""h(Dy, 0°)(X — w)(X — )"} If (A1) holds, then
i, vy and 2, . are consistent estimators of u} and =}.

Proposition | can be obtained from straightforward asymp-
totic derivation and the fact that by (5), n='3 h,(6*) con-
verges to 7*. The exact form of h(D, 6) is given in (8). Even
more general theoretical derivations for M estimators with this
structure have been provided in appendix 3.6 of Carroll, Rup-
pert, and Stefanski (1995). Note that condition (A1) does not
require the true underlying distribution of Dy to be as spec-
ified in (1). The whole procedure of obtaining 6 is simply a
process of establishing reasonable and robust weights. When
the probability of the ith point being a signal point given the
data is in fact k,;(6*), we have the following.

Corollary 1. If (Al) holds and Pr(Z; = 1 | data) equals
h;(6*), where Z, =1 indicates that X, is a signal point, then
Proposition 1 applies with u} = u, and 3} = %, where u,
and 2, are the mean and covariance of the signal distribution.

A sketch of the proof of Corollary 1| is given in the
Appendix. Corollary 1 simply states that when h;(6*) cor-
rectly specifies the conditional probability of the ith data value
being a signal point given the data, then the given covariance
estimator is consistent. In general, this can be at best approxi-
mately correct. Nonetheless, Wh/a\t we found was that, as with
many other robust procedures, %, ,, achieves its robustness
by downweighting outliers. In practice, h;(6*) provides a con-
venient weight function that works very well in applications.
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To appreciate this, we note that (D, 8) in (2) can be writ-
ten as

(1-7)A7

h(D,0)=1|1
(D, 6) [+ -

ol —Az)apr’}]_ L ®

The quality of the proposed estimator is determined mainly
by h(D, 6). In the Appendix, we show the following result.

Lemma 1. For any @ in the interior of the parameter
space, (D, 0) is a monotone decreasing function of non-
negative D. Furthermore, for any positive integer ¢ and a
bounded density f,(-) with positive support, (a) D*h(D, 8)
is bounded for D >0, (b) lim,_  D‘h(D,6) =0, and
(c) [y D*h(D, 6)df,(D) is bounded.

Also note that, on convergence, egs. (3)—(5) hold. As a result,
data points with large Dy are more likely to be grouped
into the noise population and to contribute to 5\2. Such data
points are also associated with small values of A(Dy, 6). Thus
the NNVE procedure downweights the points with far-away
neighbors and views them as potential outliers. Property (b)
of Lemma 1 indicates that for a data point with extremely
large Dy, the weight A(Dg, 6) not only goes to 0, but also
reduces the contribution of this point toward the estimate to (.
Consequently, property (c¢) of Lemma 1 further indicates that
n~!' 32, Di;h(Dy;, 0) is always bounded.

Recall the definition of 2 yy in (6). In light of the results in
Lemma 1, the following assumption is needed to link a point
with a relatively large scale of |X — w,| with a small A(Dy, 8)
so that the point will be downweighted:

(A2) For any C > 0, there exists a positive constant 7 such
that for all |X; —u,| > C, DL, /1X;,—p,| > C.

Condition (A2) simply requires that Dy be large when
|X — ;| is. The purpose is to rule out a situation that is
unlikely in real applications in which a tight cluster of more
than K noise points go to infinity together. If such a situa-
tion does occur, then a direct application of NNVE would not
be appropriate, and the cluster of outliers should be identified
and analyzed separately. Note that (A2) is simply a theoretical
condition to ensure that the estimates are bounded. The imple-
mentation of NNVE does not use this assumption. Because
w1, is unknown, an assumption-checking procedure that does
not require the location of u, is provided in the last example
of Section 4. The basic idea is that after the “cleaning” pro-
cedure, we identify any data point that potentially could be a
violator of the assumption. For a data point with a large Dy, a
simple process is used to decide whether this point is “close”
enough to the main data cloud, and thus is analogously “close”
enough to u,. Details are given in Section 4.

Proposition 2. As long as (Al) and the relationship
between X and D as described in (A2) hold for all of the data,
we have the following robustness properties of fi, v, and

~
DI

n

2 U, (Dyis X 3, 77 é) {I+0,(1)}

. A1
(/"‘],NN_Ml)“ n e
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it is the popular MVE estimator (Rousseeuw and Leroy 1987).

and
The MVE covariance estimate is based on the minimum vol-
s 5+ ume ellipsoid covering at least [n/2 + 1] data points. A suit-
VeC( LNV~ 1) . 4 . . o
able factor is used to achieve consistency in the multivariate

1. . wr 4 A normal case. We used the default version of cov.mve in
=1=2 s (Dir Xi 17, 27,77, 6) {I+0,(1)},  S_PLUS. The differences between NNVE and BR’s NNC pro-
cedure (NN-BR) are also illustrated.

i=1

where
4.1 Hertzsprung-Russell Data
(DX €. 0) = € h(D. 0)(X ~ pr) Prang
Our first example is an astronomy dataset discussed by
Rousseeuw and Leroy (1987). The data were taken from the
_ Hertzsprung—Russell diagram of the star cluster CYG OBl
—e v — —n) —
Yu(D. X, p, 3 e.0) =€ vech(D.O){(X — ) (X —p) = Z}]. and consist of measurements for 47 stars in the direction of
Also, let 7 in @ be a neighborhood of 6* where all 8 € T are Cygnus. Two variables repoﬂeq are the logarllthm. of th.e sur-
. face temperature and the logarithm of the light intensity. A
bounded away from the boundary of ®. Then the following S - .
ditions hold: scatterplot of the data is given in Figure 3(a). This is an exam-
con ’ ple in which MVE is known to work well. In this case, NNVE

(A) For any € bounded away from 0, supg., ¢, (D. X, p, €, and NN-BR both yield practically the same answer as MVE,
but all are quite different from the standard nonrobust method.

0) and supy¢s(D, X, ., 2, €, 6) are bounded func-
tions of D and X for D > 0. The entropy plot, Figure 3(b), as described in Section 2.3,
(B) Both /i, yy and ELNN are bounded. suggests that the best choice of K is around 8 or 9, but the
» . ) o ) estimated covariances for K from 8 to 15 are almost identical.
Proposition 2 is a straightforward application of direct asymp-  The estimated covariances using K = 8 are given in Table 1.
totic derivations, conditions (Al) and (A2), and Lemma 1.
Under certain conditions that can be reasonably expected to 4.2 BR's Simulated Example
h"?d in applications, part (A) %ndicates that, locally, ea§h data This simulated example is an extension of BR’s simulation
point can 'have' only bounded influence on.the final estimates. study. The goal is to show that our approach has kept the
Part (BA) implies that even whe.n there is more than 30% strength of BR’s original method when there is a high propor-
noise, i, yy and %, yy would still be bounded. tion of noise points, and corrects for the underestimation of
variances when there is no noise. In the first part of the sim-
4. EXAMPLES ulation study, our setup is the same as that of BR, section 4.
The data are bivariate normal with mean 0 and covariance
matrix diag(4, 25). The outliers have the same distribution but
are multiplied by 10. Each dataset contains 500 observations.

and

Here we report analyses of several observed and simu-
lated datasets to investigate the numerical performance of the
NNVE estimator. The main approach with which we compare

(a) (b)
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Figure 3. Plots for Hertzsprung—Russell Data. (a) Scatterplot of the original data; (b) entropy plot for choosing a good value of K.
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Table 1. Covariance Estimates for the Star Data

Standard NNVE MVE NN-BR
.0846 —.0350 .0115 .0343 .0112 .0376 .0115 .0343
—.0350 .3263 0343 .2390 .0376 .2350 .0343 .2390

Five cases were considered, in which the proportion of out-
liers is 0, 5%, 33%, 50%, and 67%.

The Monte Carlo means, standard errors, mean squared
errors (MSEs); and relative MSE based on 500 simulations are
displayed in Table 2. The relative MSE (%MSE) was calcu-
lated by dividing the MSE by that of NNVE. As expected, the
standard nonrobust method breaks down immediately, giving
very poor estimates even with 5% outliers. NNVE outperforms
MVE in every case when there are outliers, and performs dra-
matically better when there are 50% or 67% outliers. When
there are 50% outliers, the MSE of the variance estimates is at
least 100 times greater for MVE than for NNVE. (The MSE
for the standard method is a further three orders of magnitude
greater than for MVE.) When there are 67% outliers, the supe-
riority of NNVE over MVE is even more marked. NNVE and
MVE perform about equally well when there are no outliers.

NN-BR underestimates the true variances when there are
no outliers, and NNVE largely corrects this bias, reducing it
by about two-thirds. With 5%-50% outliers, NN-BR performs
well, but NNVE outperforms it. With 67% outliers, NN-BR
outperforms NNVE.

In the second part of this simulation study, we investigated
how the different methods performed in the presence of slight
skewness of the signal distribution. To do this, we used the

Journal of the American Statistical Association, December 2002

skewed bivariate normal distribution of Azzalini and Valle
(1996) with skewness parameters 8, = .9 and 6, = —.9. The
(1, 1), (2,2), and (1, 2) entries of the true covariance matrix
are 4, 25, and —5. The & parameters regulate the degree of
skewness. Otherwise, the setup for this scenario is identical
to the normal case in the first part of the simulation study.
Figure 4 is a scatterplot of a simulated dataset with no outliers
and density contours superimposed. The graph indicates that
the distribution is a slightly skewed modification of a bivari-
ate normal distribution. The results of the second part of the
simulation are given in Table 3.

As in the normal case, the standard estimation method broke
down immediately. An interesting phenomenon is that for no
outliers or for 5% outliers, the MVE variance estimates are
more downwardly biased than in the normal case. This sug-
gests that MVE may be somewhat sensitive to mild violations
of the normality assumption, which is not totally surprising
given that fitting ellipses is at the heart of the MVE algorithm.
On the other hand, the performances of NNVE and NN-BR
are similar to those in the normal case, with NNVE again
clearly outperforming MVE.

4.3 Australian Athletes Data

The next example is based on data from n = 202 ath-
letes collected at the Australian Institute of Sport (Cook and
Weisberg 1994). The variables considered here are percentage
of body fat (BFAT), body mass index (BMI), red cell count
(RCQ), lean body mass (LBM), and plasma ferritin concen-
tration (FERR). Figure 5 displays the pairwise scatterplots of
these five variables.

Table 2. Monte Carlo Averages, Standard Errors, MSEs, and Relative MSE of Estimated Covariance for Various Levels of Contamination
in the Bivariate Normal Scenario

Standard NNVE MVE NN-BR
4.0 25.0 0 4.0 25.0 0 4.0 25.0 0 4.0 25.0 0

0% outliers

Mean 4.00 2497 -.02 352 2132 -.02 3.51 21.93 .01 2.37 1462 -.03
SE 25 1.55 .46 27 1.75 45 .32 213 .62 27 1.84 44
MSE .06 2.41 .21 .30 16.62 .20 .34 13.99 .39 273 111.05 .20
%MSE .20 .15 1.05 1.00 1.00 1.00 1.13 .84 1.95 9.10 6.68 1.00
5% outliers

Mean 23.97 146.11 .18 3.76 22.80 -.01 3.61 22.53 0 3.64 2200 -.02
SE 5.79 32.84 9.68 .28 1.80 47 .32 2.03 57 .28 1.79 47
MSE 43219 1.57E4 93.52 13 8.07 22 .26 10.19 .33 .21 12.22 22
%MSE 3,324.54 1,945.48 425.09 1.00 1.00 1.00 2.00 1.26 1.50 1.62 151 1.00
33% outliers

Mean 135.24 844.93 71 3.86 23.08 -.01 4.28 26.52 .02 3.62 21.64 -.01
SE 1413 95.04 26.17 .35 2.17 .53 .40 2.47 .65 .33 2.12 .51
MSE 1.74E4 6.81E5 684.00 14 8.37 .28 .24 8.41 42 .25 15.80 .26
%MSE 1.24E5 8.14E4 2,442.86 1.00 1.00 1.00 1.71 1.00 1.50 1.79 1.89 .93
50% outliers

Mean 201.85 1261.30 2.02 4.06 23.72 -.01 8.51 53.39 .09 3.72 21.79 .02
SE 17.97 109.72 32.88 48 2.63 71 1.80 11.07 2.93 42 2.37 .67
MSE 3.95E4 1.54E6 1,082.78 .23 853 50 2355 928.27 8.58 25 15.9 .45
%MSE 1.72E5 1.81E5.27 2,165.56 1.00 1.00 1.00 10239 108.82 17.16 1.09 1.86 .90
67% outliers

Mean 269.84 1,688.67 -1.20 476 26.44 11 12935 797.39 92 417 23.61 .05
SE 19.15 126.24 35.58 7.38 40.39 2.23 35.53 219.6 79.32 4,58 21.34 149
MSE 7.10E4 2.78E6 1,264.77 5487 1,63042 499 1.70E4 6.45E5 6,279.85 20.99 45625 2.21
%MSE 1,293.97 1,705.08 253.46 1.00 1.00 1.00 309.82 395.60 1,258.49 .38 .28 44

NOTE: Each dataset has 500 observations. Each relative MSE was were calculated by dividing the MSE by that of NNVE. The reported results are based on 500 simulations.
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Figure 4. One Dataset From the Skew Normal Distribution Used in the Simulation, With No Outliers. The solids lines are density contours.

From these plots, we see that data points corresponding
to certain athletes might follow patterns different from the
majority. The standard sample covariance estimate is given in
Table 4, and the estimates using MVE and NNVE are shown
in Table 5.

Except for the variable FERR, for which the variance is
about 13% larger when estimated by MVE than by NNVE,

the NNVE and MVE estimates agree well for the rest of the
entries in the covariance matrix, being within about 10% or
less of each other. It is interesting to observe what happens
when we consider only subsets of the variables. When only
the first four variables are considered, the results are simi-
lar to those for all five variables. Table 6 shows estimates
based on the first three variables and the first two variables.

Table 3. Monte Carlo Averages, Standard Errors, MSEs, and Relative MSEs of Estimated Covariance for Various Levels of Contamination
in the Bivariate Skew Normal Scenario

Standard NNVE MVE NN-BR
4.0 25.0 -5.0 4.0 25.0 -5.0 4.0 25.0 -5.0 4.0 25.0 -5.0

0% outliers

Mean 3.99 24.94 —4.96 3.35 2047 -3.87 3.08 19.34 -3.27 2.27 1395 -255
SE .26 1.77 .55 26 1.87 53 31 2.15 75 .28 1.75 .50
MSE 07 3.13 31 49 2397 1.53 .94 36.69 3.51 3.06 125.06 6.19
%MSE 14 13 .20 1.00 1.00 1.00 1.92 1.53 2.29 6.24 5.22 4.05
5% outliers

Mean 24.03 149.04 -29.97 3.63 2217 —4.27 3.18 19.91 -3.43 3.51 2138 —-4.09
SE 6.53 36.38 12.86 .30 1.76 .59 33 2.02 77 .29 1.74 .58
MSE 443.55 1.67E4 789.00 23 1111 .87 79 30.01 3.03 .33 16.14 1.14
%MSE 1,928.48 1,503.15 906.90 1.00 1.00 1.00 3.43 2.70 3.48 1.43 1.45 1.31
33% outliers

Mean 134.70 838.63 —167.51 3.67 2211 —4.20 4.07 25.20 —-4.79 3.45 2075 -3.91
SE 15.90 98.68 31.47 .35 2.31 .69 .42 2.81 .89 .35 2.26 .69
MSE 1.73E4 6.72E5 2.74E4 23 13.67 1.10 .18 7.94 .82 43 23.14 1.64
%MSE 7.52E4 4.92E4 2.49E4 1.00 1.00 1.00 .78 .58 .75 1.87 1.69 1.49
50% outliers

Mean 202.21 1,260.15 —252.33 381 2288 —4.35 8.72 53.78 —10.54 3.48 2090 -3.92
SE 18.53 119.92 38.36 51 3.04 .99 1.93 11.69 3.61 40 2.67 .81
MSE 3.96E4 1.54E6 6.26E4 30 13.72 1.39 2598 964.43 43.84 43 23.95 1.80
%MSE 1.32E5 1.12E5 4.49E4 1.00 1.00 1.00 86.60 70.29 31.54 1.43 1.75 1.29
67% outliers

Mean 268.86 1,685.03 -336.69 6.67 40.31 -7.09 124.63 765.56  —160.05 5.28 3195 -584
SE 21.97 137.5 4517 21.72 130.42 2159 28.78 181.81 57.72 12.74 76.91 14.37
MSE 7.06E4 2.77E6 1.12E5 478.01 1.72E4 469.81 1.54E4 5.81E5 2.74E4 163.74 5,951.96 206.86
%MSE 147.70 161.05 238.39 1.00 1.00 1.00 3222 33.78 58.32 .34 .35 44

NOTE: The set up is the same as that in Table 2.
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Figure 5. Pairwise Scatterplots for the Australian Athletes Data. The five variables are percentage of body fat (BFAT), body mass index (BMI),
red cell count (RCC), lean body mass (LBM), and plasma ferritin concentration (FERR).

When we consider the first three variables (BFAT, BMI, and
RCCQ), the NNVE and MVE covariance estimates are similar
to each other and to the top 3 x 3 submatrices in Table 5.
When we consider just the first two variables (BFAT and
BMI), however, we see a dramatic difference; the MVE esti-
mate of the variance of BFAT is about half the NNVE estimate,
and less than half as large as the estimates from all the meth-
ods using more variables. This behavior of MVE seems strange
and may be due to the lack of elliptical symmetry nature of the

bivariate distribution of BFAT and BMI (see Fig. 5).

Also, when considering just BFAT and BMI, the MVE esti-
mate of the covariance between BFAT (percentage of body fat)
and BMI (body mass index) is negative, whereas the NNVE
estimate of the same covariance is positive. Which is correct?
When all of the variables are considered, all of the estimates

Table 4. Australian Athletes Data: Standard Covariance Estimation

Standard
BFAT 38.314 3.325 —1.399 —29.274 —53.920
BMI 3.325 8.202 .393 26.721 41.160
RCC —1.399 393 210 3.298 5.457
LBM —29.275 26.721 3.298 170.830 197.170
FERR —-53.920 41.160 5.457 197.170 2,256.368

of this covariance are positive. Also, the nature of the two
variables suggests a positive relationship. These considerations
suggest that the sign of the MVE estimate is incorrect in this
instance.

In general, we do not expect the estimated covariances to
stay the same when new variables are added. This is because,
as is well known, some outliers in a high-dimensional setup
cannot be detected when only a subset of the variables is
considered. The phenomenon that we have observed here is
the opposite, though: The results suggest that there are some
points that MVE identifies as outliers when only BFAT and
BMI are considered, but that no longer look like outliers to
MVE when RCC is also taken into account. Based on the
(BFAT, BMI) scatterplot and our simulation results in the
skew-normal case, we believe that this underestimation on the
part of MVE may well be due to the lack of elliptical symme-
try of the distributions. Note that this problem does not arise
with NNVE.

4.4 Example of Results With lrregular
Dimensional Discrepancy

To investigate the phenomenon observed in Section 4.3, we
conducted the following simulation study. Signal points were
simulated from a mixture of two normal distributions to create
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Table 5. Australian Athletes Data: MVE and NNVE Robust Covariance Estimates Based
on All Five Variables

MVE NNVE
BFAT 3686 245 —-1.37 -2965 —34.29 3725 219 -1.43 -31.00 —42.29
BMI 246 5.56 27 1979 18.89 219 5.02 22 1825 18.56
RCC -1.37 .27 18 3.01 2.48 —-1.43 22 18 2.86 2.98
LBM —29.65 19.79 3.01 14775 124.24 -31.00 1825 286 14464 128.37
FERR —-3429 1889 248 12424 1,079.12 —4229 1856 298 12837 1,218.86

a four-dimensional dataset to cover a slightly “bent” region.
Ten points from two clusters were then added as outliers. The
exact simulation setup is given in the Appendix. The practice
of using normal mixtures to approximate a wide variety of
distributions has been discussed by Marron and Wand (1992)
and Roeder and Wasserman (1997).

We applied both MVE and NNVE with K =8 to the full
datasets and obtained very similar four-dimensional covari-
ance matrices using both methods. However, when we con-
centrate on two of the four variables, vl and v2, a similar
phenomenon to that observed in the previous section occurred.
Sample averages of the estimated variances and correlations
of the first two variables based on 500 simulations are dis-
played in Table 7. The rows from top to bottom correspond to
the true values, the estimates based on all four variables and
the estimates based on only the first two variables.

For MVE, the sample average of the estimated var(v1) using
vl and v2 only is about 55% of the estimated var(v1) using
all four variables. The results obtained by NNVE are much
more consistent across different dimensions. The correlation
for these two variables is very close to 0 and is so esti-
mated by both methods using all variables. However, when
using two variables only, MVE estimated a negative corre-
lation of —.224. A scatterplot of the first and the second
variables from one randomly chosen dataset is shown in
Figure 6. It can be seen from the plot that one group of
outliers becomes undetectable when we consider only the first
two variables. Nonetheless, including them barely changes the
two-dimensional estimated variances. Based on this plot, we
believe that most people would be likely to conclude that there
are only four outliers and that the rest of the data are sig-
nal points. However, MVE produced much smaller variance
estimates using vl and v2 only. Equivalent findings were also
observed when the parameter of interest is the determinant of
the covariance matrix. The estimates obtained by MVE using
vl and v2 are less than 50% as large on average as those
obtained by MVE using all four variables. NNVE does not
have this problem.

4.5 Linear Minefield

Our last example is the simulated linear minefield consid-
ered by BR and by Dasgupta and Raftery (1998). A partially
mined area is imaged by an aircraft and the resulting image is
processed to identify possible mines; many of these are not in
fact mines, but are actually clutter. The result is a set of points
in which one region (the minefield) has a higher density than
the rest (clutter). The goal of the analysis is to estimate char-
acteristics of the minefield; here we focus on the covariance
matrix (which in turn summarizes information about its orien-
tation, its area, and aspects of its shape).

The data were simulated based on specifications given by
Muise and Smith (1992) to reflect typical datasets of this kind.
Here we use the same dataset as used by BR; a scatterplot of
the data is given in Figure 7(a). The proportion of noise in this
example is about 88%, which is extremely high. The diagonal
elements of the sample covariance of the signal points, after
being multiplied by 100, are .05 and 6.26.

MVE overestimated the variances, and obtained estimates
of 8.04 and 7.90. Thus MVE overestimated the variance of the
first variable by a factor of more than 100. The entropy plot
for NNVE (not shown) suggested the best K to be around 35
to 40. Using NNVE with K = 35, we obtained estimated vari-
ances equal to 1.50 and 6.22. Counting the points with k; > .5
as signal, the estimated proportion of noise is about 75%.
Even though the result of NNVE has been a great improve-
ment over that of MVE, with so many outliers we found that
some outliers were misclassified simply by chance.

As pointed out in Remark 3 in Section 2.3, in a situation
with such a high proportion of outliers, a careful diagnosis of
whether there is only one main data cloud is needed. We sug-
gest a diagnostic tool that consists of applying the MCLUST
procedure in S-PLUS using the “EI” option with the number
of normal components chosen based on the Bayes informa-
tion criterion (BIC) (Fraley and Raftery 1999). Here the “EI”
option implies that the data are assumed to be a mixture of
normals with a spherical shape and sharing an equal variance.
To be precise, we assume that the covariance matrix, %, for

Table 6. Australian Athletes Data; MVE and NNVE Covariance Estimates Based on Three Variables
(BFAT, BMI, and RCC) and Based on Two Variables (BFAT and BMI)

MVE NNVE MVE NNVE
BFAT 31.46 49 -1.37 32.80 50 -1.46 1744 -—21 33.04 58
BMI 49 484 27 50 424 .28 -.21 554 .58 4.16
RCC -1.37 .27 19 —-1.46 .28 18
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Table 7. MVE and NNVE Estimated Covariances

MVE NNVE

var(v1) var(v2) cor(v1, v2) var(vl) var(v2) cor(v1l, v2)

True 4968 1.699 .091 4968 1.699 091
All variables 4.180 1.375 —.052 4588 1.249 .035
vi, v2 2.333 1.240 —.224 4109 1.057 .008

each normal component & is o2/, Using NNVE with K = 35,
the scatterplots for points with 131 > .5 are given in Figure 7(b).
Each circle in this plot corresponds to the 95% quantile con-
tour of a normal component obtained using MCLUST/EL One
consequence of the spherical and equal variance constraints
imposed by “EI” is that the data are covered by small circles
(or balls in higher dimensions). That is, MCLUST produces
more small normal components to best approximate the like-
lihood of the data. Two circles/balls do not overlap if the dis-

tance between the two centers is larger than o,/ )(j~ g, With d
being the dimension of the data and ¢ being the quantile level
(e.g., .95).

Two issues are worth noting:

1. The concept of covering a compact set of any shape with
small open balls is established elementary calculus. That is,
we can use small overlapping balls to locate the main data
cloud regardless of its shape.

2. Any points within a circle that does not overlap with the
circles that cover the main data cloud provide the location of
outliers that cannot be removed by one application of NNVE.
Note that the large D,’s of these data imply that they are from
tight clusters containing more than K points. In practice, with-
out prior information that there is only one main data cloud,
these points could very likely be signal points and should be
carefully examined before their further removal is considered.
The outcomes of MCLUST/EI provide identification of these
data points. Furthermore, instead of considering a large num-
ber of data points, application of MCLUST allows us to sim-
ply concentrate on a much smaller number of normal compo-
nents.

The following procedure for checking whether there is more
than one separate data cloud in the data after cleaning is com-
putationally straightforward. Within this diagnostic procedure,
each mean of a normal mixture component is referred to as a
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Figure 6. Scatterplot of v1 Versus v2 for a Dataset in Section 4.4.
Outliers are indicated by “x”.
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Figure 7. The Dasgupta and Raftery Linear Minefield Example. (a)
The original dataset. (b) The result of one application of NNVE. (c) The
result of two applications of NNVE. The values of K used for the first
and second application of NNVE were 25 and 15.

“point.” In the minefield data, after one application of NNVE,

BIC suggests that there are 11 such “points” to be considered.
Step 1. Start with any point and locate all other points within

a2x 0\/)(;({ radius; index these as elements of group 1.

Step 2. For all points within this group, repeat step 1 until
no other points can be included in this group.

Step 3. Choose a new point that has not been classified and
repeat steps 1 and 2 with a new group ID.

Step 4. Stop the procedure when all points are classified.
The group that contains the largest number of data points is
considered the main data cloud.

For the mine data, we know that there is only one minefield.
The separate circles in Figure 7(b) thus suggest a potential
violation of assumption (A2). That is, based on the prior infor-
mation that the signal points are from one main data cloud,
some data points are “far” away from the center of the main
signal points, &, but still have small Kth NN distances. Note
that this diagnostic technique requires no prior knowledge of
the location of w, or of its estimation during the procedure.
Even though the illustration was given for a two-dimensional
dataset, the procedure obviously is applicable to data of higher
dimensions. As discussed in Remark 3 of Section 2.3, there
are two potential alternatives when there is only one main
data cloud. Estimating the sample covariance of points in the
“main” data cloud provides estimates of .15 and 6.22. Reap-
plying NNVE to the data after the first cleaning as if the
remaining points are regular data, we obtain estimates of .11
and 6.18. A scatterplot of points with il,- > .5 after the second
cleaning and the diagnostic circles are shown in Figure 7(c).
We can see that after the second application of NNVE, all of
the outliers were successfully removed. The diagnostic plot
also indicates that just one main data cloud remains. The
results for the second application are much closer to the true
values of .05 and 6.26 than any of the other methods consid-
ered. This simple technique also provides a convenient tool
for better understanding the signal structure after cleaning out
the noise points.
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5. DISCUSSION

BR introduced the NNC method for removing clutter in spa-
tial point patterns. This can potentially be used also to remove
or downweight outliers from other datasets and so provide
robust estimation methods. In practice, however, the NNC pro-
cedure often has a downward bias when the signal points are
from a unimodal distribution and there are no outliers. Here
we have modified this method so that it no longer suffers from
this problem, while retaining (and indeed, often enhancing)
its good performance in the presence of outliers. The modi-
fication is based on the idea of artificially introducing some
outliers into the data: this reduces the bias when there are no
outliers, but hardly changes the results when there are outliers.

We have shown a consistency result for the resulting NNVE
method, as well as the fact that under certain assumptions,
each data point has bounded influence on the estimates and
it remains bounded regardless of the proportion of outliers.
Simulation studies show better performance than the popular
MVE method when the proportion of outliers is large (espe-
cially >50%), and when the signal distribution is not ellipti-
cally symmetry.

When the proportion of outliers is massive (=50%), it
seems advantageous to apply NNVE twice rather than once.
We have found that the good performance of the method does
not depend crucially on the precise choice of the values of K
used in the two applications of NNVE. Moreover, when the
proportion of outliers is very high, the original NNC method
of BR (NN-BR) actually performs better than NNVE. This
holds out the possibility of an adaptive procedure: If the pro-
portion of outliers is high enough, then revert to the NN-BR
method; otherwise, use NNVE. How and whether to do this
and, if so, how to do it, remain open questions.

As pointed out by a referee, even though NNVE is scale
equivariant, it is not affine equivariant. However, the concept
of affine equivariance seems to be more meaningful when the
underlying distribution of the signal points is elliptically sym-
metric than in other scenarios. The examples in Sections 4.2,
4.3, and 4.4 suggest that NNVE performs particularly well
when the signal points do not follow an elliptically symmetric
distribution. Because in practice one usually does not know
either the distribution of the signal points or the proportion of
outliers, NNVE provides a useful option, particularly during
the data exploration stage.

In the context of data mining, there is considerable interest
in estimating characteristics of massive datasets with plenty of
noise. MVE and similar methods have difficulties with such
problems. NNVE, however, has the advantage of reducing the
calculation of the robustness weights to a one-dimensional
problem, as well as the ability to clean out a high proportion
of noise points, and thus may be more readily applicable than
some other methods to robust covariance estimation in very
large datasets.

APPENDIX: TECHNICAL DETAILS
Proof of Corollary 1

Denote the observed data by W, and let h;(6*) = Pr(Z; = [|W,).
It is easy to see that n~ 'Y £,(8*) converges to E[E{/,_,,|W}] =
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Pr(Z =1). Let f,, (w) be the density of the observed data. Then

my =fx

= [xflZ=Ndw=EX|Z=1)=p,

Pr(Z = 1|w)

PT(Z = ]) fw(lh) dw

Similar derivations show that X7 = var(X|Z =1)=X,.
Proof of Lemma 1

It is obvious that D {A~(D, #)+ 1} is larger than D'h~'(D, 6)
for positive D. Part (a) is a direct result of the fact that the former
function is concave with a unique bounded maximum for D > 0.
Part (b) follows L'Hopital’s rule. To prove part (c). first let ¢* =
(£+ 1)/p— 1. By changing variables in the integration. it is easy
to see that there exist positive M, and M, such that the integral
of interest is smaller than [ M,y exp(—M,v) dy. which for certain
M, > 0 and a positive integer & is less than

I o
My dy + f M. y* exp(—Myv) dv. 9)
0 |

Because £* > —1, it is straightforward to show that (9) is bounded.
Simulation Setup of Section 4.4

Out of 200 signal points, 65% were generated from a MVN dis-
tribution with mean 0 and variance M,, whereas the rest were trom
a MVN with mean (4,0,4.5.2)" and variance M,. The upper tri-
angular elements of M. from left to right, are 1.107, —.169. .094,
2067, 1.268, —.150, —.106, 1.083, .059, and 1.042. Those for M,
are 1.750, 1.061, .612, 433, 2.5, .866, .612, 1.5, 534, and 1.25.
Clusters of 6 and 4 noise points were generated from MVN distri-
butions with mean and variance u;, My and u,, M,, where u, =
(—=1.0,5,2.5)" and p, = (1.5, =8, 2, 1.5)". The upper triangular ele-
ments of M, are .3. .035, .023, —.057, .25, —.0299, .019, .282, .007,
and .368. M, is a diagonal matrix with all variances equal to .2.

[Received January 2000. Revised October 2001.]
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Comment

First, we would like to congratulate the authors with their
article, proposing an entirely new way of robust covariance
matrix estimation using nearest neighbors. This intuitively
appealing approach allows reliable covariance matrix estima-
tion in the presence of high amounts of scattered noise. The
initial step will downweight isolated and very small clusters
of outliers, so what remains is the main group of the data and
groups of clustered outliers. After this cleaning step, the data
can be further analyzed. Clusters can then be detected using a
clustering algorithm such as the MCLUST procedure of Fraley
and Raftery (1999). Both steps together thus lead to a robust
clustering method. To construct a robust covariance estimator,
the authors add artificial outlying data points to make sure that
the dataset always contains more than one group.

We believe that the proposed method is very useful for
robust cluster analysis and is ideally suited for such applica-
tions as the detection of minefields as outlined by Dasgupta
and Raftery (1998) and Byers and Raftery (1998). Robust clus-
ter analysis is an important new area of research that turns out
to be quite difficult. We refer here to recent work of Rocke and
Woodruff (2000) that gives another way of doing robust clus-
ter analysis. However, we have some concerns regarding the
resulting estimator of robust covariance. In the first part of
this discussion we focus on what is commonly expected from
a robust covariance matrix estimator. In the second part we
comment on some computational aspects of the NNVE and
provide some further simulation results.

THE NEAREST-NEIGHBOR VARIANCE ESTIMATOR
AS A ROBUST COVARIANCE ESTIMATOR

The population covariance matrix is a key quantity in multi-
variate statistics. If we are able to estimate it robustly, then we
can use this estimate for robust principal component analysis,

Christophe Croux is Professor, Department of Applied Economics, K. U.
Leuven, Leuven, B-3000 Leuven, Belgium (E-mail: christophe.croux@econ.
kuleuven.ac.be). Stefan Van Aelst is Professor, Department of Applied Math-
ematics and Computing, Ghent University, B-9000 Gent, Belgium (E-mail:
Stefan.VanAelst@rug.ac.be).

robust correlation analysis, robust factor analysis, and other
applications. Suppose that we have p-variate observations
X,,...,X, independently and identically generated from a
certain distribution H. Then we denote the population covari-
ance matrix as X(H) = covy,(X). The NNVE %, ,, is now
nothing else but a weighted sample covariance matrix, where
the weights depend in a quite complicated way on the Kth
NN Euclidean distances Dy, ..., Dy,.
Is the NNVE Estimating the Population
Covariance Matrix?

The aim is that the NNVE estimates the population covari-
ance matrix of the signal distribution. So if no outliers are
present, then 3, ,, should estimate 2(H). The authors show

that 2, y, is a consistent estimator for its population counter-
part, which we can denote by %;(H). Now in general, 2(H)
will be different from 23(H). The authors suggest, and the
simulations confirm, that in many applications Z7(H) will be
close to %(H). However, from a mathematical standpoint, we
cannot say that the NNVE consistently estimates the covari-
ance matrix. Indeed, even for normal distribution there will
be a (slight) difference between %(H) and 37(H). But we do
consistently estimate another population quantity.

This is reminiscent of many other robust estimators, includ-
ing the minimum volume ellipsoid estimator (MVEE). The
MVEE will, under some weak regularity conditions, consis-
tently estimate its population counterpart which, we denote
by MVE(H). The quantity MVE(H) will in general be dif-
ferent from X (H), because it describes another feature of a
multivariate distribution. But suppose now that H is an ellip-
tically symmetric distribution, meaning that its density can be
written in the form g((x —u)'S~'(x — u)) for a certain real-
valued function g. Then it is known that the MVE(H) equals
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(after multiplication by a consistency factor not depending on
w and X) the population covariance matrix, whenever the lat-
ter exists. This means that in elliptical models, the MVEE
(like almost all affine-equivariant covariance matrix estima-
tors) is a consistent estimator of X(H). Particularly when sam-
pling from a normal N (u, 2), the MVEE (and almost all other
affine equivariant covariance determinant matrix estimators)
will consistently estimate the parameter X, but this does not
hold for the NNVE.

When sampling from nonelliptical distributions, like the
skewed normal distributions of the authors’ Table 3, the
MVEE turns out to be a very bad estimator for X(H). This is
not surprising, because MVEE estimates an intrinsically differ-
ent population quantity. In the sequel of this discussion we will
therefore compare the NNVE with another weighted covari-
ance matrix estimator, the reweighted minimum covariance
determinant matrix estimator (RMCD). The latter estimator is
affine equivariant and asymptotically normal, has a positive
breakdown point, is implemented in some of the major statisti-
cal software packages, and is fast to compute {Rousseeuw and
Van Driessen 1999). The weights are computed as follows:

] if (X’- - tn)lc;l (xi - tn) = X]% 975
0 otherwise,

Uj[ -

where (z,, C,) are the initial MCD estimates. For defining this
MCD estimator, consider all the subsets of size # (h<n) from
the sample and keep that subset whose covariance matrix has
the smallest determinant. Then the location and scatter MCD
estimates are given by the average and covariance matrix com-
puted over this optimal subset. Typically, the size of the subset
equals h = [n(l — )], with @ =.5 or @ = .25.

Do We Need Affine Equivariance?

Because the NNVE works with Euclidean distances and
coordinatewise standardization of the data in the first step of
the procedure, we do not have affine equivariance. We say that
a covariance matrix estimator 2 is affine equivariant if

S(AX,+b,. .. AX,+b) = AZ(X|..... X A

for any regular matrix A and vector b. We believe that affine
equivariance is an important property, and not only when
working with elliptical model distributions. It also has some
advantages at the finite-sample level. If we work with an
affine-equivariant covariancg\ matrix estimator 2, then Maha-
lanobis distances based on X are invariant to linear transfor-
mations of the data, the principal components remain the same
under an orthogonal transformation of the data, factor load-
ings are equivariant under linear transformations of the data,
and so on.

Another inconvenience of the lack of affine equivariance is
that the statistical precision of the procedure may depend on
the value of the population covariance matrix. The simulation
study in Section 4.2 uses a bivariate normal with covariance
matrix diag(4, 25) as signal distribution. The relative mean
squared errors will not remain the same for other signal dis-
tributions, and one needs to perform simulations for several
choices of the signal covariance matrix to get a more complete

1007

picture. This would not have been necessary when working
with an affine-equivariant procedure.

If one is willing to give up the property of affine equiv-
ariance, then it becomes fairly easy to construct new robust
estimators of the covariance matrix. For example, one could
compute the Euclidean distance between every observation
and the coordinatewise median of the sample. If such a dis-
tance is large, then the observation will receive a lower weight
in the calculation of a weighted covariance matrix estimator.
Such an estimator will be robust, simple, and fast to compute.
Another idea, in the same spirit as the NNVE, is to compute
first the K'th nearest Euclidean distances Dy, fori=1,.. ., n.
Let D_ be the smallest and D, the largest distance. Then
define weights as

I if D, <D D.—-D_)/3
T S (1)
0 otherwise

and denote the corresponding weighted sample mean and
covariance matrix by X, yy. This estimator is explicitly
defined and poses no computational difficulties. In fact, the
weights in (1) are used by the authors as starting values for the
EM algorithm for computing 2., NN and one might wonder

whether it is not worth studying X, vy as an estimator in its
own right, describing the shape of the core of the data cloud.

The NNVE Does Not Have the Exact-Fit Property

A covariance matrix estimator that has the exact-fit property
can easily detect lower-dimensional data structures. In analogy
with the regression context (Rousseeuw and Leroy 1987, p.
120), we say that the data are lying in an exact-fit position if
they are concentrated on the same hyperplane. We say that 3
has the exact-fit property if it has no maximal rank as soon
as more as half of the data are lying in an exact-fit position.
The smallest eigenvalue of a covariance matrix estimator with
the exact-fit property equals O as soon as a majority of the
data lies in a lower-dimensional subspace. Robust estimators
like MVEE or RMCD do have this property, but NNVE does
not. As a counterexample, consider the data represented in
Figure 1. All observations except two are lying perfectly on
a straight line. The NNVE is giving a correlation coefficient
of .87 and is not detecting that the data, aside from the two
outliers, are intrinsically one-dimensional. The reason is that
the K'th NN Euclidean distances of these two observations are
not large. We call these point correlation outliers: measured in
Euclidean distance, they are not far away from the main data
cloud, but measured in the statistical or Mahalanobis distance,
they are far away.

We Do Not Know the Limit Distribution of the NNVE

The limit distribution of the RMCD was shown to be
normal (Butler, Davies, and Fhun 1993; Lopuhda 1999) and
its asymptotic variance was obtained by Croux and Haes-
broeck (1999). It is then possible to obtain limit results for
multivariate analysis procedures based on robust covariance
matrix estimators, as was done in the context of princi-
pal components (Croux and Haesbroeck 2000), multivariate
regression (Rousseeuw, Van Aelst, and Van Driessen 2000),
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Figure 1. Example of a Bivariate Data Cloud Lying in an Exact-Fit
Position.

canonical correlations (Croux and Dehon 2002) and factor
analysis (Pison, Rousseeuw, Filzmoser, and Croux 2002). Not
knowing the limit distribution of NNVE makes it hard to
obtain some theoretical backbone for further application of the
NNVE to classical multivariate analysis problems.

To conclude this section, we do agree with Wang and
Raftery that NNVE provides a useful option during the data
exploration stage. It can highlight features in the data that esti-
mators like MVEE and RMCD could miss. But it has several
conceptual weaknesses: no consistency at elliptical distribu-
tions, no affine equivariance, no limit distribution available,
and an inability to detect correlation outliers.

Journal of the American Statistical Association, December 2002

COMPUTATIONAL ASPECTS
AND A SIMULATION EXPERIMENT

The NNVE has been implemented by the authors in
S-PLUS code, which they kindly provided to us. The weak
point in the algorithm of the NNVE is the convergence of the
EM algorithm. Numerical experiments using the default value
for K = 12 showed that nonconvergence occasionally occurs,
mainly in situations with no or little outliers. But numerical
problems arose almost systematically for large samples in high
dimensions. It seems that it is difficult to go beyond 1.000
observations in 15 dimensions. The computation time of the
NNVE is at least comparable to that of the RMCD (using
the S-PLUS implementation). The NNVE is therefore more
suitable for analyzing small and moderate-size datasets in an
interactive way than for serving as a datamining tool.

We found it useful to plot the weights that the observations
receive in the NNVE procedure, allowing us to discriminate
the signal and the noise points. Figure 2 plots the weights for
a dataset generated as in Section 4.2 of the article, in the case
where no outliers are present. In (a) the weights of the obser-
vations are plotted versus their Mahalanobis distances. It is
striking that the weights are not decreasing in the Mahalanobis
distance, and that already from the 3rd quartile of the chi-
squared distribution with 2 degrees of freedom signal points
are getting downweighted. Figure 2(b) plots the weights versus
the Kth NN distances, together with an interpolating weight
function. Now the weight function is decreasing in Dy, and
descending at a fast rate from the part where the weights equal
1 (signal points) to the part where the weights equal 0 (noise
points).

Wang and Raftery only compare the NNVE with the
MVEE estimator. Many other robust covariance estimators do
exist, however. Maronna and Yohai (1998) have provided an
overview. In the last part of this discussion we repeat the
simulation study of Section 2 of Wang and Raftery, but now
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Figure 2. Weights w, Versus (a) the Squared Mahalanobis Distances, Where the Vertical Line is Indicating the 75% Quantile of a x Distribution,

and (b) the Kth NN Distances With the Interpolating Weight Function.
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Table 1. Relfative Mean Squared Errors of Estimated Correlation Using
RMCD with o = .75 With Respect to NNVE for Various Levels
of Contamination in the Bivariate Normal and the Bivariate
Skewed-Normal Scenarios

Bivariate normal Bivariate skew-normal

%MSE scenario; correlation = 0 scenario; correlation = —.5
0% outliers 8.37 6.39
5% outliers 8.82 6.02

33% outliers 2.27 1.46

50% outliers 1.61 1.26

67% outliers .64 .29

comparing it to the RMCD estimator. The choice of the trim-
ming constant of the MCD is nonstandard: a = .75, meaning
that the MCD will be based on that subset containing 25% of
the data having the smallest value for the determinant of its
covariance matrix. This choice of « will give us more protec-
tion against percentages of scattered outliers >50%. But on
the other hand, we will be less well protected against clus-
ters of outliers having little or no dispersion. This behavior
under contamination is therefore similar to that of the NNVE,
Table 1 reports the relative MSEs (%MSE) of the RMCD pro-
cedure with @ = .75 with respect to NNVE, using the same
simulation setup as in Tables 2 and 3 of Wang and Raftery.
We only present here the relative MSE for the estimator of
the correlation coefficient. Indeed, we think that it is far more
important to have an accurate estimate of the shape of the
covariance matrix than of its size. Many procedures in multi-
variate analysis are even size invariant and use only the cor-
relation structure of the data.

Geoffrey J. McLACHLAN and Karyn L. HamaTy
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From Table | we see that the NNVE is outperforming the
RMCD in practically all situations. An exception is the case
with >50% of outliers, for which the RMCD with a = .75 per-
forms better. This modest simulation study confirms that the
NNVE has good properties at finite samples, but is also shows
us that NNVE is not the only robust covariance matrix esti-
mator that can cope with a large amount of scattered outliers.
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Comment

We congratulate the authors on their interesting article and
their new NNVE procedure for the robust estimation of a
covariance matrix by exploiting the NNC cleaning method of
Byers and Raftery (1998). The detection of outliers in mul-
tivariate data is a difficult but very important problem. The
NNC method for removing much clutter from a dataset as in,
for instance, the linear minefield example, is very impressive.
Its adaptation to robust estimation by the artificial introduc-
tion of extra outlying points is novel. In this discussion, we
focus on the performance of NNVE relative to the approach
based on a mixture model analysis using normal and ¢ com-
ponents via the EMMIX software (McLachlan, Peel, Basford,
and Adams 1999).

Geoffrey J. McLachlan is Professor and Karyn L. Hamaty is Research
Assistant, Department of Mathematics, University of Queensland, Brisbane,
4072 Australia (E-mail: gim@maths.ug.edu.au).

1. SPURIOUS CLUSTERS

In Section 2.2 the authors state that “when a mixture model
is fit to data that have only one component in reality, the max-
imum likelihood estimator (MLE), when it exists, tends to
falsely indicate that there are two components.” It is true that
bimodality in histograms of linear combinations of multivari-
ate observations does not always imply that the data have been
sampled from a mixture distribution. This point was illustrated
in the seminal paper of Day (1969) on normal mixture models
in which he demonstrated the presence of spurious clusters in
a dataset. Following his approach, McLachlan and Peel (2002,
sec. 1.8) generated a random sample of size n = 50 from a
spherically symmetric p = 10-dimensional normal distribution.
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Figure 1. Histogram of First Canonical Variate for 10-Dimensional
Simulated Normal Dataset of Size n = 50.

They then plotted the histogram of the univariate projections

AT A
ax,...a"x,, where

a= 271(ﬁ1 _llz)v

and b, pn,, and 3 are the estimates obtained from fitting
a mixture of two 10-dimensional normal components with
means @, and p, and common covariance matrix %. That
is, these univariate projections are the first canonical variates
when two multivariate normal groups with means j; and i,
and common covariance matrix X are imposed on the data.
Their plot is given in Figure 1. The bimodal nature of the his-
togram suggests that the data have not come from a single
normal distribution.

However, this spurious clustering can be detected in prac-
tice. For example, the likelihood ratio test statistic A can be
applied to the simulated data represented in Figure 1 to test
the null hypothesis H, of a single normal component against
the alternative of a two-component normal mixture with equal
covariance matrices. The value of —2 log A was found to be
31.41. As is well known, regularity conditions do not hold
for the likelihood ratio test statistic for this test to have its
usual null chi-squared distribution. However, the resampling
approach advocated by McLachlan (1987) can be used to the
assess the p value. Using this approach with B = 199 repli-
cations, McLachlan and Peel (2002) assessed the p value to
be approximately 47%. Hence the null hypothesis of a single
normal component would be retained at any conventional level
of significance. Note that as g = 1 under H,,, the null distri-
bution of A does not depend on any unknown parameters, and
so the B replications of —2 log A generated here are actual,
not bootstrap, replications. Thus if we were to reject the null
hypothesis H, if the test value of —2 log A were greater than,
say, the bth largest replicated value of this statistic, then this
test would be of exact size ¢ =1—5b/(B+1).

2. MIXTURE ANALYSIS VIA NORMAL
AND t COMPONENTS

Concerning the application of NNVE to the Hertzsprung—
Russell and the Australian Athletes datasets, we now con-
sider the analysis of these two sets using mixtures of normal
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and ¢ components. Normal mixture models provide a model-
based approach to clustering; (see, e.g., McLachlan and Bas-
ford 1988; McLachlan and Peel 2000). However, a single out-
lier can break down the parameter estimation for at least one
of the components. McLachlan and Peel (1998) and Peel and
McLachlan (2000) suggested using mixtures of ¢ components
as an alternative, because the ¢ components are less sensitive
to outliers, having longer tails than the normal. The ¢ density
with location parameter ., positive definite matrix X, and v
degrees of freedom is given by

INGST) IRe
(m) T+ 8(x, p; B)/v)riren”

fm, X)) = (1)

where

0w )= (x—p) E (x—p) 2)

denotes the Mahalanobis squared distance between x and p
(with 2 as the covariance matrix). If » > 1, p is the mean
of X, and if v > 2, v(vr —2)7'Y is its covariance matrix. As
v tends to infinity, X becomes marginally multivariate normal
with mean g and covariance matrix 3.

The ¢ distribution does not have substantially better break-
down behavior than the normal (Tyler, 1994). The advantage
of the ¢ mixture model is that, although the number of out-
liers needed for breakdown is almost the same as with the
normal mixture model, the outliers have to be much larger.
This point is made more precise in Hennig (2002) who has
provided an excellent account of breakdown points for max-
imum likelihood estimation of location-scale mixtures with
a fixed number of components g. Of course as explained in
Hennig (2002), mixture models can be made more robust by
allowing the number of components g to grow with the num-
ber of outliers.

Hertzsprung-Russeil Data

We first consider the Hertzsprung—Russell dataset. Fitting
a single t component to it via the expectation-maximization
algorithm reveals the presence of six outliers, as indicated by
six observations having very small weights in the iterative
computation of the estimates. Table 1, reports the results on
the next stage of fitting a mixture of g =2 normal components
with unrestricted covariance matrices and a mixture of g =21¢
components with unrestricted scale matrices and degrees of
freedom v, and v,. It can be seen from Table 1 that these
two mixture models lead to estimates of the covariance matrix
similar to that given by NNVE.

Table 1. Covariance Estimates for the Star Data

NNVE t mixture Normal mixture
0115 .0343 .0116 .0348 .0116 .0345
.0343 .2390 .0348 .2403 .0345 2392

NOTE: Mixture model estimates are those for the covariances of the component correspond-
ing to the main body of the data.
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Australian Athletes Data

The authors also analyzed the Australian Athletes dataset to
illustrate the relative performance of NNVE where there is a
lack of elliptical symmetry in the data. We use this dataset to
demonstrate how we might use a mixture analysis based on
¢t and normal component distributions to assess whether the
data consist of one major cloud. This approach can be viewed
as complementary or even as an alternative to the procedure
proposed by the authors for determining whether the signal
consists of more than one data cloud.

Because the fitting of a single ¢ component to these n = 202
five-dimensional observations clearly revealed many outliers
and a bad fit, we proceeded to fit a mixture of g =27 com-
ponents. It gave a clustering of the data into 2 clusters of
almost the same size (105 and 97), with the first 100 obser-
vations and 5 of the last 102 observations comprising the first
cluster. This clustering has (almost) recovered the sex of the
athletes, as it is known that the first 100 observations are on
females and the last 102 are on males. The estimated degrees
of freedom #, and 7, for the two components are 17.62 and
5.59. The small value of ¥, suggests that the data on the males
have longer tails than the normal distribution. A subsequent
inspection showed that several observations x; on the males
had very small values for their weights with respect to the
second component, suggesting that there are several outliers
among the male data. The fitting of g = 3 normal components
(t components were assessed as not being necessary in the
case of three components) produced a clustering in which the
males were partitioned into the second and third clusters of
size 69 and 32 (with another male being put in the first clus-
ter corresponding to the females). The estimates of the mean
and covariance matrix for the second and third components
showed that the smaller cluster of males has a greater mean
for all five variables than for the larger cluster of males and
a greater variance for all but the third variable. The differ-
ences are appreciable for the fourth and fifth variables (LBB
and FERR). The p value obtained via resampling for the like-
lihood ratio test of g =2 versus g = 3 normal components
was found to be significant at the 5% level. The subsequent
test of g =3 versus g =4 normal components was not signifi-
cant (p = .45). This mixture model analysis has thus revealed
that this set is comprised of data from essentially three nor-
mal populations and so the estimation of a single covariance
matrix in the sense that the signal consists of one major cloud
would be inappropriate.

3. RELATIVE EFFICIENCY OF NEAREST-NEIGHBOR
VARIANCE ESTIMATION

Wang and Raftery (2002) conducted a simulation study to
evaluate the relative performance of their NNVE method in
estimating the covariance matrix on the basis of a sample of
n = 500 bivariate observations drawn from a mixture in pro-
portions 7, and 7, = | — 7 of two normals with mean 0
and covariance matrix ¥ and 103, where 2 = diag(4, 25) for
m, = 0% (no outliers), 5%, 33%, 50%, and 67%. Five hundred
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Table 2. Monte Carlo Averages, Standard Errors, MSEs, and Relative
MSEs of Estimated Covariance for Various Levels of Contamination
in the Bivariate Simulated Example

NNVE Normal mixture
4.0 25.0 0 4.0 25.0 0

33% outliers

Mean 3.86 23.08 —.01 3.99 25.08 .02
SE .35 217 .53 .35 2.09 .66
MSE 14 8.37 .28 12 4.37 44
%MSE 1.00 1.00 1.00 .86 52 1.57
50% outliers

Mean 4.06 23.72 -.01 4.00 24.89 .02
SE .48 2.63 71 .43 2.80 73
MSE 23 8.53 .50 .18 7.84 .53
%MSE 1.00 1.00 1.00 .78 .92 1.06
67% outliers

Mean 476 26.44 11 4.01 25.39 —-.03
SE 7.38 40.39 223 .58 3.42 .94
MSE 54.87 1,630.42 4.99 .34 11.82 .88
% MSE 1.00 1.00 1.00 .0 .01 18

NOTE: Each dataset has 500 observations. Each relative MSE was calculated by dividing
the MSE by that of NNVE as given in Table 2 of the article.

simulation trials were performed for each level of the propor-
tion of outliers ,. To illustrate the efficiency of the NNVE in
estimating =, we performed a simulation experiment with the
same number of trials for the same population configurations
with 1, = 33%, 50%, and 67%, but with X estimated by fit-
ting by maximum likelihood a mixture of g =2 normal com-
ponents with unrestricted means and covariance matrices. The
estimate 3 of X was taken to be the estimate of the covari-
ance matrix for the component corresponding to the popula-
tion with 3, as its covariance matrix. The results are displayed
in Table 2. Comparing the MSEs of the estimates for each of
the three distinct elements of 2, it can be seen in the cases of
33% and 50% outliers that the (simulated) relative efficiency
of NNVE ranges between 52% and 92% for the estimation of
the two variances and is >100% for the covariance. However,
in the case of 67% outliers, the relative efficiency is extremely
low, only 1% for the two variances.
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Comment

Robustness as a notion has been a topic of discussion among
statisticians, econometricians, and engineers in the contexts
of various problems. Robust estimation and regression and
Bayesian robustness are now parts of the common statistics
vocabulary (see, e.g., Portnoy and He 2000). Application and
development of robust methods in econometrics are growing
rapidly (see, e.g., Maddala and Rao 1997). Robust control the-
ory for engineers is dated back to 1960s (see, e.g., Dorato
1987). Wang and Raftery (WR) break some new ground in
robust covariance estimation and improve substantially over
the existing methods for certain data conditions.

The notion of noise also appears in various contexts in many
fields. Traditionally, noise is viewed as distortion integrated in
the magnitude of an observed value of a variable and is mod-
eled as an unobservable and uncontrollable error component
of the observation. The objective is to clean the observation
and extract the signal part. WR define noise as irrelevant data
points. In this formulation some points in the dataset are con-
sidered as signal and some other points are considered as noise
(outliers), which are judged to be irrelevant. WR’s objective
is to clean the dataset by separating the signal points from the
noise points and then estimate the covariance of the signal dis-
tribution. The NNVE uses the NNC procedure developed by
Byers and Raftery (1998) to clean the data and then estimate
the covariance matrix of the signal distribution.

We comment on two issues. First, we briefly comment on
WR’s elaboration of an “entropy-type” plot proposed by Byers
and Raftery (1998) for selecting K for the NNC procedure. We
then focus on some general issues regarding covariance esti-
mation, including the dimension of the data, criteria for com-
paring and evaluating covariance estimators, and the impact of
various covariance estimates on some multivariate techniques.
We construct an example to illustrate these issues. This exam-
ple shows that comparison of the multivariate quantities can
provide insight about the geometry of the data trimming in the
higher dimension as well.

1. ENTROPY PLOT

Byers and Raftery (1998) proposed an entropy-type plot
for selection of K in the NN classification. In Remark 2,
WR elaborate on the underpinning logic of the entropy-type
graph. Here the negative entropy of the signal-outlier classifi-
cation is defined as &(K) =Y h,log(h;), where h, = h,(d, 0),
0 = (1, A, A,) is shown in eq. (2) of WR. However, £(K) is
not negative entropy of the distribution of the signal-outlier

Ehsan S. Soofi is Professor of Business Statistics, School of Business
Administration, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
(E-mail: esoofi@uwm.edu), and Research Associate, Center for Research
on International Economics. Ali Dadpay is a doctoral student, Department
of Economics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
(E-mail: adadpay@uwm.edu).

classification, because h = (k. ..., h,) is not a single proba-
bility vector, >}, h; # 1. Each h; = (h;, | — h;) is a probability
vector, and h, = h(Z;), i = 1,...,n gives the probability
distributions of the signal-outlier classification indicators Z,,
i=1,...,n.

The entropy of Z, is H(h;) = —h;log(h;) — (1 —h;) log(1 —
h;), which quantifies uncertainty about the signal-noise clas-
sification of the ith datum. The overall uncertainty about the
signal-noise classification is given by the joint entropy

Hhy=H(Z,,....Z,)
==Y [hlog(h;)+ (1 — h)log(l —h,)].

The summation is implied by the independence of Z;’s. We
note that if 2, ~ .Sforalli=1,...,n, then 26(K) =~ —H (h).
Otherwise, —2&(K) — H(h) # 0, and the difference can be
substantial when many A;’s are far from .5.

A useful information index for this problem is the normal-
ized information index /(h) =1 — H(h)/nlog?2. This measure
provides information about the signal-noise classification in
terms of the fraction of the uncertainty reduction from the uni-
form prior, that is, a 50%-50% chance. For a general prior
p =(p.1—p) for Z, one may use the entropy difference
index 7,(p) =1~ H(h)/nH(p). The entropy difference index
1,(p) may be positive when the data are informative or nega-
tive when the data provide a surprise (Lindley 1956). Alterna-
tively. one may use an information index based on the relative
entropy K(k: p) =3 {h;log(h;/p)+(1—h;)log[(1—h;)/(1—
)1}, which is nonnegative (see Soofi 1994 for details).

2. COMPARISON OF COVARIANCE MATRICES

WR compare the NNVE procedure with the standard esti-
mator and the MVE in two simulation experiments. The com-
parison is eclementwise and is limited to the MSE criteria.
Comparison of covariance matrices based on bias (mean dif-
ference) and MSE of individual elements is too simplistic.

In some applications, the objective may be estimation of the
covariance matrix. However, often the objective of an analysis
is not covariance estimation per se, but covariance is estimated
for the purpose of discovering patterns of relationships among
a set of variables. Covariance matrix estimation is just a first
step in the analysis. Regression and many multivariate statis-
tical techniques require estimation of the covariance matrix as
a first step. The items of interest are various functions of the
covariance matrix, which in general are nonlinear functions
of the elements of the matrix. Therefore, examining perfor-
mance of covariance estimators according to criteria that are
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Table 1. Two Estimates of the Variable Correlations and the Correlations Between
Least Squares Coefficients

Estimate A Estimate B

Correlations of variables

X4 X, X, X, X5 Xy X, X3 X, X5
X, 1.00 1.00
X, 19 1.00 16 1.00
Xy —.49 .30 1.00 —.55 .23 1.00
X, —.36 71 55 1.00 —.42 .68 .56 1.00
X 18 .30 .25 .32 1.00 -.20 24 .20 .31 1.00
Correlations of least squares coefficients of predictors x,, ..., x;

b, b, by b, by b, b, b, b, bs
b, 1.00 1.00
b, —.69 1.00 -.65 1.00
b, 45 —.20 1.00 .35 —.06 1.00
b, .66 —.82 -.03 1.00 .58 —.79 —-.21 1.00
by —.43 .22 -.29 —.34 1.00 14 —-.13 .00 -.03 1.00

additive in discrepancies between the elements and comparing
results of various covariance estimators elementwise may not
suffice. Loss functions and error indices that include inverse
and determinant of the matrix are commonly used in covari-
ance modeling. Such criteria are also needed for evaluating
the overall performance of a covariance estimation procedure.

The simulation results reported by WR are convincing on
the better elementwise MSE performance of NNVE compared
with MVE (for the admissible <50% outliers cases) for two-
dimensional data where the covariance matrix of the outliers
is a 10-fold multiple of the covariance matrix of the mass of
data. This represents a very simple scenario. Detecting outliers
and clusters in two dimensions based on scatterplots is not
difficult; sophisticated methodologies are useful when simple
devices fail to do the job.

3. [LLUSTRATIVE EXAMPLE

WR compare the results of three estimation methods by esti-
mating the covariance matrices in a few examples. The Aus-
tralian Athletes data is the only example that includes more
than two variables. We compared some regression and prin-
cipal components quantities of the correlation matrices of the
three estimates, standard, MVE, and NNVE. We found that
for this dataset, the three methods produced very similar mul-
tivariate results.

For the purpose of illustration, we continued as follows. We
reversed the sign of the standard estimate of the covariance

between FERR and BFAT and computed the regression and
principal components quantities. We found some interesting
results that illustrate the general issues pointed out earlier. We
note that FERR and BFAT have the weakest correlation in the
set (.18), and thus a change of sign for such a weak correla-
tion by a robust estimation should not be too surprising. In this
example we report on the comparison of some regression and
principal components quantities computed from the modified
standard correlation matrix and the correlation matrix of the
NNVE. Therefore, in the scenario of this example, we have
two hypothetical estimates, “estimate A” and “estimate B,” of
a covariance matrix X = [o;;] of a five-dimensional variable
x = (xy, Xy, X3, X, Xs).

The correlation matrices of the hypothetical estimates A and
B are shown in top part of Table 1. Except for the sign of
r(x,, x5), the correlations under “estimate A” are the same as
the standard correlations of the real data. All the correlations
under “estimate B” are the same as the NNVE of the real
data. We note that, other than r(x,, x5), the correlations differ
slightly in the two sets.

As a first step, we compare the overall discrepancy between
the two estimates of % using two well-known measures,

# Z Z(UBU- - UAij)z

RMSR(S;.3,) =
g plp+1) S

. 1 _ _
K(Zp:3))= _[T”(ZBEA]) "log|232A] I —p],
2

Table 2. Coefficients and R? of Regression of Each Variable on the Other Four Variables

Estimate A Estimate B
Y1 7] Ya Ve ¥s Y1 7] Y3 Ya Ys

Predictor

X4 .60 -.57 —-53 .64 .56 —.43 —.46 -.18
X, .80 .29 75 -.37 79 .08 71 .20
X3 -.35 A3 .02 33 —.29 .04 14 -.05
X, -.83 .90 .05 .63 -.74 .87 .33 13
Xs .29 -.13 25 18 -.09 .08 -.00 .02

R? 68 76 .46 .80 .29 .61 71 44 76 A1
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Table 3. Principal Component Results of Two Estimates of a Correlation Matrix

Estimate A Estimate B
Correlation with PCs Cumulative Correlation with PCs Cumulative
v, v, Vs v, Vs R? 2 v, v, Vs v, Vs R? R2
x, —37 88 —-06 26 .14 14 91 -59 73 .01 .31 45 .35 .88
X, 72 50 -—-.44 06 -.18 52 77 .59 76 -17 -03 -1 .35 .83
X3 77 -37 .22 47 .03 .59 73 .78 —-33 -.22 .49 .00 .61 72
X4 92 -00 -23 -25 .20 .85 .85 .90 20 —-.18 -—-24 23 .81 .86
X5 48 .52 B89 —-17 -05 .23 .50 .50 1 .85 .07 .01 .25 27
A, 233 1.42 77 .38 .10 233 3.75 238 1.27 .84 .39 12 2.38 3.65

where 7r(-) and |-| denote the trace and determinant and p =5
is the dimension of the matrix. The root mean square resid-
ual (RMSR) corresponds to the quadratic loss and is used as
the unweighted least squares fit function in covariance mod-
eling. The second measure is the Kullback-Liebler informa-
tion between two multivariate normal distributions with equal
means. This measure is commonly used as the maximum like-
lihood fit function in covariance modeling. It also has been
used as the entropy loss for covariance estimation by Haff
(1980) and others. The first measure provides an elementwise
comparison, but the second measure includes inverse and
determinant, which are important functions of the covariance
matrix used in regression and multivariate techniques.

For the correlation matrices shown in Table 1, RMSR =
105 and K = .471. To appreciate the magnitudes of these
indices, compare them with the discrepancy between corre-
lation matrix of NNVE and the original standard correlation
matrix, RMSR = .037 and K = .049. Note that with modi-
fication of only one element, the Kullback-Liebler measure
shows nearly a 10-fold increase, much higher than the 2%—f01d
RMSR increase. This comparison suggests that a small change
in the elements of a covariance matrix may have more seri-
ous multivariate consequences than a measure of elementwise
differences can capture.

The bottom part of Table 1 compares the correlations of
the least squares estimates when x;,...,xs are the stan-
dardized explanatory variables in a problem. In such prob-
lems, the variance of least squares is var(d) = R;'o? and
the correlation matrix is given by R, = DR;'D, where D =
diag[1/d,.....1/d,}, d} being the diagonal elements of R}'
generally referred to as variance inflation factors. Table 1
shows the two correlation matrices R,. We note that the dis-
crepancies between the elements of the two sets of correlations
for the least squares estimates are more pronounced than the
correlation matrices of the variables. The RMSR for compar-
ing the elements of the two R,’s is .216, about twice of the
RMSR found for the case of Ry.

Table 2 shows the least squares coefficients and R? of
regression of each variable on the other four variables. For
each regression, the column shows the dependent variable
x; =y; and the rows show the predictor variables x;, j # i,
Jj=1,...,5 The coefficients are computed by b, = R(:'[.)r,,
where R, is the correlation matrix of the variables exclud-
ing x; =y, and r,; is the vector containing the correlations
between x; = y, and the other four variables. Note that not

only do the two covariances lead to different regression esti-
mates for y, and y; whose correlation was modified, but also
the results are quite different for other regressions. For exam-
ple, in the regression of y,, the ratio of the coefficients of x,
and x, changes from about 6/1 to less than 1/4. The regres-
sion of ys is the most revealing about the data trimming. The
reduction of R? from .29 to .11 reveals that the cluster of data
points trimmed by estimate B is close to the hyperplane of
the regression of x; on the other four variables given by esti-
mate A.

Table 3 compares the results pertaining to the principal
components analysis based on the two correlation matrices.
The table shows that results are more discrepant here than
when the two correlation matrices were compared. In the case
of the first component, we see that r(x,, v,) is much weaker
and r(x,, v,) stronger for estimate A than for estimate B. The
other four components are substantially diftferent for the two
correlation matrices, both in terms of the strength of the cor-
relation with the variables and the directions of the principle
components. The cumulative R? for the individual variables
are also different for the first two components. The first two
components have variances (eigenvalues A;) >1, which are
usually retained in the principle components analysis.

This hypothetical example illustrated some important
points. Evaluation and comparison of covariance estimates
based on criteria that involve important functions of a matrix,
such as the inverse, can reveal useful information about their
use in multivariate analysis. However, the elementwise MSE
criteria falls short in this respect. Examining impacts of covari-
ance estimation on some subsequent multivariate analyses is
needed for appreciating the scope of application of the esti-
mation procedure. The rich geometry of multivariate statis-
tics can be revealing about the geometry of data trimming in
higher dimensions. A multivariate investigation is needed to
determine the scope of applicability of NNVE.
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Comment

The authors present an intriguing new approach to robust
covariance estimation. By introducing Kth NN weighting of
the elements of the covariance matrix estimate, they build
local weighting into estimation process. Intuitively and math-
ematically they show that outliers are down weighted in the
procedure because of the large distances to their “neighbors.”
The simulation studies and examples demonstrate a level of
robustness to clusters of outliers that compares well with the
minimum volume ellipsoid estimator, a well-known affine-
equivariant estimator with a high breakdown point.

Although the proposed estimator is not affine equivariant, it
is scale and orthogonal equivariant. This type of equivariance
is useful for principal component analysis, especially in highly
multivariate settings where the dimension of the data vectors
exceeds the sample size. (For one such example see Locan-
tore et al. 1999 and discussion, in which a “spherical principal
component analysis” is used for robust functional data analy-
sis.) In principal component analysis, the bias in the estimate
of the magnitude of the covariance is of less importance than
capturing the directions of greatest variation. In such applica-
tions one may avoid the need for the data augmentation pro-
posed here to reduce bias in the magnitude of the covariance
estimate when all the data are “good.” A simplified version
of the NN analysis may prove useful for highly multivariate
problems.

The authors have done a thorough job of identifying prac-
tical issues that arise in implementing the NN idea and in

Douglas G. Simpson is Professor, Department of Statistics, University of
Illinois at Urbana-Champaign, Champaign, IL 61820 (E-mail: dgs@uiuc.edu).

developing workable solutions. I suspect that there is substan-
tial scope for further work on generalizing and refining the
approach. For example, the derivation of (1) and (2) depends
on a mixture point process model that appears to be inessen-
tial to the approach; rather, it is the mathematical properties
of the resulting Kth NN weights in (2) and (6) that make
the procedure work. By focusing on properties of the estima-
tor, it may be possible to develop a broad class of weight-
ing functions, A. that provide good properties without ref-
erence to a spatial mixture model. The data augmentation
involves some ad hoc choices and statistical complexity (in
terms of analyzing the properties of the procedure), which
might be sidestepped by introducing a theoretical adjustment
factor based on a target model such as the multivariate nor-
mal distribution. An example is the MAD estimator, median
|Xi—median(Xi)|/{2D(1) — 1}, where & denotes the standard
normal distribution function and where the scale factor is used
to make this consistent as an estimator of the standard devia-
tion if the data come from a normal distribution.

I congratulate the authors on their novel approach to covari-
ance estimation, and I look forward to seeing the new possi-
bilities that this line of research opens.

ADDITIONAL REFERENCE
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Rejoinder

We are very grateful to the seven discussants for their
thoughtful comments, which raise important issues and sug-
gest many possible advances and areas for further research.
We particularly endorse Simpson’s comment that there is sub-
stantial scope for further work generalizing and refining the
approach in our article. We hope that the article and the dis-
cussions will stimulate this research. We now address some of
the issues raised.

1. COMPARISON ESTIMATOR

Croux and Van Aelst reiterate our conclusion that MVE is
a poor estimator for nonelliptical distributions, and compare
NNVE instead with the RMCD estimator. Their simulation
study (Table 1) is very striking. As they point out, NNVE out-
performs RMCD in almost all situations, by a factor of up to
8 in MSE.

The one exception is the case with 67% outliers, in which
the RMCD with a = .75 performs better than NNVE. Even
there, it is worth noting that this is at the cost of quite poor
performance when there are few outliers. The delicate task is
to achieve good performance both when there are many out-
liers and when there are few, and this is what NNVE tries
to achieve. The standard choice of a for RMCD is .5, and
we suspect that with this choice the performance with 67%
outliers would be quite poor (as is the case for MVE). How-
ever, it seems likely that when there are fewer than 50% out-
liers, RMCD with @ = .5 would be more efficient than RMCD
with @ = .75. It seems doubtful that there is any value of
« for which RMCD would work well both when there are
few outliers and when there are many outliers. How to select
a for RMCD in practice, when the proportion of outliers is
unknown, is an issue yet to be addressed.

MCD is available in S-PLUS, but the currently available
software that we were able to find does not allow an « larger
than .5. In practice, users of NNVE would select K using
the data (e.g., via the entropy-based plot we discussed in our
article) and would also check for small outlying clusters; see
Section 6 of this rejoinder. Given the time constraints for writ-
ing this rejoinder, we were not able to conduct a comparison
between RMCD and a version of NNVE that does incorpo-
rate these elements, such as the one implemented in Section 6.
However, the improvements observed in the simulation study
reported in Section 6 lead us to suspect that NNVE could uni-
formly outperform RMCD with a = .75.

2. AFFINE EQUIVARIANCE

NNVE is not affine equivariant. Croux and Van Aelst ask
whether we need affine equivariance, and they answer in the
affirmative. They point out some advantages of affine equiv-
ariance. Simpson points out that NNVE is scale and orthogo-
nal equivariant, and so, for example, it is invariant under scale
changes in the variables.

Affine equivariance has costs as well as benefits. For exam-
ple, requiring affine equivariance excludes methods that shrink
toward independence, such as Bayesian estimation with a prior
centered on independence and (for regression) ridge regression.
This seems unfortunate, because there is considerable evidence
that shrinkage of this kind improves performance, at least in
regression (e.g., Dempster, Schatzoff, and Wermuth 1977).

And, of course, as Croux and Van Aelst point out, requiring
affine equivariance makes it harder to find good robust covari-
ance estimators. They suggest several promising non-affine-
equivariant estimators that could be alternatives to or refine-
ments of NNVE, and we look forward to further investigation
of these.

Affine equivariance does seem desirable when the variables
are measurements of the same quantity and are on the same
scale, and when linear combinations are actually used. This
can arise in, for example, psychometrics when the variables
may be scores on similar tests or questions and composite
scores are formed by taking sums. But in many applications,
it seems of doubtful relevance. For example, in the two real
datasets in our article, the variables are measurements of quite
different things, and it would not seem to make much sense
to take linear combinations of them. In the Australian Ath-
letes data, for example, two of the variables are BFAT and
RCC, and taking a linear combination of these (or of any other
variables in this dataset) would seem to make little scientific
sense. Thus affine equivariance seems of doubtful relevance
in this application, especially when weighed against the costs
that it carries.

Having said all this, it is possible to modify NNVE slightly
so as to achieve affine equivariance, as follows. First compute
an affine-equivariant covariance estimator, such as MVE (even
though this by itself often would not give good results when
there is a high proportion of outliers). Next, sphere the data
using the resulting covariance estimate. Then compute NNVE,
and finally transform the NNVE covariance estimate back to
the original scale. The resulting estimator would be affine
equivariant and might inherit the good properties of NNVE.
However, whether it would perform as well as the original
NNVE, particularly in nonelliptical situations, requires further
investigation.

3. THE EXACT-FIT PROPERTY

Croux and Van Aelst point out that NNVE does not have the
exact-fit property. One consequence of the exact-fit property is
that the smallest eigenvalue of a covariance matrix equals 0 as
soon as a majority of the data lie in a lower-dimensional sub-
space. Croux and Van Aelst illustrate this with their Figure 1,
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Figure 1. Another Example of a Bivariate Data Cloud Lying in an

Exact-Fit Position.

suggesting that a good robust estimator of the correlation in
this plot should be exactly equal to 1, whereas the NNVE esti-
mator is .87.

It is not clear to us that the exact-fit property is desirable
when there is no prior knowledge that the “clean” data lie in
a lower-dimensional subspace. Consider Figure 1. The data
there lie in an exact fit position, as do the data in Croux and
Van Aelst’s Figure 1, and for any covariance estimator with the
exact fit property, the estimated correlation will be exactly 1.
However, it is far from clear that this is a good thing. For
example, this would imply that one could predict X, exactly
from X, in future data, which seems unlikely. The standard
correlation is .26. A good summary of the data would include
the fact that many of the data do lie on a line, but would also
mention that many do not.

The NNVE estimate of the correlation is .88 (using K = 5,
which is suggested by the entropy-based plot). Outliers far
away from the main data feature were downweighted, and so
the NNVE estimate of correlation is much higher than the
standard estimate. However, the NNVE estimate of correlation
does reflect the fact that the relationship between X, and X,
is not known exactly, and this seems desirable, at least in the
absence of external information to the contrary.

4. CONSISTENCY

Croux and Van Aelst mention that NNVE lacks consistency
at elliptical distributions, which MVE and most other affine-
equivariant estimators possess. What was not made clear in
their discussion is that for estimators such as MVE to be con-
sistent, the distribution family of the data (e.g., multivariate
normality) must be known. Different elliptical distributions of
the data can have different characteristic functions after being
sphered (Cambanis, Huang, and Simons 1981). If the distribu-
tion family is known, then a consistency factor for MVE can
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then be calculated to ensure consistency for that family (e.g.,
Rousseeuw and Leroy 1987, p. 260).

On the other hand, NNVE requires a separate set of assump-
tions to achieve consistency. These come from a spatial mix-
ture model; see Corollary | in Section 3 of our article. Obvi-
ously, these assumptions are different from the traditional
requirements. However, Simpson points out that this could be
overcome by introducing a theoretical adjustment factor based
on a target model such as the multivariate normal distribution,
This seems like a worthwhile refinement of NNVE.

Nonetheless, it is not clear that this is of major practi-
cal importance. MVE and other affine-equivariant estimators
lack consistency at nonelliptical distributions. So consistency
at a particular family of elliptical distributions seems relevant
only when we are sure that the underlying distribution really
belongs to that family, which will rarely be the case. Indeed,
part of the rationale for robustness in the first place is to
achieve good performance when the true underlying distribu-
tion is not known precisely. Also, in our simulations, NNVE
was no more biased than MVE for the multivariate normal dis-
tribution (the 0% panel of Table 2), and was substantially less
biased for the nonelliptical distribution we considered (the 0%
panel of Table 3).

5. COMPUTATIONAL ASPECTS

Croux and Van Aelst point out that the S-PLUS code that
we provided often has numerical problems for large samples
in high dimensions. This is not too surprising, because this is
research code, and S-PLUS tends to be slow. Production code
for this method would likely be written in a faster, lower-level
language, such as C or Fortran. We would expect a dramatic
improvement in computational efficiency if this were done.

Also, there has been considerable work recently on effi-
cient computational methods for implementing the EM algo-
rithm and similar approaches in very large datasets, mainly in
the data-mining community (see, e.g., Bradley, Fayyad, and
Reina 1998, 1999). We would expect that the use of ideas such
as these will lead to much more efficient implementations of
NNVE in very large datasets.

6. COMPARISON WITH MIXTURE MODELING

McLachlan and Hamaty carry out a very interesting compar-
ison between NNVE and mixture modeling with normal and
t components. For the Hertzspring—Russell data, with 6 out-
liers out of 47 data points, NNVE and mixture modeling give
similar results. For the Australian Athletes data, the mixture
analysis uncovers structure in the data that goes beyond the
mere estimator of an overall covariance matrix. We agree that
such analyses are very useful; covariance estimation could be
viewed as a preliminary step before such more sophisticated
analyses.

Our experience, however, is that when there are many out-
liers, direct mixture modeling often breaks down, and a pre-
liminary application of NN cleaning can be very useful, even
when mixture modeling is the ultimate goal. (For an example
of this, see sec. 5.3 of Fraley and Raftery 2002.) We suspect
that a direct application of McLachlan and Hamaty’s form of
mixture modeling would also run into difficulties in our mine-
field example.
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Table 1. Monte Carlo Averages, Standard Errors, MSEs and Relative MSEs of Estimated Covariance
for 67% Outlier Contamination in the Bivariate Normal Scenario

NNBR NNVE-Naive NNVE-Select K NNVE-KIMCLUST
Mean 4.06 2571 -04 433 2740 —-06 391 2442 .01 382 2392 .03
SE 3.70 2524 178 488 3156 230 80 384 1.08 .66  4.02 .87
MSE 1369 63625 3.16 23.88 999.60 530 65 1502 1.16 46 17.31 75
%MSE .02 .02 .28 .01 .01 a7 52 .79 .76 74 68 1.17

NOTE: Each dataset has 500 observations. Each relative MSE were calculated by dividing the MSE of normal mixture, as given in Table
2 of McLachlan and Hamaty, by that of NNVE. The reported results are based on 500 simulations.

McLachlan and Hamaty present a simulation study compar-
ing NNVE with mixture modeling when the correct mixture
model is assumed known and is used. Of course, one would
expect the mixture model to outperform any other method
in this situation, but the study is still of interest nonetheless.
NNVE performed well, perhaps surprisingly so, when there
are 33% and 50% outliers.

However, when there were 67% outliers, NNVE had
extremely low relative efficiency in McLachlan and Hamaty’s
study, on the order of 1%. The large MSEs of NNVE in this
case were caused mainly by one or two of the 500 simulated
datasets whose results dominated. However, this is still a cause
of concern, and we looked into it in more detail.

In practice, there are two things that NNVE users would
do that are not reflected in our simulation study. One of these
is to use the entropy-based plot to choose K; the other is
to check at the end whether there are small clusters of out-
liers left, using MCLUST or other methods, as in our mine-
field application, for example. To incorporate these aspects in
the automatic procedure in a simple way, we implemented a
very simple selection of K using the entropy-based criterion
of Byers and Raftery (1998), hereafter referred to as BR. We
selected K among K = 8, 12, and 16. The rule that we used
was to use the smallest K unless any of the K’s above it has
an absolute value of £(K) 70% or less of the current abso-
lute value of £(K). Of our 500 simulated datasets, 284 used
K =8, 92 used K = 12, and 124 used K = 16. In practice,
users would perhaps use the entropy-based K plot to perform
a more sophisticated selection than the simple automatic selec-
tion that we have implemented here.

The estimator with this added K selection feature was
denoted by NNVE-Select K. The estimator with K selected
and with the second MCLUST-based phase of outlier removal
was denoted by NNVE-K/MCLUST. The simulation results
using the same scenario as in the 67% panel of Table 2 in our
article are given in Table 1.

After incorporating these refinements, that represent more
closely what users would actually do, we find that the effi-
ciency of NNVE relative to the normal mixture model has
greatly improved from what McLachlan and Hamaty obtained.
It is at least 68%, compared with the 1% for the naive NNVE
as reported by McLachlan and Hamaty.

7. EVALUATION CRITERIA

Soofi and Dadpay point out that the entropy-like measure,
&£(K), that we adopted from BR as the basis of a way of
choosing K, is not, strictly speaking, itself an entropy. They
are right about this. In fact, £(KX) measures a sum of partial

negative entropies and is simply an “entropy-based” quantity.
However, we have found £(K) to be useful for choosing K.
Soofi and Dadpay suggest using the joint entropy, H(h), or,
equivalently in term of choosing K, the normalized informa-
tion I(h) instead. These may also work well, and this could
be a topic of further research.

Soofi and Dadpay also point out that elementwise compari-
son of estimated and true covariance matrices is only one way
of assessing the quality of covariance matrix estimators, and
that other error measures may be useful in the context of par-
ticular tasks in multivariate analysis. We agree fully, and look
forward to the development and reporting of such error mea-
sures in future research.

8. OTHER ISSUES

McLachlan and Hamaty suggest carrying out a bootstrap
test of the distribution of NN distances to see if it has two
components, and proceeding with NNC only if the test sug-
gests that it does. This is a potentially interesting way of
reducing or eliminating the bias in the original NNC/NN-BR
method of Byers and Raftery (1998) when there are no out-
liers. It could be viewed as an alternative to our approach of
introducing artificial outlying data. It would be of interest to
compare these two approaches in a systematic way.

Croux and Van Aelst point out that the limit distribution
of NNVE is not yet available. This is true, but not too sur-
prising since NNVE has just been introduced. Limit theory
for other robust estimators has tended to lag the introduction
of the estimator itself, as Croux and Van Aelst point out, for
example, for the RMCD. This is one of the issues that should
be addressed in the future research that Simpson calls for.

In Figure 2 of Croux and Van Aelst, they note that when
there are no outliers, a good proportion of signal points could
still be downweighted. In our experience, when there are no
outliers,. the original NN-BR has a misclassification rate of
classifying signal as noise ranging from 5% to 25%. This rate
is reduced in NNVE, as shown by the numerical comparison
between NN-BR and NNVE in the 0% panel of Table 2. Fur-
ther, from the same panel we see that the downward bias of
NNVE is no more severe than that of MVE, a consistent esti-
mator under this scenario. We suspect that this slight down-
ward bias of NNVE is not unique among robust covariance
estimators, at least in finite samples, as a result of guarding
against outliers.

In the same figure, Croux and Van Aelst also note that the
weights obtained by NNVE are not decreasing in the Maha-
lanobis distance. This observation is somewhat expected. The
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weights of NNVE are obtained based on local features (the
Kth NN distances) rather than on the global distances from
the data points to the center of the data. This “local” nature of
NNVE allows it to be less sensitive to deviations from ellipti-
cal symmetry than methods such as MVE.

On the other hand, even though the NNVE weights are
based on local quantities completely different in concept from
global distances such as the Mahalanobis distance, Figure 2
of Croux and Van Aelst nicely shows that the (local) NNVE
weights nevertheless capture the major features represented by
such global distances. So far, few robust methods based on
local properties have been proposed. Our good results with
NNVE suggest that local robust methods in general may be
promising, and we hope that there will be more robustness
research from a local perspective in the future.
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The S-PLUS code for implementing NNVE is available at
the first author’s website, http://stat.tamu.edu/ nwang.
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