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ABSTRACT
Motivation: Selecting a small number of relevant genes for accurate
classification of samples is essential for the development of diagnostic
tests. We present the Bayesian model averaging (BMA) method for
gene selection and classification of microarray data. Typical gene
selection and classification procedures ignore model uncertainty and
use a single set of relevant genes (model) to predict the class. BMA
accounts for the uncertainty about the best set to choose by averaging
over multiple models (sets of potentially overlapping relevant genes).
Results: We have shown that BMA selects smaller numbers of
relevant genes (compared with other methods) and achieves a high
prediction accuracy on three microarray datasets. Our BMA algorithm
is applicable to microarray datasets with any number of classes, and
outputs posterior probabilities for the selected genes and models. Our
selected models typically consist of only a few genes. The combination
of high accuracy, small numbers of genes and posterior probabilities
for the predictions should make BMA a powerful tool for developing
diagnostics from expression data.
Availability: The source codes and datasets used are available from
our Supplementary website.
Contact: kayee@u.washington.edu
Supplementary information: http://www.expression.washington.edu/
publications/kayee/bma

1 INTRODUCTION
There has been a recent explosion in the use of microarray data
for classification in a variety of diagnostic areas. The prediction
of the diagnostic category of a tissue sample from its expression
array phenotype given the availability of similar data from tissues
in identified categories is known as classification (or supervised
learning). In the context of gene-expression data, the samples are
usually the experiments, and the classes are usually different types
of tissue samples, for example, cancer versus non-cancer (Alon et al.,
1999; Schummer et al., 1999), different tumor types (Golub et al.,
1999; Alizadeh et al., 2000; Ramaswamy et al., 2001) or response to
therapy (Shipp et al., 2002; van’t Veer et al., 2002; Nutt et al., 2003).
A challenge in predicting the diagnostic categories using micro-
array data is that the number of genes is usually much greater than
the number of tissue samples available, and only a subset of the
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genes is relevant in distinguishing different classes. The selection
of relevant genes for classification is known as variable selection or
feature selection. A small set of relevant genes is essential for the
development of inexpensive diagnostic tests.

Multiclass classification in which the data consist of more than
two classes is rapidly gaining attention in the literature. For example,
Ramaswamy et al. (2001) combined support vector machines, which
are binary classifiers, to solve the multiclass classification problem.
Nguyen and Rocke (2002a,b) used partial least squares (PLS) for
feature selection, together with traditional classification algorithms
such as logistic discrimination and quadratic discrimination to clas-
sify multiple tumor types on microarray data. Tibshirani et al. (2002)
developed an integrated feature selection and classification algorithm
called ‘shrunken centroid’ for classifying multiple cancer types in
which features are selected by considering one gene at a time. Yeung
and Bumgarner (2003) extended the shrunken centroid algorithm
to take dependency between genes and repeated measurements into
consideration. Dudoit et al. (2002) compared the performance of dif-
ferent discrimination methods, including nearest neighbor classifiers,
linear discriminant analysis and classification trees, for classifying
multiple tumor types using gene-expression data. Recently, Li et al.
(2004) studied the performance of various feature selection methods
combined with various multiclass classification methods, includ-
ing support vector machines, naïve Bayes, k-nearest neighbor and
decision trees.

Different feature selection algorithms can potentially select
different relevant genes, different numbers of relevant genes and
lead to different classification accuracies. Most feature selection
methods in the literature are tailored towards binary classification,
and are univariate in the sense that each candidate relevant gene
is considered individually. Examples of univariate methods include
the signal-to-noise ratio (Golub et al., 1999), the t-test (Nguyen
and Rocke, 2002b), the ratio of between-groups to within-groups
sum of squares (BSS/WSS) (Dudoit et al., 2002), the significance
analysis of microarray (SAM) statistic (Tusher et al., 2001), the
threshold number of misclassifications (TNOM) score (Ben-Dor
et al., 2000) and many others. Multivariate gene selection methods
consider multiple genes simultaneously and, hence, account for
dependency between genes, which hopefully will lead to a reduced
number of relevant genes. Bo and Jonassen (2002) evaluated relevant
genes in a pairwise fashion, while Jaeger et al. (2003) and Yeung
and Bumgarner (2003) reduced the number of relevant genes by
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eliminating highly correlated ones. Recently, Lee et al. (2003)
employed a hierarchical Bayesian model which used a Markov chain
Monte Carlo (MCMC) based stochastic search algorithm to dis-
cover relevant genes. Their multivariate gene selection algorithm
is applicable to microarray data with two classes only. Sha et al.
(2004) extended the underlying theory to multiple classes data,
but did not give empirical results for gene selection on multiclass
microarray data.

In addition, most proposed feature selection and classification
algorithms ignore model uncertainty by selecting one set of relevant
genes, and then predicting class given that set of selected genes.
It is possible that there is more than one set of relevant genes that
fit the data equally well, especially with microarray data in which
the number of genes (variables) is much greater than the number of
samples. There have been efforts to use model averaging and model
ensemble approaches to classify microarray data. As an example,
Li and Yang (2002) applied a model averaging approach to classify
samples by averaging over multiple single-gene models to microarray
data. Boosting algorithms have also been applied to microarray data
(Ben-Dor et al., 2000; Dudoit et al., 2002; Dettling and Buhlmann,
2003).

In this paper, we present the Bayesian model averaging (BMA)
approach (Raftery, 1995; Hoeting et al., 1999; Viallefont et al.,
2001) as our multivariate feature selection method for multiclass
microarray data. This is in contrast to Li and Yang (2002) in
which the emphasis was on classification and genes were selected
independently. Our approach also differs from Lee et al. (2003) and
Sha et al. (2004) in the sense that we adopt a model averaging
approach and we report empirical results on multiclass as well as
binary microarray data. In addition, our algorithms are computation-
ally efficient compared with the MCMC-based algorithms in Lee
et al. (2003) and Sha et al. (2004). We extended an existing BMA
algorithm to be applicable to any number of input variables (genes),
and to any number of classes. We show that our extended BMA
algorithm generally selects fewer relevant genes and produces pre-
diction accuracy at least comparable to that of the best existing feature
selection and classification methods. We also propose to use the Brier
Score (Brier, 1950) and use a generalized Brier Score to assess pre-
diction accuracy for 2-class and multiclass datasets respectively. Our
approach has the additional advantage of facilitating biological inter-
pretation by producing posterior probabilities of selected genes and
models. Our BMA algorithm is a multivariate gene selection method,
and our selected models are typically very simple, consisting of only
a few genes. By averaging over multiple simple models and using
relatively small numbers of relevant genes, we demonstrate high
prediction accuracy on both binary and multiclass microarray data.
In Section 2, we review BMA and describe our extension of exist-
ing BMA algorithms to large numbers of predictors and multiclass
classification problems, and in Section 3, we give results for three
gene-expression datasets.

2 METHODS

2.1 Bayesian model averaging
Typical statistical inference approaches select a model and then proceed as if
the selected model has generated the data, which might lead to over-confident
inferences. BMA takes model uncertainty into consideration by averaging
over the posterior distributions of multiple models, weighted by their posterior
model probabilities (Raftery, 1995; Hoeting et al., 1999).

For simplicity, let us first consider the binary classification problem. Let
Y be the response variable (class) of a sample in the test set, where Y = 0
or 1, and let D be the training dataset for which the classes are known. The
essence of BMA is shown in Equation (1): the posterior probability of Y = 1
given the training set D is the weighted average of the posterior probability
of Y = 1 given the training set D and model Mk multiplied by the posterior
probability of model Mk given training set D, summing over a set of models
Mk for k in B, where B is a set of indices:

Pr(Y = 1|D) =
∑
k∈B

Pr(Y = 1|D, Mk) ∗ Pr(Mk |D). (1)

We used logistic regression (Hosmer and Lemeshow, 2000) to predict
Pr(Y = 1|D, Mk) such that ln[Pr(Y = 1|D, Mk)/ Pr(Y = 0|D, Mk)] =
b0 + b1x1 + · · · + bpxp , where the xis represent the expression levels of
selected genes and the bis are the regression parameters. When classifying
experiments on microarray data, our goal is to identify the relevant genes, and
hence, genes represent the variables. In addition, we would like to determine
the posterior probability that each gene (xi ) is relevant. Using the expression
(bi �= 0) to indicate that bi (and hence gene xi ) is included in at least one
model in M , the posterior probability that gene xi is relevant can be written
as Pr(bi �= 0|D) = ∑

Mk where gene i is relevant Pr(Mk |D).
In other words, the posterior probability of gene xi is equal to the sum of

the posterior probabilities of all selected models Mk that include this gene.
Hence, all relevant genes are included in at least one chosen model.

It has been shown that BMA gives better predictive performance for new
observations than any single model that could reasonably have been selec-
ted on average (Madigan and Raftery, 1994). This theoretical result has
been widely verified in practice (Raftery et al., 1995). However, BMA also
presents several implementation difficulties. One of these is that the exhaust-
ive summation of all models considered can lead to an enormous number of
terms in Equation (1). Raftery (1995) used the leaps and bounds algorithm
(Furnival and Wilson, 1974) to efficiently identify a reduced set of good mod-
els. The leaps and bounds algorithm rapidly returns the best ‘nbest’ models
of each size (up to 30 variables). Madigan and Raftery (1994) proposed
using the Occam’s window method to choose a set of parsimonious and data-
supported models. Their idea is to discard models that are much less likely
than the best model supported by the data (the default is 20 times less likely).
Therefore, the set of selected models (B) in Equation (1) is chosen by first
applying the leaps and bounds algorithm, and then the Occam’s window
method.

A second difficulty with BMA is that there is an integral associated with
the evaluation of the posterior probability for model Mk given training set D.
Using Bayes’ theorem, the posterior probability for model Mk is given by

Pr(Mk |D) = Pr(D|Mk) Pr(Mk)∑
l∈B Pr(D|Ml) Pr(Ml)

, (2)

Pr(D|Mk) =
∫

Pr(D|θk , Mk) Pr(θk |Mk) dθk ,

where Pr(D|Mk) is the integrated likelihood of model Mk , and θk rep-
resents the vector of regression parameters (b0, b1, . . . , bp) of model Mk .
There are many different ways to approximate this integral including MCMC
approximations (Kass and Raftery, 1995; DiCiccio et al., 1997). In the
case of logistic regression, the Bayesian information criterion (BIC) can
be used to approximate the integral (Raftery, 1995). We adopt the BMA
implementation (Raftery, 1995) which uses the BIC approximation to
compute Pr(D|Mk) and, hence, Pr(Mk |D) can be computed using Equa-
tion (2). The source code of the BMA implementation is available at
http://www.research.att.com/∼volinsky/bma.html. Pr(Mk |D) represents the
posterior probability of each selected model Mk , and can be used to compute
the posterior probability that a gene (xi ) is relevant in classification since
Pr(bi �= 0|D) = ∑

Mk where gene i is relevant Pr(Mk |D).
An advantage of BMA is that it yields an easily interpreted summary:

posterior probabilities for the selected models, Pr(Mk |D), and posterior
probabilities for the selected genes (variables), Pr(bi �= 0|D).
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Input: training set D with G genes and n samples
Pre-processing step: Rank all G genes using a univariate gene selec-
tion procedure. Let x1, x2, . . . , xG be the ordered list of genes. Let w

denote the size of the BMA window such that w = min(30, n-2).
Parameters: nbest and p, where p is the total number of genes to be
processed such that w < p ≤ G.

1. Initially, start with the w top ranked genes (x1, x2, . . . , xw),
and apply the traditional BMA algorithm. Let toBeProcessed
be an ordered list of genes with ranks (w + 1) to p. Initially,
toBeProcessed <−xw+1, x32, . . . , xp.

2. Repeat until all p genes are processed
a. Remove all genes i with Pr(bi �= 0|D) < 1%.

b. Adaptive threshold step: If all genes have Pr(bi �= 0|D) ≥
1%, determine the minimum Pr(bi �= 0|D), minProbne0,
among the w genes in the current BMA window. Remove
all genes with Pr(bi �= 0|D) < (minProbne0 + 1)%.

c. Let removedGenes be the set of genes removed, and suppose
q genes are removed.

d. Replace the q removed genes with the next q genes from
toBeProcessed. Update toBeProcessed <− toBeProcessed
– removedGenes.

e. Apply the traditional BMA algorithm.

Output: selected models and their posterior probabilities, selected
genes and their corresponding Pr(bi �= 0|D), maximum-likelihood
estimates of the regression parameters in each model.

Fig. 1. Outline of the iterative BMA algorithm.

2.2 Our modifications to existing BMA algorithms
Iterative BMA algorithm The traditional BMA implementation (Raftery,
1995) is not applicable to microarray data in which the number of genes
(variables) is typically much greater than the number of samples (responses).
In this implementation, the leaps and bounds algorithm can only compute
the best ‘nbest’ models for up to 30 variables, and if the number of vari-
ables is greater than 30, backward elimination is used to reduce the number
of variables to 30 before applying the leaps and bounds algorithm. How-
ever, stepwise backward elimination in which one variable is removed at a
time cannot be applied in this situation in which there are more predictors
(genes) than observations (samples). Therefore, we developed an iterative
BMA algorithm which first ranks genes in order with a univariate gene selec-
tion method and then successively applies the traditional BMA algorithm to
the ordered genes (for an outline of our algorithm see Fig. 1). Since genes
with high posterior probabilities Pr(bi �= 0|D) are good candidates for relev-
ant genes, genes with low Pr(bi �= 0|D) are removed; we used a threshold of
1%. This 1% threshold is chosen for two reasons. First, 1% is a conservative
threshold in the sense that only genes with really low posterior probabilities
are removed. Second, a threshold of 1% generally yielded good predictive
performance in our empirical studies (see Fig. A.4 in the Supplementary
materials in which we measure the predictive performance over different
thresholds).

In our study, we used the ratio of between-group to within-group sum of
squares (BSS/WSS) (Dudoit et al., 2002) to determine the initial gene order.
Intuitively, genes with relatively large variation between classes and relat-
ively small variation within classes are likely candidates as relevant genes.
BSS/WSS is a univariate gene selection method in which genes with large
BSS/WSS ratios are good candidate relevant genes. For a gene j , let Dij

denote the expression level of gene j under sample i, Dkj the average expres-
sion level of gene j over samples in class k and Dj the average expression

level of gene j over all samples. The BSS/WSS ratio for gene j is defined as

BSS(j)

WSS(j)
=

∑
i

∑
k I (Yi = k)

(
Dkj − Dj

)2

∑
i

∑
k I (Yi = k)

(
Dij − Dkj

)2
, (3)

where I (Yi = k) is equal to 1 if sample i belongs to class k and is equal
to 0 otherwise. In step 1 of the iterative BMA algorithm, we compute the
BSS/WSS ratio for each of the G genes and order the genes in the descending
order of the BSS/WSS ratio.

The number of variables (genes) in each iterative application of the tra-
ditional BMA algorithm is called the BMA window size. In order to avoid
backward elimination, the BMA window size can be at most 30. In addi-
tion, the number of variables must be smaller than the number of samples in
logistic regression. Therefore, the BMA window size is set to be min (30,
n − 2) where n is the number of samples.

It is possible that all genes in the current BMA window have Pr(bi �=
0|D) ≥ 1%, and hence, no genes can be removed from this current win-
dow. If no genes are removed, the iterative BMA algorithm cannot proceed
with the remaining rank ordered genes in ‘toBeProcessed’. We observed
that this usually yields relatively low classification accuracy. Therefore, we
adopted a heuristic called ‘adapted threshold’ which guarantees that at least
one gene with the lowest Pr(bi �= 0|D) in the current BMA window will
be removed, thus allowing the iterative BMA algorithm to consider all p

genes. Although this heuristic may remove genes with high univariate rank-
ings that have relatively high posterior probabilities, our empirical results
showed that this heuristic typically improves prediction accuracy (Table B.1
in the Supplementary information section). We have also experimented with
a ‘wrap around’ approach, in which genes that were removed in the adaptive
threshold step are added to the toBeProcessed list again after all p genes
are considered. However, we did not observe any empirical evidence that
demonstrates that this ‘wrap around’ approach improves performance.

Multiclass iterative BMA For multiclass microarray data, we developed
an individualized regression approach in which binary logistic regressions
are combined. We used the approximation of Begg and Gray (1984) (also
discussed in Chapter 8 of Hosmer and Lemeshow, 2000). They studied the use
of a series of individualized binary logistic regressions as an approximation
for polychotomous logistic regression in which the response variable can take
more than two values. They showed that this provides a close approximation
to maximum-likelihood estimation of the full multinomial logistic regression
model. For our purposes, it is particularly attractive because it allows us to
use the well-established and computationally efficient algorithms for BMA in
binary logistic regression when building BMA for multiclass classification.

Suppose there are K classes such that the response variable (class) Y takes
on values 0, 1, . . . , or (K − 1), where K ≥ 3, and let Yi be the response
variable for sample i. Our idea is to use a separate binary logistic regression
to discover relevant genes for each training subset (Y = 0 versus Y = k),
where k = 1, . . . , (K − 1), and use the Begg and Gray (1984) approach
to create an augmented matrix M to approximate polychotomous logistic
regression using the selected genes from each training subset with binary
logistic regression. Figure 2 shows a flowchart of our algorithm with an
augmented matrix M for K = 3. The augmented matrix M is formed by
concatenating the selected genes from each training subset and pasting the
two training subsets (Y = 0 versus Y = 1) and (Y = 0 versus Y = 2)
together. There is a column in M for the regression parameter of each gene.
The first n1 rows of M correspond to samples with Y = 0 or Y = 1 and the
next n2 rows of M correspond to samples with Y = 0 or Y = 2. Finally, we
order the columns in M using BSS/WSS ratios and apply the iterative BMA
algorithm to M to discover relevant genes. Figure 3 illustrates an outline of the
algorithm.

2.3 Evaluation of predictive performance
The number of classification errors is the most popular measure of predict-
ive performance (Golub et al., 1999; Nguyen and Rocke, 2002a; van’t Veer
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Iterative BMA

Y = 0 vs. 1

Iterative BMA

Y = 0 vs. 2

Augmented design matrix M:

…D2,n1+n20D1,n1+n201

………………

…D2,n1+10D1,n1+101

…0D2n10D1n10

………………

…0D210D110

…b22b21b21b11b20-b10

…D2,n1+n20D1,n1+n201

………………

…D2,n1+10D1,n1+101

…0D2n10D1n10

………………

…0D210D110

…b22b21b21b11b20-b10

Iterative BMA on augmented matrix M

prediction

Samples
from Y=0
or Y=1

Samples
from Y=0
or Y=2

Fig. 2. A flowchart illustrating the multiclass iterative BMA algorithm for
K = 3. Suppose two genes x1 and x2 are selected in the two binary logistic
regressions (Y = 0 versus Y = 1 and Y = 0 versus Y = 2) from the
iterative BMA algorithm. The goal of polychotomous regression is to estimate
the regression parameters for g1(x) = ln[Pr(Y = 1|D)/ Pr(Y = 0|D)] =
b10 + b11x1 + b12x2 and g2(x) = ln[Pr(Y = 2|D)/ Pr(Y = 0|D)] = b20 +
b21x1 + b22x2. The augmented matrix M consists of an intercept column
(b20 − b10) and a column for each regression parameter b11, b12, b21 and b22.

et al., 2002; Lee et al., 2003). However, in our case, the predicted prob-
ability for each class, Pr(Y = k|D), is available. For example, a predicted
probability of the correct outcome �1 is more desirable than a predicted
probability ∼0.55 for binary classification, while the opposite is true for the
predicted probability of an incorrect outcome. In order to take the magnitudes
of predicted probabilities into consideration, we adopted the Brier Score
(Brier, 1950) as our evaluation measure. For binary data, let Yi denote the
response variable (class) of sample i, where Yi = 0 or 1. Denote the predicted
probability that sample i belongs to class 1, Pr(Yi = 1|D), by pi . The
Brier Score is defined as

∑n
i=1 (Yi − pi)

2, which is the sum of squares of
the difference between the true class and the predicted probability over all
samples. If the predicted probabilities, pi , are constrained to be equal to 0 or
1, the Brier Score is equal to the total number of classification errors. Thus
the Brier Score allows us to compare the performance of the deterministic
0–1 classification methods with that of probabilistic methods such as BMA.

We use the generalized Brier Score for the multiclass case, where Yi =
0, 1, . . . , (K − 1). Let Yik be an indicator variable such that Yik = 1
if Yi = k and Yik = 0 otherwise, where k = 0, 1, . . . , (K − 1).
Let pik denote the predicted probability such that Yi = k. The gen-
eralized Brier Score is defined as 1

2

∑n
i=1

∑K−1
k=0 (Yik − pik)

2. It can
be shown that the generalized Brier Score reduces to the Brier Score
when K = 2. A high generalized Brier Score indicates poor predictive
performance.

3 RESULTS
In order to compare our results with the previous study, the original
partitions of the datasets into training and test sets are used in the
breast cancer prognosis data (Section 3.1) and the leukemia data
(Section 3.2). Since no test set is available for the hereditary breast
cancer data (Section 3.3), we used leave-one-out cross validation for
evaluation.

1. Using Y = 0 as our baseline, create subsets of the samples
from the training set for the binary classification problem in
which Y = 0 or Y = k, where k = 1, 2, . . . , (K − 1), and
ignore all the data for which Y �= 0 and Y �= k. Denote the
number of training samples for Y = 0 vs. Y = k by nk. In
the training subset (Y = 0 vs. Y = k), the response variable
Y∗ = 0 when Y = 0, and Y∗ = 1 when Y = k.

2. For each training sample subset (Y = 0 vs. Y = k) where
k = 1, 2, . . . , (K − 1), apply the iterative BMA algorithm, and
let Sk be the set of selected genes from this subset.

3. Merge the selected genes from each training sample subset to
create an augmented design matrix with ordered columns, M,
which has

∑K
k=1 nk rows and (K − 2 + ∑K−1

k=1 |Sk|) columns
(variables).
a. Compute BSS/WSS ratios for each gene in Sk from each

training sample subset k.

b. Sort the BSS/WSS ratios from all (K − 1) training sample
subsets Sk.

c. The first (K − 2) columns of the design matrix M represent
the “intercept” columns while all other columns represent
genes (variables). The first n1 rows of M represent the train-
ing sample subset Y = 0 or Y = 1, and the next n2 rows of
M represent Y = 0 or Y = 2 etc.

d. For k = 2 to (K − 1), M[i, k − 1] = 1 for any sample
i in training subset k in which Yi = 0 or Yi = k, and
M[i, k − 1] = 0 for all other samples.

e. For k = 1 to (K−1) and each gene g in Sk, M[i, (K−2)+r] =
Dig where r is the rank of gene g from step (3b) and Dig is the
expression level of gene g under sample i in the training set
D for any sample i in training subset k (Yi = 0 vs. Yi = k),
and M[i, (K − 2) + r] = 0 otherwise.

f. The response variable for M, YM = 0 for Y = 0, and
YM = 1 for Y = k where k = 1, 2, . . . , (K − 1).

4. Apply the iterative BMA algorithm to the augmented data
matrix M.

5. Prediction step: use the regression parameters from the selected
variables from Step 4.

Fig. 3. Outline of the multiclass iterative BMA algorithm.

Table 1. Prognosis groups and class sizes of the training set and test set of
the breast cancer prognosis data

Prognosis group Y Training set Test set
(total 76) (total 19)

Poor (develop metastases 0 33 12
within 5 years)

Good (disease free 1 43 7
for at least 5 years)

Y is the response (class) variable.

3.1 Breast cancer prognosis data (2-class)
The breast cancer prognosis dataset (van’t Veer et al., 2002)
consists of primary breast tumor samples hybridized to cDNA arrays
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Table 2. Selected genes and their corresponding posterior probabilities being relevant (Pr(bi �= 0|D)), BSS/WSS ranks and membership in the 70-gene signature
chosen by van’t Veer et al. (2002) for the breast cancer prognosis data using 4919 genes and nbest = 20

Selected genes Pr(bi <> 0|D) (%) BSS/WSS rank In 70-gene signature? Gene description

AL080059 100.0 1 Yes Homo sapiens mRNA; cDNA
DKFZp564H142 (from clone
DKFZp564H142)

Contig49670_RC 80.8 95 No Homo sapiens cDNA: FLJ23228 fis, clone
CAE06654

NM_012214 70.8 201 No Mannosyl (alpha-1,3-)-glycoprotein
beta-1,4-N -acetylglucosaminyltransferase,
isoenzyme A

Contig59951 57.3 793 No RAD21 (S.pombe) homolog

Contig46443_RC 57.3 1349 No ESTs, weakly similar to AF279265 1
putative anion transporter 1 [H.sapiens]

NM_003315 41.4 423 No Tetratricopeptide repeat domain 2

The genes are shown in descending order of Pr(bi �= 0|D).

consisting of 24 481 genes with 78 samples in the training set, and 19
samples in the test set. These samples are divided into two categories:
the good prognosis group (patients who remained disease-free for at
least 5 years) and the poor prognosis group (patients who developed
distant metastases within 5 years). We identified 4919 significantly
regulated genes (at least a 2-fold difference and p-value <0.01 in
least three samples) from the training set. We further deleted two
samples with missing values from the training set. Therefore, the
breast cancer prognosis training set used in our experiments consists
of 76 samples and the test set consists of 19 samples (Table 1) across
4919 genes.

We applied the iterative BMA algorithm for binary classification to
the breast cancer prognosis data, and achieved a comparable number
of classification errors on the test set to the reported results in van’t
Veer et al. (2002) while using significantly fewer relevant genes. We
experimented with various control parameters for the iterative BMA
algorithm in our study, including the number of models returned by
the leaps and bounds algorithm (nbest) and the number of top genes
ranked by BSS/WSS ratios (p). We observed that a large p (�1000
genes) typically yields better Brier Scores and classification errors,
and with the exception of nbest = 10, which is too small, the predic-
tion accuracy and the number of selected genes are relatively insens-
itive to ‘nbest’ (Table A.1 in the Supplementary information section).

Using all 4919 genes and nbest = 20, our iterative BMA algorithm
produced 3 classification errors on the test set (out of 19 samples) and
a Brier Score of 2.04 using 6 selected genes. van’t Veer et al. (2002)
reported 2 classification errors on the test set using 70 relevant genes.
There is only one common gene between our 6 selected genes and the
70 relevant genes from van’t Veer et al. (2002). This is probably due
to the fact that four out of our six selected genes have poor univariate
rankings (above 200, Table 2). In addition, the 70 relevant genes from
van’t Veer et al. (2002) are chosen due to a high correlation (>0.3 or
<−0.3) with the response variable. Some of these high correlation
genes may be correlated among themselves. For example, among

the top 10 correlated genes (with the response variable) from the 70-
gene subset, four have correlation >0.3 with the top ranking gene
AL080059.

Our results demonstrate the power of our multivariate BMA gene
selection procedure that explores all p genes: genes with poor
univariate rankings may be beneficial in classification when used
in combination with other genes. By choosing our relevant genes
from sets of genes, the iterative BMA algorithm greatly reduces the
number of relevant genes needed for accurate class prediction. Fur-
thermore, these six selected genes are used in 13 selected models,
each of which consists of 3–6 genes (Table A.2.b in the Supple-
mentary information section). The predicted probabilities for the
19 test samples are illustrated in the uncertainty plot in Figure 4, in
which the uncertainty (1 − Pr(Y = 1|D)) is plotted against the test
samples, sorted by increasing uncertainty (Bensmail et al., 1997).
Figure 4 shows that two of the three misclassified test samples have
high uncertainty, indicating that our assessment of uncertainty does
correspond with the errors actually made, as we would wish.

3.2 Leukemia data (two and three classes)
The leukemia dataset (Golub et al., 1999) consists of 7129 genes, 38
samples in the training set and 34 samples in the test set. We filtered
out genes that do not exhibit significant variation across the training
samples, leaving 3051 genes, and then performed thresholding and
the logarithmic transformation. The data consist of samples from
patients with either acute lymphoblastic leukemia (ALL) or acute
myeloid leukemia (AML). However, Golub et al. (1999) noted that
the global expression profiles also reflect two ALL subtypes (B-cell
and T-cell). Hence, this dataset can be divided into either two or three
classes (Tables 3 and 4).

We first applied the iterative BMA algorithm to the 2-class leuk-
emia data, and achieved a comparable number of classification errors
on the test set to other reported results in the literature. Specifically,
we observed a Brier Score of 1.5, with 2 classification errors on the
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Fig. 4. Uncertainty plot for the predicted probabilities on the test set (19 samples) of the breast cancer prognosis data. The y-axis represents the uncertainty (1
– predicted probability of Y = 1), and the x-axis represents the 19 test samples sorted in increasing order of uncertainty. The follow-up time of patients is used
to label the upper x-axis. The vertical bars represent classification errors, i.e. the test samples # 102, 117, 109 with follow-up times 3.3, 5.3, 3.2, respectively,
were misclassified.

Table 3. Groups and class sizes of the training and test sets of the leukemia
data (2-class, ALL versus AML)

Class Y Training set (total 38) Test set (total 34)

ALL 0 27 20
AML 1 11 14

Y is the response (class) variable.

test set (out of 34 samples) with 20 selected genes, using nbest = 20
and p = 1000 top ranked genes.1 Similar to what happened with the
breast cancer prognosis data, 13 (out of 20) selected genes have
poor univariate BSS/WSS rankings (above 200, see Table B.2.a
in the Supplementary information section). This dataset is widely
used in classification and feature selection papers in the literature.
For example, Nguyen and Rocke (2002b) reported 1–3 classific-
ation errors on the test set using 50–1500 selected genes. They
also noted that test sample #66 is consistently misclassified in the

1Using all 3051 genes yielded unstable models. We observed this unstable
model phenomenon on this thresholded dataset (in which expression values
are thresholded by 100 and 16 000 before applying the logarithmic transform-
ation) only, but not on other unthresholded datasets. This is probably because
some genes with low BSS/WSS rankings have many identical thresholded
values across the samples leading to singular matrices in our computation.

Table 4. Groups and class sizes of the training and text sets of the leukemia
data (3-class, AML versus ALL-B cell versus ALL-T cell)

Class Y Training set (total 38) Test set (total 34)

AML 0 11 14
ALL-B cell 1 19 19
ALL-T cell 2 8 1

Y is the response (class) variable.

microarray community and suggested that the sample might be incor-
rectly labeled. Sample #66 is one of the two misclassified samples
in our results. Our iterative BMA algorithm consistently misclas-
sified sample #66 in all our experiments using different parameter
values (nbest and p). Lee et al. (2003) reported one classification
error using five genes. However, it is not clear whether sample #66
was misclassified in their reported results.

Next, we applied our multiclass iterative BMA algorithm to the 3-
class leukemia data (AML, ALL-B cell, ALL-T cell). This produced
very encouraging results: a Brier Score of 1.5 with one classification
error on the test set (34 samples), using 15 genes (nbest = 20, p =
1000). Figure 5 shows the uncertainty plot and Table 5 shows the
selected genes and their corresponding posterior probabilities. It is
interesting that the Brier Score in the 3-class case is similar to that
in the 2-class case. Of the 15 relevant genes selected, 6 genes were
from the binary classification problem comparing AML with ALL-B
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Fig. 5. Uncertainty plot for the predicted probabilities on the test set (34 samples) of the 3-class leukemia data. Each sample is classified as being in the class
j with the maximum predicted probability Pr(Y = j |D), where j = 0, 1, 2. The y-axis represents the uncertainty (1 – maximum predicted probability), and
the x-axis represents the 34 test samples sorted in increasing order of uncertainty. The vertical bar represents a misclassified sample.

Table 5. Selected genes and their corresponding posterior probabilities being relevant (Pr(bi �= 0|D)), and BSS/WSS ranks for the 3-class leukemia data using
p = 1000 genes and nbest = 20

Selected genes Pr(bi <> 0|D) (%) BSS/WSS rank Gene description
Y = 0 versus 1 Y = 0 versus 2

M27891_at 100.0 1 CST3 cystatin C (amyloid angiopathy and cerebral
hemorrhage)

L28821_at 32.6 279 MANA2 alpha mannosidase II isozyme
X03934_at 30.9 1 GB DEF = T-cell antigen receptor gene T3-delta
X59871_at 30.9 2 TCF7 transcription factor 7 (T-cell specific)
U02493_at 18.7 152 54 kDa protein mRNA
X05323_at 8.1 213 OX-2 membrane glycoprotein precursor
Z22551_at 8.1 312 Kinectin gene
X74008_at 8.0 802 PPP1CC protein phosphatase 1, catalytic subunit,

gamma isoform

U90552_s_at 8.0 112 Butyrophilin (BTF5) mRNA
L33075_at 7.9 354 Ras GTPase-activating-like protein (IQGAP1) mRNA
X99459_at 6.6 974 Sigma 3B protein
M98539_at 5.7 523 Prostaglandin D2 synthase gene
M81830_at 5.7 931 GB DEF = somatostatin receptor isoform 2 (SSTR2)

gene

Y11710_rna1_at 5.3 972 Extracellular matrix protein collagen type XIV,
C-terminus

L32831_s_at 5.1 1000 Probable G protein-coupled receptor GPR3

The BSS/WSS ranks represent the ranks in the binary logistic regression (Y = 0 versus Y = 1) or (Y = 0 versus Y = 2). If a gene is selected in only one binary logistic regression, a
blank entry is shown. For example, X03934_at was ranked #1 in the binary regression between AML (Y = 0) and ALL-T cell (Y = 2), but X03934_at was not selected in the binary
regression between AML (Y = 0) and ALL-B cell (Y = 1). The genes are shown in descending order of Pr(bi �= 0|D).
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Table 6. Summary of the results

Dataset # classes Classes Results from our iterative BMA algorithms Published results

Breast cancer 2 Poor versus good # genes = 6 # genes = 70
prognosis data prognosis groups Brier Score = 2.04

# errors = 3/19 # errors = 2/19

Leukemia data 3 AML versus ALL-B cell # genes = 15 # genes = 40
versus ALL-T cell Brier Score = 1.5

# errors = 1/34 # errors = 1/34

Hereditary breast 3 Sporadic versus # genes = 13–18 # genes = 343–438
cancer dataa BRCA1 versus BRCA2 Brier Score = 5.5

# errors = 6/22 # errors = 6/22

The number of relevant genes, Brier Score and the number of classification errors on the test set obtained from our iterative BMA algorithms are shown in column 4. The number of
relevant genes and number of classification errors on the test set from published results are shown in column 5.
aResults from the hereditary breast cancer data were evaluated using LOOCV.

cell (Y = 0 versus Y = 1), and 9 genes were from comparison of
AML with ALL-T cell (Y = 0 versus Y = 2). Recently, Lee and
Lee (2003) applied the multicategory support vector machine to the
training set (with 38 samples) of the 3-class leukemia data. Their
best result is one classification error on the test set (with 34 samples)
using 40 relevant genes.

3.3 Hereditary breast cancer data (three classes)
Hedenfalk et al. (2001) studied the expression patterns of hereditary
breast cancer with gene mutations (BRCA1 or BRCA2 mutations).
The hereditary breast cancer dataset consists of seven samples of
cancers with BRCA1 mutation, eight samples with BRCA2 mutation
and seven sporadic cases of primary breast cancers across 3226 genes.
There is no separate test set available, so we use leave-one-out cross
validation (LOOCV) in which each of the 22 samples is used in turn
as the test sample and a classifier is built using the remaining 21
samples.

We applied the multiclass iterative BMA algorithm to this 3-class
data, and obtained encouraging results: a Brier Score of 5.5 with six
classification errors (out of 22 samples) with 13–18 relevant genes,
using all 3226 genes and nbest = 50. Since LOOCV is used, a differ-
ent classifier is built for each test sample, so the number of relevant
genes may vary in each classifier. Nguyen and Rocke (2002a) repor-
ted six classification errors with 343–438 relevant genes using their
proposed partial least squares gene selection method on the same
dataset.

4 DISCUSSION
We have proposed iterative BMA algorithms for gene selection on
binary and multiclass microarray data. Both are multivariate gene
selection methods in which dependency between genes is exploited.
Our algorithms take advantage of model uncertainty by averaging
over multiple models (sets of relevant genes). We demonstrated high
prediction accuracy using smaller numbers of genes (relative to other
methods) on both binary and multiclass microarray datasets. Table 6
shows a summary of our results. In addition, our algorithms produce
posterior probabilities for both selected genes and models, and these
posterior probabilities aid biological interpretation. We also observed

that the selected models are generally very simple, containing only a
few genes. We adopted the Brier Score and used the generalized
Brier Score to evaluate prediction accuracy, taking the posterior
probabilities for the response variables into consideration.

Unlike most feature selection algorithms, in which a prespecified
number (usually small) of top ranked genes are chosen as relevant
genes and all the remaining genes are discarded, our iterative BMA
algorithm guarantees that all p genes are considered even though the
resulting selected genes and models depend on the initial ranking.
We show that genes with poor univariate scores may contribute to
increased prediction accuracy, and we recommend using all available
genes (i.e., p = G) in the iterative BMA algorithms, except in the
case of thresholded data. From our experiments, nbest = 20 or 50
generally yield good results.

In order to efficiently compute a reduced set of good models, we
use the leaps and bounds algorithm (Furnival and Wilson, 1974),
which returns the best ‘nbest’ models for each size up to 30 vari-
ables. This imposes a restriction of a 30-variable window on our
iterative BMA algorithms, which in turn limits our algorithms to
choosing at most 30 relevant genes. Although this restriction does
not seem to hurt performance, we are currently in the process of
exporting our BMA software from Splus to R, and relaxing this 30-
variable limitation. Our current implementation is computationally
efficient. For example, it takes under 30 min to run our iterative BMA
algorithm on the binary breast cancer prognosis dataset (nbest = 20
and p = 4919) on a moderate computer with a 1.4 GHz AMD Athlon
processor. Another future project is to study the effect of the chosen
baseline (Y = 0) in our multiclass iterative BMA algorithm. Our pre-
liminary results show that changing the baseline response variable
does not affect predictive performance much. However, the number
of relevant genes chosen can be different. In addition, we would like
to conduct an extensive empirical study using multiple validation
designs on more datasets and to extend our algorithms to survival
analysis.

The combination of high accuracy, small numbers of genes and
posterior probabilities for the predictions should make BMA an
attractive tool for developing diagnostics from expression data. At
present, it is very clear that the most cost-effective technology to
measure expression for thousands of genes across limited numbers
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of samples is DNA microarray analysis. It is also clear that if one
wishes to measure expression levels for a few genes across thou-
sands of samples, then either RT–PCR or ELISA technology is more
cost-effective. Hence, a reduction in the number of genes necessary
to obtain accurate predictions could drive the diagnostic method of
choice. Given that microarray technology for diagnostic purposes
is relatively untested and no microarray-based test has yet been
approved by the FDA, reducing the number of genes to a level amen-
able to ELISA or RT–PCR technology could have a significant impact
on the ability to convert array results into a usable diagnostic. In addi-
tion, regardless of the technology used for a diagnostic, the number of
required measurements (genes) is likely to have a significant impact
on the costs. The posterior probability of the prediction provides an
estimate of the certainty of the classification, which can be useful in
a diagnostic setting.
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