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Discussion: Performance of Bayesian

Adrian E. RAFTERY and Yingye ZHENG

Model Averaging

1. INTRODUCTION

In their article “Frequentist Model Average Estimators,”
Hjort and Claeskens—hereafter HC—make the point that sta-
tistical inference conditional on a model selected among several
on the basis of data will tend to underestimate variability. We
strongly agree. They argue that the way to overcome this is by
model averaging, and again we agree. There 1s much support for
these arguments: These points have been made by many authors
in a long line of literature going back at least to Leamer (1977).
HC point out that Bayesian model averaging (BMA) dominates
the literature on accounting for model uncertainty in statistical
inference. Their search for a frequentist alternative is largely
motivated by the feeling that the performance of BMA in re-
peated datasets or experiments has been inadequately studied.
Or, as they put it, “even though BMA ‘works,'. .., rather little
appears to be known about the actual performance or behavior
of the consequent inferences such as estimator precision.”

This 1s a somewhat surprising statement, as the performance
of Bayesian model selection and BMA has, in fact, been ex-
tensively studied. There are three main strands of results: gen-
eral theoretical results going back to Jeffreys (1939), simulation
studies, and results on out-of-sample predictive performance.
HC do not refer to any of this literature. The theoretical re-
sults are well known but somewhat scattered in the literature.
In brief, when used for model selection, the Bayes factor mini-
mizes the total error rate (sum of Type I and Type Il error proba-
bilities); BMA point estimators and predictions minimize mean
squared error (MSE); BMA estimation and prediction intervals
are calibrated; and BMA predictive distributions have optimal
performance in the log score sense. We bring these results to-
gether in our Section 2. These results for BMA are quite general
and do not rely on the assumption that all uncertain parameters
are small [essentially HC's local misspecification assumption,
required by frequentist model averaging (FMA)]. They also do
not require the standard regularity conditions assumed by HC
in deriving FMA, which are violated in many models of prac-
tical interest, such as changepoint models, or models involving
unknown population size.

There are also several realistic simulation studies of the per-
formance of BMA relative to other methods in a variety of situa-
tions, including linear regression (George and McCulloch 1993
Raftery, Madigan, and Hoeting 1997), log-linear models (Clyde
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1999). logistic regression (Viallefont, Raftery, and Richardson
2001), and wavelets (Clyde and George 2000). In these studies
BMA was compared to the prevailing state-of-the-art methods
and generally found to have better performance.

Finally, there has been extensive investigation of the out-
of-sample predictive performance of BMA compared to other
methods for real datasets. This is particularly important because
these are situations in which the model assumptions underly-
ing BMA and other methods do not necessarily hold, and they
provide a neutral criterion for comparing methods. These in-
clude graphical models (Madigan and Raftery 1994; Madigan,
Gavrin, and Raftery 1995), survival analysis (Raftery, Madigan,
and Volinsky 1995), linear regression (Raftery et al. 1997,
Hoeting, Madigan, Raftery, and Volinsky 1999; Fernandez, Ley,
and Steel 2001a,b; Hoeting, Raftery, and Madigan 2002), bi-
nary regression (Fernandez, Ley, and Steel 2002), and semi-
parametric regression (Lamon and Clyde 2000). The results of
these studies have been quite consistent: BMA had better pre-
dictive performance than competing methods. It would be inter-
esting to assess the predictive performance of FMA in the same
way, using out-of-sample predictive performance. As HC note
in their Section 10.5, the only model averaging methods that
they discuss that have optimality properties are the Bayesian
ones: FMA itself does not appear to yield optimal methods.

FMA consists of the analysis of the long-run properties of
model averaging schemes under the local misspecification as-
sumption in HC's (2.2). which is essentially an assumption that
all the parameters of interest for model averaging are small,
specifically O(1/4/n), modulo the known shift yy. As we dis-
cuss in our Section 4, this assumption i1s highly consequential,
and HC's risk results depend on it crucially. As such, its realism
is a critical issue, and we discuss that in Section 4.

HC’s analysis of BMA under this local assumption, and their
local approximation to Bayes factors, BLIC, are interesting and
potentially relevant if one does accept the assumption. These
ideas have been discussed previously. Smith and Spiegelhalter
(1980) analyzed Bayesian model selection under similar local
assumptions and proposed several “local Bayes factors,” de-
rived in essentially the same way as HC’s BLIC. It would be
interesting to compare the two.

HC’s proposal to estimate the spread in the BMA prior using
empirical Bayes methods also seems useful. However, this idea
has also been discussed previously and in more depth. Volinsky
(1997) suggested combining ridge regression and BMA in, es-
sentially, an empirical Bayes BMA scheme. George and Foster
(2000) proposed using the data to estimate the prior spread, and
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also the prior probability of a parameter being nonzero, yield-
ing an empirical Bayes Bayesian variable selection method; this
was extended to model averaging by Clyde and George (2000)
in the context of wavelets. Hansen and Yu (2001) developed lo-
cal empirical Bayes approaches in which the prior depends on
the model in a data-dependent way, as in HC’s BLIC™.

This comment 1s organized as follows. In Section 2 we sum-
marize some of the theoretical results in the literature on the
performance of Bayesian model selection and BMA. These rely
on the assumption that the prior distribution is representative of
situations encountered in practice, and in Section 3 we inves-
tigate robustness to this assumption in a simple situation; the
results seem fairly insensitive to this assumption. In Section 4
we show that the local misspecification assumption 1s important
for HC’s risk results, and we discuss its realism. In Section 5 we
discuss the logistic regression example, which is HC's only data
example.

2. PERFORMANCE OF BAYESIAN MODEL
SELECTION AND BAYESIAN MODEL AVERAGING:
THEORETICAL RESULTS

Our goal 1s to make statements about the long-run perfor-
mance of model averaging and the associated estimators. But
which long run? In general, the performance of statistical meth-
ods depends on the underlying state of nature; there is no
method that is uniformly optimal. Exceptions to this arise in
special cases, for example, in some estimation problems when
a pivotal quantity 1s available. Thus, we seek good performance
on average over a range of situations, for example, over the sta-
tistician’s “career” of working with the model class in ques-
tion. This involves averaging over situations where the different
models hold (at least approximately). Within a given model, it
involves averaging over a range or distribution of parameters
typical of those encountered in practice. We call this the prac-
tical distribution of the parameters. This 1dea goes back at least
to Jeffreys (1939), who referred to it using the term “world fre-
quencies.”

The first key result is due to Jeffreys (1939, p. 327) and con-
cerns testing for two nested models.

Theorem 1 (Jeffreys). For two nested models, model choice
based on the Bayes factor minimizes the total error rate
(= Type I error rate + Type Il error rate) if the practical distri-
bution 1s equal to the prior distribution over the parameters.

This leads to a different interpretation of the prior distribu-
tion from the usual one, namely, the distribution of the para-
meters over which we would like to see good performance of
the model choice method. Frequentist research on testing meth-
ods routinely implicitly defines such a distribution through the
parameter values chosen for the simulation studies carried out
to assess the power of a test; for recent articles of this kind in
this journal, see Pena and Rodriguez (2002) and Horowitz and
Spokoiny (2002). Note that Theorem 1 generalizes immediately
to the situation where the costs of the two types of error are un-
equal, by multiplying the Bayes factor by the ratio of the costs.

We now consider point estimation and point prediction. The
BMA posterior distribution of a quantity of interest Q, which
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may be a model parameter, a “focus parameter” in HC's termi-
nology, or an observable quantity to be predicted, is

p(Q|data) = ) _ p(Q|S, data) p(S|data), (1)
)

where p(Q|S, data) is the posterior distribution of Q under
model S and p(S|data) is the posterior probability of model §.
[t follows that the BMA point estimate of Q i1s

OBMA = Z Qs p(S|data). (2)
5

This 1s of the type of HC's (4.1). As HC point out, for this to be

valid, Q must have the same interpretation under all the mod-
els. What precisely this means has not been spelled out, as far as
we know. We suggest one meaning: that Q be interpretable as
a quantity that could be calculated from future data, at least as-
ymptotically. The following result was alluded to in HC’s Sec-
tion 10.5.

Theorem 2. Qgma minimizes MSE among point estimators
when the practical distribution of the parameters is equal to the
prior distribution.

We now consider interval estimation. We consider BMA es-
timation intervals with posterior content «. Then we have the
following result.

Theorem 3. BMA estimation intervals are calibrated, in the
sense that the average coverage probability of a BMA interval
with posterior content « 1s greater than or equal to «, on aver-
age over datasets drawn from the practical distribution, if the
practical distribution of the parameters is equal to the prior dis-
tribution.

Note that the BMA distribution of a quantity of interest can
be viewed as the posterior distribution from the full model,
with a mixed discrete—continuous prior distribution that assigns
weight to the events that the individual components of y are 0.
Then Theorem 3 follows from the arguments of Rubin and
Schenker (1986), with the continuous prior distribution used
there replaced by the mixed discrete—continuous prior measure
induced by BMA. The only reason that the average coverage
probability of the BMA interval 1s not exactly equal to « (rather
than greater than or equal to «) 1s that for some datasets the
interval may consist of just a single value corresponding to a
component of yy with posterior probability greater than «. Also,
if the BMA estimation intervals are the shortest intervals with
posterior content «, then they are the shortest intervals with the
calibration property of Theorem 3.

Finally, we consider prediction of an observable out-of-
sample quantity. Theorems 2 and 3 already show that BMA
point prediction minimizes predictive MSE and that BMA pre-
diction intervals are calibrated. The following additional opti-
mality result for BMA prediction was given by Madigan and

Raftery (1994).

Theorem 4. The BMA predictive distribution of a predictand
Q 1s optimal under Good’s (1952) logarithmic scoring criterion:

E[lﬂgl Z p(Q|S. data) p(S|data) H > E[Iogg(Qldata)]
S
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for any probability distribution g(-|data), where the expectation
is with respect to the predictive distribution Y _ ¢ p(Q|S, data) x
p(S|data).

This follows from the nonnegativity of the Kullback—-Leibler
information divergence. One way of interpreting this result is
in terms of a simulation experiment. Data are generated from a
model chosen at random among those considered, with parame-
ters chosen at random from the prior distribution. The predic-
tand Q 1s generated from the same model and parameter values,
but these are unknown to the person forming the predictive dis-
tribution. Predictive distributions are generated using BMA and
any other competing method considered. Theorem 4 says that
the log score will be better for BMA than for any other way of
forming predictive distributions.

The results 1n this section are impressive, but they leave two
questions open. How much better is BMA than other methods
in specific situations? And how robust are these optimality re-
sults to the assumption that the prior distribution is equal to the
practical distribution? We consider these questions in the con-
text of a very simple example in the next section.

3. NORMAL EXAMPLE

To get a sense of numerical differences in performance, and
also of the extent to which the results in the last section hold
even if the prior distribution is not the same as the practical dis-
tribution, we consider a very simple normal example. Here data
(V1,...,¥n) are iid N(u, 1) and we consider just two models,
Mo: =0 and M,: % 0. Under M; the prior distribution is
it ~N(0, 0%). [The choice o* = 1 is the unit information prior
and is generally agreed to be conservative (Raftery 1999), so
here we consider only o* < 1.] The practical distribution we
consider draws equally from the two models, and under M),
1 comes from an N(0, £2) distribution. The prior distribution 1s
equal to the practical distribution when o = 1.

Analytic results are available in this situation. Although a
simple special case, it is more general than it seems, because the
results carry over fairly directly to 1-degree-of-freedom nested
model comparisons with at least moderate sample sizes under
standard regularity conditions.

Figure 1 shows the total error rate when n = 100. The results
were similar over a wide range of values of the practical vari-
ance 2, from ll—ﬁ to 1, so we show only the results for r2 = 1.
Model choice using a Bayes tactor depends on the prior vari-
ance o> and has a lower total error rate than a 5% significance
test for all o > .4, that is, for a prior variance that is “mis-
specified” relative to the practical distribution by a factor of up
to 2.5. The Bayes factor has a lower error rate than AIC for all
o > .05, that is, for prior variances that are misspecified by a
factor of up to 20. It would be interesting to extend this com-
parison to include FIC. Section 5.6 of Claeskens and Hjort's
article “The Focused Information Criterion™ suggests that FIC
1s likely to be close to AIC in practice, so one may conjecture
that its performance will also be close to that of AIC.

Figure 2 shows the total error rate with a much larger sam-
ple size, n = 100,000. There we see that Bayes factors (and
BIC) have much lower error rates than other methods, for all
values of the prior variance. Once again, the result is robust to
the practical variance t°, at least up to the factor of 16 in our
experiments.
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Figure 1. Total Error Rate in the Simple Normal Example for n = 100.
Model choice is based on a Bayes factor (solid line), a 5% significance
test (dashes), BIC (dots), and AIC (dots and dashes). The x axis shows
the prior variance o?.

We now turn to estimation of . Figure 3 shows the mean
squared errors of the BMA estimator with n = 100. These are
compared with the MSE of the usual estimator 2 = v, which is

L — 01. The BMA estimator outperformed the usual estimator

r

by about 28% 1n terms of the MSE, as long as the prior variance
was not unduly small—greater than about .25. As can be seen
from Figure 3, this result is robust to both the prior variance
and the practical variance and holds even when they differ by a
factor of up to 4.

We now consider the coverage of interval estimates of .
These are shown in Figure 4 for the BMA interval estimate and
the standard normal confidence interval. The BMA interval has
nearly correct coverage as long as the prior variance is not too
small—again at least .25.

The average length of the confidence intervals 1s shown in
Figure 5. The BMA interval is consistently shorter than the
standard confidence interval, by amounts that depend on the
practical variance but are relatively insensitive to the prior vari-

ance. For unit prior variance, the reductions in the length of
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Figure 2. Total Error Rate in the Simple Normal Example for n =
100,000. (— BF; --- 5%, +---- BIC; ---- AlIC.)
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Figure 3. BMA Estimation of i1 in the Simple Normal Example: Mean
Squared Errors. The solid line shows the MSE for the standard estimator
{t =y, which is 1/n= .01, (--- practical variance = .0625; ----- practical
variance = .25, ---- practical variance = .5; —— practical variance = 1.)
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Figure 4. Coverage of 95% Confidence Intervals for y in the Simple
Normal Example: BMA Interval and Standard Normal Confidence Inter-
val. (--- BMA; — t-interval.)
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Figure 5. Average Lengths of Confidence Intervals for 1 in the Simple
Normal Example. (— BMA: practical variance = .0625; --- BMA: practi-
cal variance = .25; ----- BMA: practical variance = .5; ---- BMA: practical
variance = 1; —— t-interval.)
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the confidence intervals range from 6% to 40%. It would be
of interest to do a similar calculation for the AIC-based and
FIC-based model averaging estimators.

4. THE LOCAL MISSPECIFICATION ASSUMPTION,
AIC, AND FMA

The results in Section 2 say that BMA 1s optimal in terms
of mean squared error and yields calibrated interval estima-
tors of minimal length, provided that the prior distribution 1s
equal to the practical distribution over which performance is
assessed. HC assume that the practical distribution has vari-
ance 0(%)—thi5 is the local misspecification assumption in
their (2.2). It follows from the arguments of Akaike (1983), that
AIC provides an asymptotic approximation to (twice the loga-
rithm of) the Bayes factor, provided that the prior distribution of
the parameters contains about the same amount of information
as the data, implying that the prior variance is O ().

In the simple normal example of the last section, it can be
shown that if the prior variance is proportional to a power of n,
that is, if 0% = cn~?, then AIC — 2log Bjp = O(1) if and only
if § = 1, where B is the Bayes factor for M| against My:;
otherwise, if 0 <8 < 1, AIC — 2log B1g > O(1). Further, AIC
is an unbiased estimator of twice the log Bayes factor under M,
that 1s,

E[AIC — 2log Bo|M ] =0,

if and only if ¢ = e — | = 1.718. Thus, in this case, AIC is
equivalent to a Bayes factor if the prior contains the same infor-
mation as about .58n observations. This seems like an unrea-
sonably informative prior for many purposes.

In light of this, HC’s risk results, that model averaging with
AIC-like weights do well, are not surprising. In their case both
the prior and the practical distributions have variances O(;:). In
this situation the results in our Section 2 suggest that AIC-based
model averaging will be close to optimal and that BIC and stan-
dard Bayes factors will not, because the prior on which they are
based is very different from the practical distribution used to
assess them. FIC-based model averaging is a further refinement
designed specifically to give optimal estimation results when
the local misspecification assumption holds, and so it 1s no sur-
prise that it does well in the simulation studies designed by the
authors.

Thus, the local misspecification assumption (2.2) is critical to
HC’s results. It i1s not just a technical regularity condition, but
a key assumption about the way the world works. The question
then becomes, 1s it realistic? There are two standard arguments
for its realism. One is that, as the sample size increases, the
effects or parameters of interest become smaller—in essence,
give researchers a more powerful microscope. and they will
look for smaller objects. The other is the converse, that re-
searchers aiming at finding small effects are more likely to use
larger sample sizes. These arguments support the direction of
the association between parameter size and sample size, but not
the assumed rate.

We are not convinced, however. The local misspecification
assumption applies to nuisance parameters rather than to quan-
tities of primary interest, and the main arguments supporting
the assumption refer mainly to quantities of primary interest. It
does not seem to cover the situation where individual y; are not
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small, but model uncertainty is still present because of corre-
lation between the corresponding x;. It also does not represent
the situation where the coefficients for some nuisance variables
are substantial, and those for others are small; in our experience
this 1s a common situation,

The assumption seems implausible on its face in some sit-
uations. For example, consider the low-birth-weight example.
Risk factors for low birth weight have been considered in large
studies with thousands of subjects, as well as the small study
with 189 subjects discussed by HC. The main nuisance para-
meter in HC’s version of the problem is the effect of maternal
age—1s 1t reasonable to expect this to be much larger in the
study discussed by HC than in another much larger one, just
because the sample size is much smaller? It seems unlikely to
us.

The salience of the local misspecification assumption seems
likely to be diminishing given current trends in science. Increas-
ingly, data collection and research are disassociated, with dis-
ciplines more and more organized around large, high-quality
publicly available databases collected using public funds, and
many researchers addressing different questions using the same
data. This makes it less likely that the size of parameters would
depend on sample size—researchers are more likely to choose
datasets based on whether or not they contain variables of inter-
est than on their sample size.

Sociology provides one example of this—much sociological
research on very diverse topics is carried out using a small num-
ber of large databases such as the General Social Survey (GSS),
the National Longitudinal Survey of Youth (NLSY), and the
National Survey of Families and Households (NSFH). These
databases all have comparable sample sizes. on the order of
5,000 to 20,000. They are used to investigate all sorts of so-
ciological questions and to estimate a wide range of parame-
ters, large and small. The size of the effects of main interest is
hardly related to the sample size (which is essentially constant
and out of the researcher’s control), and the size of the nuisance
parameters 1s even less likely to be related to sample size.

Another such discipline i1s astronomy, which is moving to-
ward the same model as sociology, with many researchers
working at their computer screens in a “virtual observatory™
such as Skyview (http://skyview.gsfc.nasa.gov), rather than
generating theirr own data. Epidemiology—Ilong a bastion of
research-group-specific datasets—is also moving in this direc-
tion, albeit in a different way, via meta-analysis, with the pool-
ing of all data from all available studies. A further example
1s political science—a great deal of North American political
science research is based on a single database, the National
Election Studies (NES—htip://www.umich.edu/nes). A bibli-
ography lists roughly 4,000 publications based on the NES data.

When sample size 1s decided on by researchers in terms of
the question being studied, 1t 1s often determined, not by the
size of the effect being studied, but by its importance. Large ef-
fects may actually be the object of larger studies. For example,
the association between smoking and lung cancer is certainly
a large one, and once 1ts existence was suspected, several very
large studies were carried out to assess it.

Do statusticians act as if they believe the local misspecifi-
cation assumption? One way of assessing this, implicitly, is by
looking at the design of simulation studies in the statistical liter-
ature that assess the performance of estimators and tests. If they
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did, one would expect to see simulation studies with a relation-
ship between sample size and parameter value, with large sam-
ple sizes corresponding to small parameter values. This rarely,
if ever, happens. Some examples from recent issues of this jour-
nal, are Horowitz and Spokoiny (2002), Pena and Rodriguez
(2002), and Chaterjee. Chen, and Breslow (2003 )—in their sim-
ulation studies, as 1in most others of which we are aware, pa-
rameter values and sample size were varied independently. It
seems that statusticians do not see an inverse relationship be-
tween parameter size and sample size of the kind implied by
the local misspecification assumption as an important enough
feature of reality to be worth including in simulation studies.

5. MODEL AVERAGING FOR LOGISTIC REGRESSION

HC’s only data example is the logistic regression for predict-
ing low birth weight. Their “focus parameters™ are the proba-
bility of low birth weight for a white mother with covariates
equal to the average for whites in the study, the same quantity
for a black mother, and the ratio of the two. The latter seems
like a strange choice. If the ratio is different from 1, this could
be due to interracial differences in the probability of low birth
weight, in the average covariates, or both; the measure conflates
the two sources of variation. In epidemiological studies inter-
est generally focuses on the extent to which an independent
variable of interest (here race) is a risk factor, after adjusting
for other covariates—in the present context this is just the lo-
gistic regression parameter for black (x4). Epidemiologists are
also interested in subpopulation average prevalences. However,
the ratio focus parameter used by HC corresponds to neither of
these, and it does not seem to provide an answer 1o any scien-
tific question of wide interest.

5.1 Bayesian Model Averaging for Case—Control Studies

HC’s analysis does not tell us how accurate any of the es-
timators or standard errors are in this example. It therefore
seems to be of interest to summarize the only study that we
know of the performance of model averaging for logistic re-
gression (Viallefont et al. 2001). This was carried out in the
context of what is probably the largest area of application of
logistic regression: epidemiological case—control studies. Typ-
ically, there is one “focus parameter” of interest—the adjusted
effect of a potential risk factor of interest, as measured by the
logistic regression parameter. There are usually many potential
confounders, on the order of dozens, and the task is to make
inference about the effect of the risk factor of interest.

BMA was implemented for this application using a prior
distribution for the effect of interest that was agreed on by
a team of collaborating epidemiologists and that implied that
the odds ratio was unlikely to be greater than 7. Model av-
eraging was carried out using the glib software for BMA
in generalized linear models (Raftery 1996), available at
www.research.att.com/volinsky/bma.html. The performance of
BMA and other confounder selection methods was analyzed
by means of a simulation study whose specification (numbers
of cases and controls, numbers and effect sizes of potential
confounders, actual odds ratios) was based on a sample of 50
case—control studies in the epidemiological literature. It is often
possible to design a simulation study to favor almost any model



936

selection or averaging method, and basing the design on a sam-
ple of actual studies helps to minimize such biases.

The results were as follows. The BMA posterior probabil-
ity of the adjusted odds ratio of interest being different from 1,
averaged over all models, was well calibrated, whereas signif-
icance tests with standard confounder selection methods were
not. BMA interval estimates were well calibrated, and BMA
point estimates had MSE about 20% lower than that of stan-
dard vanable selection methods.

5.2 Bayesian Model Averaging for the
Low-Birth-Weight Example

We now give BMA results for the low-birth-weight example.
As we have noted, HC’s main focus parameter seems of du-
bious scientific value, but we give results for it anyhow. Also,
HC have greatly simplified the model uncertainty aspect of the
problem. In the initial dataset of Hosmer and Lemeshow (1989),
there were nine independent variables about which there was
uncertainty (counting the two race dummy variables). However,
HC removed five variables from the dataset, namely, smoking,
history of premature labor, history of hypertension, uterine ir-
ritability, and number of physician visits. They also assumed
that there 1s no uncertainty about the inclusion of the maternal
weight variable, thus reducing the number of uncertain vari-
ables from 9 to 3, and the number of potential models from 528
to 8. First we give BMA results on the same basis as the HC
analysis, and in Section 5.3 we give BMA results for the com-
plete problem.

We compute posterior model probabilities in four ways. First
we use the reference proper prior approach of Raftery (1996)
with prior dispersion parameter ¢ = 1. Altough proper, this
prior 1s designed to be spread out enough as to be essentially
noninformative; the prior standard deviation of the “black” ef-
fect, the regression parameter for x4, 1s 6.3. Weakliem (1999)
argued that odds ratios greater than about 15 are unusual In so-
cial scientific contexts of this kind, and we translate that into
an “informative” prior for the “black™ and “other race” para-
meters that has a standard deviation of 1.35. We compare these
with model averaging using the BIC approximation and the AIC
weights.

Table 1 shows the standard frequentist results and the BMA
posterior model probabilities for the eight models considered
by HC. None of the larger models fits significantly better than

Table 1. Standard GLIM Analysis and Posterior Model Probabilities for
HC's Subset of the Low-Birth-Weight Data

Posterior model probabilities (%)

Dev. P  Reference Informative BIC AlC

Model diff df value prior prior approx. weights
0 0 0o — 54 25 54 11
3 1.57 1 21 8 4 9 9
4 362 1 .06 24 38 24 24
8 59 1 44 5 ! 5 5
34 452 2 10 3 4 3 14
35 201 2 37 1 1 1 4
45 543 2 .07 5 20 4 22
345 603 3 .1l 0 2 0 11

NOTE: Dev. diff. is the deviance difference between the model considered and HC'’s “narrow”
model with just maternal weight as covariate. df refers to the number of degrees of freedom in
the comparison, and F value to the P value for the asymptotic xz distribution of the deviance in
testing the model considered against the narrow model.
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Table 2. BMA Estimates and Posterior Standard Deviations for HC's
Focus Parameters for HC's Subset of the Low-Birth-Weight Data

Reference Informative BIC AlC
prior prior approx. weights

For p(white)

Estimate 285 268 .285 261

Standard deviation 040 045 .040 046
For p(black)

Estimate 306 357 306 .369

Standard deviation .098 113 .098 B i £
For the ratio

Estimate 1.096 1.359 1.094 1.442

Standard deviation 420 532 418 549

the “narrow” model by standard criteria at the 5% level, and
the reference BMA analysis as well as the BIC approximation
favors the narrow model, although not decisively, agreeing with
the standard analysis. The BMA analysis with an informative
prior gives more weight to the wider models; this is due to the
additional information in the prior. Model averaging with AIC
weights also gives more weight to the wider models; this can
be viewed as a consequence of the fact that this is a form of
BMA with quite informative prior distributions. The BIC and
reference BMA analyses are in close agreement, which is to be
expected as both correspond to the use of a unit information
prior for the parameters (Kass and Wasserman 1995; Raftery
1995, 1996).

Table 2 shows the BMA estimators and posterior standard
deviations for HC’s focus parameters and may be compared
with HC’s Table 2. The results are fairly similar across model
averaging methods. The difference between model selection
and model averaging is especially striking for the reference
prior BMA and the BIC approximation, which favor the nar-
row model. For the narrow model the standard error of the ratio
focus parameter is .06, whereas for BMA it is .42.

5.3 Analysis of Complete Low-Birth-Weight Data

HC excluded the five variables smoking, premature labor,
hypertension, uterine irritability, and physician visits from the
analysis, but did not discuss this decision; we could not see that
it would lead to better inferences, whether one is interested in
the association between race and low birth weight after adjust-
ing for other factors or in explaining the total association be-
tween race and low birth weight in terms of other factors. Also,
we were unclear about the justification for HC’s decision to in-
clude maternal weight with prior probability 1.0. Hosmer and
Lemeshow (1989) themselves made inference about this from
the data at hand rather than a priori: The purpose of their study
was to find out which of the collected variables, all known to
be associated with low birth weight in some populations, were
important in the population being served by the medical cen-
ter where the data were collected; see Hosmer and Lemeshow
(1989, pp. 91-94). As already mentioned, we were also unclear
about the choice of focus parameters, which seem to differ from
standard epidemiological practice.

As a result, we reanalyzed the dataset, including all the vari-
ables and taking account of uncertainty about them, with a fo-
cus on the logistic regression parameters themselves, which
correspond to adjusted log-odds ratios. This leads us to 528
models rather than HC’s 8. We first carried out a reference prior
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Table 3. Posterior Effect Probabilities, BMA Posterior Means, and BMA Posterior
Standard Deviations for the Full Low-Birth-Weight Dataset

Reference prior Informative prior
Parameter Pr[p #0] (%) Mean SD Prp #0] (%) Mean  SD
Age 8 048 .035 3 —.046 .035
Maternal weight 71 —-.016 .007 72 —-.016 .007
Black 25 986 .509 58 910 478
Other race 17 750 .466 47 J17 417
Smoking 36 J72 391 68 J71 381
Premature labor 42 719 335 46 627 .328
Hypertension 68 1.761 713 88 1.352 .623
Uterine irritability 29 886 .443 49 780 423
Physician visits 1 -.059 .168 1 —.064 .167

NOTE: These results are based on Bayesian model averaging across the 86 models whose BIC-approximated posterior
probabilities were at least 1/20 of that of the model with the highest one. Pr{ g +# 0] is the posterior effect probability, that
IS, the probability, given the data, that the parameter is different from zero, expressed as a percentage. The posterior
mean and standard deviation are calculated conditionally on the variable being in the model, that is, on the associated

regression parameter being different from 0.

BMA analysis (Raftery 1996); as before, the results for this
were similar to those using BMA with the BIC approximation.
We then carried out a more informative analysis using the prior
with a standard deviation of 1.35 for the last seven variables, all
of which are either binary or counts. For computational conve-
nience we excluded the models whose BIC-approximated pos-
terior probability was less than that of the most likely model by
a factor of 20 or more; this step is optional and the results are

insensitive to it. This left 86 models that we averaged over.
This analysis can be done easily in Splus using the two com-

mands:

bic.hosmer <- bic.glm (x,y,binomial)
glib.hosmer <- glib (x,y,error="binomial", link
= "logit", models=(bic.hosmer$which) *1,phi=1)
where bic.glm and glib are Splus functions that can be
downloaded from www.research.att.com/™volinsky/bma.html,
x 18 the 189 x 9 design matrix of independent variables, and
y is the vector of responses. The BMA analysis with infor-
mative priors requires specification of the priorvar matrix
argument in glib. The results are shown in Table 3.

The posterior effect probabilities in Table 3 can be inter-
preted in light of the commonly used scale for Bayes factors
(Jeffreys 1939; Kass and Raftery 1995), on which odds of less
than 3:1 are viewed as weak evidence. Thus, posterior effect
probabilities between 25% and 75% would correspond to weak
evidence one way or the other. Most of the effects in this dataset
are within this indecisive range. The additional information in
the informative prior tends to increase the evidence for individ-
ual parameters, but generally not enough to change the qualita-
tive conclusion. The most likely single model includes all the
variables except age, premature labor, and physician visits. In
most cases the posterior effect probabilities reflect more uncer-
tainty than P values based on a single model; this i1s due in part
to taking account of model uncertainty.
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Rejoinder

We are honored to have our work read and discussed at
such a thorough level by several experts. Words of apprecia-
tion and encouragement are gratefully received, and the many
supplementary comments, thoughtful reminders, new perspec-
tives, and additional themes raised are warmly welcomed and
deeply appreciated. Our thanks also go to the editor, Francisco
Samaniego, and his editorial helpers for organizing this discus-
sion.

Space does not allow us to answer all of the many worthwhile
points raised by our discussants, but in the following we make
an attempt to respond to what we perceive as being the major
1ssues. Our responses are organized by themes rather than by
discussants. We shall refer to our two articles as “the FMA ar-
ticle” and “the FIC article.”

1. THE LOCAL NEIGHBORHOOD FRAMEWORK

In our articles we chose to work inside a broad and gen-
eral parametric framework, which, in the regression case, cor-
responds to our using, say,

fiue(¥) = f(yIxi, 00, Bo. vo +8//n); (1)

see Section 2 in the FMA article and Section 2 in the FIC arti-
cle. This draws partial criticism from Raftery and Zheng, who
question its realism, as well as from Ishwaran and Rao, who
argue that 1t does not yield a good framework for subset regres-
sion problems.

The local neighborhood framework (1) allows one to extend
familiar standard iid and regression models (corresponding to
having & fixed at 0) in several parametric directions (corre-
sponding to 4y, ...,d, allowed to be nonzero, for different en-
visaged departures from the start model), as exemplified in our
articles. This may, in particular, be utilized for robustness pur-
poses and sensitivity analyses and leads to a fruitful theory for
model averaging and focused model selection criteria, as we
have demonstrated.

In their Section 4 Raftery and Zheng mention two pro-(1)
arguments, before presenting their reservations. The main ar-
gument for working inside (1) 1s, however, that it leads to
natural, general, and precise limit distribution results, with con-
sequent approximations for mean squared errors and the like;
the key is that variances and squared modeling biases become
exchangeable currencies, both of size 1/n. For classes of esti-
mators /& of (@, y), including the submodel estimators jis =

u(Bs., Vs, yo.s¢). we have
~ 2 -
Eoy [ — .9} =n""p1(8, Vn(y — w))
+n (0. Vnly —v0)) +++, (2)

for example, under regularity conditions. Such expansions,
written out here without the é that Raftery and Zheng appear
to dislike, would typically be valid uniformly over ||y — wll <
const./\/n balls. We view (2)-type results as a good reason for
developing and presenting theory in terms of § = /n(y — ),
that is, using (1). Our articles have (in particular) provided for-
mulas for p; (6, 8) here, the limiting risk for /&, whereas expres-
sions for p2(6, ) are harder to get hold of; see our response
to Tsai’s comments in Section 6. We have also noted, in FIC’s
Section 5.5, that approximations coming from using the leading
term in (2)-type expansions hold with exactness for finite n for
submodel estimators of means in linear regression.

Thus, Raftery and Zheng interpret us a little bit too literally
at the end of their Section 4; as statisticians we do not believe
that our model parameter y changes value when our dataset
passes from n = 100 to n = 101, but we do believe that limit
theorems based on the (1) framework provide a lucid under-
standing and useful approximations for the given n. This com-
ment also applies to our BMA investigations (FMA’s Sec. 9),
where priors and posteriors for (8, y) are transformed to priors
and posteriors for (6, 4d). (A too-literal belief in sample-size-
dependent parameters would clash with Kolmogorov consis-
tency and other requirements for natural statistical models; see
McCullagh 2002 and the ensuing discussion.)

A further strand of arguments supporting the view that many
questions find their most natural solutions inside the y — yp =
O(1/4/n) framework is related to what we termed “tolerance
radii” in FMA’s Section 10.5. How much quadraticity, or vari-
ance heteroscedasticity, can the normal regression model tol-
erate in the sense that the simpler methods based on standard
assumptions still give better results than the more cumbersome
ones based on the larger models? How much autocorrelation
can typical iid-based methods take? Such questions are nicely
answered using the sample-size dependent magnifying glass
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