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Abstract

In this paper we formulate spectral clustering in directed
graphs as an optimization problem, the objective being
a weighted cut in the directed graph. This objective
extends several popular criteria like the normalized cut
and the averaged cut to asymmetric affinity data. We
show that this problem can be relaxed to a Rayleigh
quotient problem for a symmetric matrix obtained from
the original affinities and therefore a large body of the
results and algorithms developed for spectral clustering
of symmetric data immediately extends to asymmetric
cuts.

1 Introduction

Spectral methods for clustering pairwise data use eigen-
values/vectors of a matrix (usually a transformation of
an affinity matrix A = [Aij ]) in order to assign data
points to clusters. Insofar, most published spectral
algorithms operate on symmetric matrices. However,
there are important cases when data points have pair-
wise relationships that are not symmetric. Such data
will be called link data. Hyperlinked domains like the
web are a foremost example of link data. If the affinity
between pages i and j is conveyed by the presence of a
link, then the resulting Aij is asymmetric. Even when
more complex affinity functions are constructed, by e.g
taking into account the anchor text, the similarity of the
anchor text to the linked page, etc., the resulting affinity
is usually asymmetric, reflecting the directed structure
of the web graph. Similar to hyperlinked domains are
citation networks, where a link from document i to j ex-
ists if i contains a reference to j. Citation networks are
obviously asymmetric. Data sets describing social net-
works, economic transactions, internet communications,
and alignment scores between biological sequences are
also often asymmetric [12].

The commonly used approach for spectral cluster-
ing link data is to obtain a symmetric matrix Ã from
the original A and then to apply spectral clustering
techniques to Ã. Typical transformations used in the
literature include Ã = A + AT , Ã = AT A , and

Ã =

[

0 A
AT 0

]

. 1 These methods have the disad-

vantage that in many cases a clustering that is present
in the original asymmetric A becomes partially or com-
pletely invisible after symmetrization, as demonstrated
in [8] and figure 1.

Thus, we propose to attack clustering of link data
directly from the original asymmetric affinity matrix A.
Some previous approaches exist. The work of [8] uses
the random walks perspective to define the clustering
algorithm. Zhou et al. [21] construct a symmetric ma-
trix from A as the Laplacian of an operator representing
a weighted sum of co-reference scores, for which an in-
tuitive motivation is given. In a later paper, [19] the au-
thors introduce another method based on random walks,
which is a generalization to directed graphs of the Shi
and Malik normalized cuts method [10].

Here we formulate clustering as an optimization
problem, the objective being the minimization of a
weighted cut in the directed graph. We show that this
problem is equivalent to a Rayleigh quotient problem
[13] for a symmetric matrix obtained from A and
therefore a large body of the results and algorithms
developed for spectral clustering of symmetric affinities
can be used for it.

2 The Generalized Weighted Cut

In the following, A will be a typically asymmetric
n × n matrix with real, non-negative elements. The
assumption is that Aij represents the affinity of point
i for point j with i, j ∈ {1, 2, . . . n}. Therefore, in a
graph representation, Aij would represent the weight

on the directed edge ~ij. The indices k, k′ will be used
to index subsets of [n] = {1, . . . , n} in a partition; we
will call these subsets clusters. The indices i, j will index
elements of [n].

We denote by Di =
∑

j∈[n] Aij the out-degree

of node i ∈ [n] and by D the diagonal matrix with
Di, i ∈ [n] on the diagonal. The out-degrees Di can be

1The last two amount to the same spectral problem.
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Figure 1: The loss of information by symmetrization: An
asymmetric matrix A (a). The first eigenvector of the matrix
H(B) obtained from A as described in section 3 is plotted
in (b) vs the data points, demonstrating that there are 3
clusters in the data. The transition matrix P̃ obtained from
the symmetrized affinity Ã = A

T
A (c). The clustering in

A is partly effaced in P̃ . The eigenvectors of P̃ are not
piecewise constant (d). (Here only the second eigenvector is
plotted, but all of them have been examined).

thought of as “weights” associated to the graph nodes;
such an interpretation is central to the symmetric case
[4, 18]. Here, in addition to the weights Di, we assume
that the user may provide two other sets of positive
weights for the nodes: the volume weights denoted by Ti

and the row weights T ′
i (the associated diagonal matrices

being denoted T and T ′ respectively). The meaning of
these names will become apparent shortly.

In a directed graph one can have a node i with
outdegree Di = 0 but with incoming links (indegree
> 0). Therefore we will not assume Di > 0, but we
can assume without loss of generality (w.l.o.g.) that no
node has both indegree and outdegree 0, as it would be
completely isolated and could be removed from further
consideration for the purpose of grouping. We will also
assume Ti, T

′
i > 0 as these are user-defined weights.

W.l.o.g we can assume that
∑

i Di = 1.
Let C = {C1, . . . , CK} be a clustering of [n]. Then,

we define the cluster degrees Dk and the cluster volume
weights Tk, k = 1, . . .K by

Dk =
∑

i∈Ck

Di, Tk =
∑

i∈Ck

Ti(2.1)

We can now introduce the generalized weighted cut

(WCut) associated with C by

WCut(C) =

K
∑

k=1

∑

k′ 6=k

Cut(Ck, Ck′)

Tk
(2.2)

with

Cut(Ck, Ck′ ) =
∑

i∈k

∑

j∈k′

T ′
i Aij(2.3)

The intuition behind this definition is similar to the mo-
tivation for the normalized cut [11, 5] in the symmetric
A case: we want to find a cut of low weight in the
graph, but one which creates clusters of balanced sizes.
Here the volume weights Tk stand for the “sizes” of the
clusters, and the row weights T ′

i play the role of a row
normalization for the matrix A. They were introduced
to make the new criterion more flexible, as seen below.

2.1 Examples of weighted cuts We now show that
the new, generalized criterion allows us to study a
variety of existing and new criteria for clustering in
graphs in a unified manner.

We shall start with the better understood setting of
a symmetric affinity matrix A, which is a special case
for us. In this case, if one takes

P = D−1A(2.4)

to be the transition matrix of a (reversible) Markov
chain then the Di’s are equal to the stationary proba-
bilities πi. The WCut will recover the multiway version
of the normalized cut MNCut of [7, 18]

MNCut(C) =

K
∑

k=1

∑

k′ 6=k

Cut(Ck , Ck′)

Dk

with

Cut(Ck, Ck′) =
∑

i∈k

∑

j∈k′

Aij

by taking A ← P , T ′ = T ← D. This example moti-
vates the names for T and T ′: T ′

i is the weighting of
row i in Cut(Ck, Ck′), while Ti is the node “volume”
used to balance the cluster sizes. This point of view
also highlights the double role played by the Di val-
ues in the undirected case. They represent both the
nodes’ stationary probabilities and the row normaliza-
tion constants that turn a symmetric affinity matrix A
into a transition matrix P , which will, for symmetric A,
always represent the transition matrix for a reversible
Markov chain. The duality breaks for irreversible chains
(aka asymmetric A); there the stationary distribution



π = [πi]i, represented by the left eigenvector of P , is
usually different from the (out)degrees vector [Di]i.

2

We will return now to the general case of an
asymmetric affinity matrix A. Formally, one can define
the MNCut in the same way as above. However, since
the stationary distribution is not given by the node
outdegrees Di, it may be more sensible to normalize
the rows by the Di’s in order to obtain transition
probabilities, while weighting the nodes according to
their stationary distribution πi 6= Di. This can be done
by taking

Ti = πi, T ′
i = πi/Di, A← A.(2.5)

One can show that the resulting weighted cut sums
the conditional probabilities of leaving each cluster
when the chain is at the stationary distribution π,
which coincides with one of the interpretations of the
normalized cut in undirected graphs [7]. (The proof is
left as an exercise to the reader).

If π is replaced by any other distribution π′ (by
setting Ti = π′

i, T ′
i = π′

i/Di, the corresponding
WCut will represent the sum of evasion probabilities
under π′. For instance, by taking π′ to be the uniform
distribution, we get the evasion probabilities for a chain
that is restarted from the uniform at each step. For

Ti = T ′
i = 1/n(2.6)

we obtain the so called average cut, where the cut
sizes are normalized by the number of elements in each
cluster.

The weighted cuts approach gives us more flexibil-
ity. While using a (stationary) distribution to weigh
the graph nodes may be meaningful sometimes, we will
show that this is not always so. User-selected weights
not directly interpretable as distributions can be mean-
ingful too, as it is the case in the average cut case, when
the clusters sizes equal the number of nodes in a cluster.
We argue that for some problems, the nodes’ outdegrees
themselves can be used as weights. This would be a
“direct authority” model, where a node’s importance is
equal to the number of its outgoing links. Many have
noticed that in the case of social networks (like citations
or the web) it is the incoming links that generate author-
ity; therefore, from now on, unless otherwise specified,
we will assume that any matrix representing citations,
web links or the such will have been transposed.

2The discussion above omits the following fact: A reversible

Markov chain, if it is reducible, i.e. if A is block diagonal, will
have multiple stationary distributions. However, the distribution
defined by πi = Di will always be one of them. So, simplifying
matters only slightly, we will refer to it here as the stationary

distribution.

Instead of an affinity matrix, we can have a tran-
sition matrix P ∗ of a user-defined random walk on the
graph, with stationary distribution π∗. One such ran-
dom walk, called the teleporting random walk jumps ac-
cording to P = D−1A a fraction α of the time, and
jumps with uniform probability to any node other than
the current node a fraction 1− α of time. This amount
to replacing the original P with

Pα = αP + (1− α)Pu(2.7)

where Pu represents the transition matrix of the “uni-
form”random walk, (Pu)ij = (1 − δij)/(n − 1). This
technique is similar to that used by the PageRank algo-
rithm adopted by popular search engines such as Google
[1]. Variants of such random walks like backwards ran-
dom walks, or two-step backward and forward random
walks have been used by [3, 19]. The weighted cut be-
comes the criterion of [19] for

T = T ′ = Π∗, A ← P ∗(2.8)

where Π∗ denotes the matrix having π∗
i , the stationary

distribution of the teleporting random walk, on its
diagonal. This is proved in section 4.

A few other remarks need to be made about asym-
metric matrices A. First, it is possible for some node to
have Di = 0 (no outgoing links). One can avoid divi-
sions by zero in 2.4 by e.g setting Aii = Di = 1. This
way the output-less node is turned into a sink.

Second, for some random walks with all Di > 0, in
the stationary distribution we can have some πi = 0.
This case is illustrated in figure 3 in which all but the
last node, a sink, have πi = 0. This situation can be
redressed by switching to a teleporting random walk
(which also solves the first problem), but we will see
that this solution is not the only one, and is not always
the best one. Others [3] have reported great sensitivity
of the eigenvectors of interest to the value α appearing
in (2.7) and our experiments have confirmed this.

In summary, the T weights may represent a user
defined weighting of the nodes, that can correspond to
the stationary distribution of a random walk on the
graph, to a uniform distribution, to the indegrees or
outdegrees, or to a monothone function thereof. The
matrix A is either the original affinity matrix, or a
preprocessed form, like the transition matrix of a user
defined random walk over the graph. The row weights
T ′ are a row normalization of A.

Table 1 summarizes these examples. Finally we
shall note that the authors are aware the above could
be rewritten without using T ′ at all; we preferred
this slightly redundant formulation because it helps
underscore the bifurcation of the symmetric normalized



Table 1: A summary of the various instantiations of the WCut described in this paper. Π denotes the diagonal
matrix with a (stationary) distribution over [n] the diagonal.

T = D, T ′ = D, A← D−1A Normalized Cut for symmetric matrix, [11, 7]
T = Π, T ′ = ΠD−1, A← A evasion probability in 1 step under Π, [19]
T = Π∗, T ′ = Π∗, A← P ∗ cf. above for modified r.w., e.g. [19] with teleporting
T = 1, T ′ = D−1, A ← A evasion prob. under uniform distribution
T = T ′ = 1, A ← A average cut
T = D, T ′ = 1, A ← A WNCut (introduced here)

cut normalizations in the more general situation of
asymmetric matrices.

3 A spectral bound for WCut

Given a weighted directed graph described by matrix A
and additional volume and row weights T, T ′ we want
to find a clustering C∗ such that

WCut(C∗) = min
C

WCut(C)(3.9)

We will show that this discrete problem can be relaxed
to an eigenvector/value problem for a symmetric ma-
trix. Then, spectral clustering algorithms designed for
symmetric matrices like [7] can be used to find the op-
timal clustering under the same conditions as in the
symmetric case.

In the following we assume w.l.o.g T ′
i is a constant

and drop it for the simplicity of the exposition. If this
is not the case, one can simply replace A by T ′A and D
by T ′D. We represent a clustering C = {C1, . . . , CK}
by an n ×K matrix X , where x:k, the k-th column of
X is the indicator vector of cluster Ck. The weighted
cut WCut(C) can be expressed successively as

WCut(C) =(3.10)

=

K
∑

k=1

1/Tk

∑

i∈Ck

(Di −
∑

j∈Ck

Aij)(3.11)

=

K
∑

k=1

xT
:k(D −A)x:k

xT
:kTx:k

(3.12)

=

K
∑

k=1

ỹT
:kBỹ:k(3.13)

with B = T−1/2(D −A)T−1/2(3.14)

and ỹ:k = T 1/2x:k/
√

Tk(3.15)

For A symmetric, the matrix D − A represents the
unnormalized Laplacian of A. In general, D − A
is an asymmetric matrix with non-negative diagonal
satisfying (D−A)1 = 0 (where 1 represents the column

vector of all ones). The matrix Y = [ỹ:k]Kk=1 has
orthonormal columns.

For any matrix B, the Hermitian part3 of B is
defined as H(B) = 1

2 (B + BT ). It is easy to see
that H(B) is always a symmetric matrix, and it has
non-negative elements whenever B has non-negative
elements. We say that a vector v is piecewise constant
(p.c.) w.r.t a clustering C iff vi = vj whenever points
i, j are in the same cluster. We are now ready to prove
the following.

Proposition 3.1. (The asymmetric mul-
ticut lemma) For any clustering C of [n],

WCut(C) ≥
∑K

k=1 λk(H(B)) where the eigenval-
ues are counted in increasing order (the smallest
eigenvalue first). Moreover, let Y be the n×K matrix
formed with the eigenvectors of H(B) corresponding to
λ1(H(B)), . . . λK(H(B)). Then, the bound is attained
iff T−1/2Y has piecewise constant columns.

Proof. Let X be the indicator matrix of C, and ỹ:k be
defined as in (3.15). We successively relax the problem

MNCut(X) =
K

∑

k=1

ỹT
:kBỹ:k(3.16)

≥ min
zk∈R

n orthon

K
∑

k=1

zT
k Bzk(3.17)

≥ min
zk∈C

n orthon
Re

K
∑

k=1

z∗kBzk(3.18)

= min
zk∈C

northon

K
∑

k=1

z∗kH(B)zk(3.19)

=

K
∑

k=1

λk(H(B))(3.20)

3In the case of complex B, which we won’t need to consider
here, BT is replaced by B∗ the transpose-conjugate of B.



The vectors zk that achieve the minimum in (3.20) are
the first K eigenvectors of H(B). Because they are real,
the second inequality above is in fact an equality.

The second part of the lemma is proved as follows.
Let X be a clustering for which the bound is attained
and Y ∈ Rn×K the matrix formed by the first eigen-
vectors of H(B); denote T̂ = diag{Tk, k = 1, . . .K}.
Hence, the orthonormal columns of T 1/2XT̂−1/2 lie
in the subspace spanned by Y . In other words
T 1/2XT̂−1/2 = Y U with U a K × K unitary ma-
trix. Therefore, X(T̂−1/2U−1) = T−1/2Y . X has
p.c. columns and multiplication to the right preserves
this property, which proves one direction of the iff. Now
assume that Z = T−1/2Y has p.c columns w.r.t some
clustering given by X . Then Z = XẐ with Ẑ
the K × K matrix containing the distinct rows of Z.
We need to show that the columns of T 1/2XT̂−1/2 are
in the space spanned by Y . As Y = T 1/2XẐ−1, it is
sufficient to show that Ẑ−1T̂−1/2 is a unitary matrix,
or equivalently, that (Ẑ−1T̂−1/2)−1 = T̂ 1/2Ẑ is unitary.
(T̂ 1/2Ẑ)T T̂ 1/2Ẑ = ẐT T̂ Ẑ = ẐT (XT TX)Ẑ = ZT S, =
Y T M−1/2AT−1/2Y = Y T Y = I .

4 Minimizing WCut by spectral clustering

The proposition immediately suggests a spectral algo-
rithm for minimizing the WCut. Essentially, the algo-
rithm is a simple modification of the spectral clustering
algorithm of [7] used for symmetric A. The only ma-
jor difference is the first step, where H(B) plays the
role of the normalized Laplacian I −D−1/2AD−1/2. A
minor difference is that usually in symmetric clustering
algorithms the subtraction from I is omitted and thus
the largest eigenvectors are those of interest. Of course,
many other variants of BestWCut can be obtained
from other existing clustering algorithms that minimize
normalized cuts.

Algorithm 4.1. (Algorithm BestWCut)

Input Affinity matrix A, weights T, T ′, number of clus-
ters K

1. A ← T ′A

2. Di ←
∑n

j=1 Aij , D = diag{Di}i

3. H(B) ← 1
2T−1/2(2D −A−AT )T−1/2

4. Compute Y the n × K matrix with orthonormal
columns containing the K smallest eigenvectors of H(B)

5. Cluster the rows of X = T−1/2Y as points in RK .
(Variant Normalize the rows of Y to have length 1,
then cluster them as points in RK .)

The proof that this algorithm will minimize the
WCut if the columns of X are almost p.c. is a direct

consequence of the analog proofs in the symmetric case
(see e.g [4, 18]).

To summarize the above results: minimizing the
generalized weighted cut in directed graphs is in general
NP-hard, because it includes the symmetric case which
is proved to be hard. However, in special cases, when
the integrality gap between the discrete problem (3.9)
and the relaxed problem (3.20) is sufficiently small, the
optimum can be obtained by solving an eigenproblem
for a symmetric matrix. Note that there is only one
relaxation between the original asymmetric discrete op-
timization problem and the final symmetric eigenprob-
lem, which corresponds to the integrality constraint on
the entries of X . Thus, remarkably, for a large family
of weighted cuts represented by WCut, the asymmetric
version of problem (3.9) and the symmetric version are
qualitatively the same and they both involve the eigen-
vectors of a symmetric matrix.

5 Relationship with other work

For symmetric A, which corresponds to a reversible
Markov chain, the data are mapped by X the eigen-
vectors of the transition matrix P = D−1A. Therefore,
when X has p.c columns, or near this case, the result
can be interpreted in two equivalent ways. On one hand,
the Markov chain can be aggregated according to clus-
tering C∗ without loss of information. The points in
each cluster Ck have the same transition probabilities
to other clusters [7]. On the other, the same C∗ can be
shown to optimize the MNCut of A [4]. If A is asym-
metric, the problem bifurcates: what was one clustering
criterion with two interpretations becomes two distinct
criteria. One can either (1) cluster by the possibly com-
plex eigenvectors of P (an approach taken by [8]) in
which case the goal is to find clusters of points that be-
have in the same way, or (2) cluster by the eigenvectors
of H(B) in which case the objective is the minimization
of a weighted cut.

For what asymmetric matrices are cases (1) and
(2) the same? As the formulation (1) does not take
T, T ′ as parameters, we assume we are in the case of
the (asymmetric) normalized cut.

Proposition 5.1. Let A be an asymmetric real matrix,
Di > 0 for all i ∈ [n], T ′ = I and T = D. Let
Y ∈ Rn×K contain the first (orthonormal) eigenvectors
of H(B). If there is a unitary completion of Y to
U = [Y Y2] so that

UT BU =

[

B1 0
0 B2

]

(5.21)

with B1 ∈ RK×K , B2 ∈ R(n−K)×(n−K) and
max |λ(B1)| < min |λ(B2)|, then the algorithm of [8]



and the BestWCut algorithm produce the same spec-
tral mapping.

Proof. If Y, B satisfy (5.21) then span (Y ) is an in-
variant subspace of B [13], the eigenvalues of B1

are the smallest magnitude eigenvalues of B = I −
D−1/2AD−1/2, and the subspace span Y is the K-th
principal subspace of B (counting eigenvalues by in-
creasing magnitude), i.e Y = V Û where the columns of
V are the eigenvectors of B and Û is a K ×K unitary
matrix. The algorithm of [8] maps the data into the
subspace D−1/2V while BestWCut maps them into
T−1/2Y = D−1/2Y , hence the spectral mapping is the
same up to a unitary transformation. In addition, when
(5.21) is satisfied, the eigenvalues of B1 are not defec-
tive4.

As a consequence, the two criteria are equivalent
when the relevant eigenvectors Y of the symmetrized
H define an invariant subspace for both B and BT . In
other words, although B and hence A is an asymmetric
matrix, it contains a “symmetric core” corresponding to
its highest eigenvalues.

We now show that the WCut is a generalization to
K way partitions of the criterion proposed by [21].

Proposition 5.2. For T = T ′ ← Π, A ← P ,
with P a stochastic matrix having the unique stationary
distribution π, Π = diag{π},

H(B) = I − (Π1/2PΠ−1/2 + Π−1/2PΠ1/2)/2(5.22)

The proof is elementary. In [20] clustering is done
by the e-vector corresponding to the second largest e-
value of (Π1/2PΠ−1/2 +Π−1/2PΠ1/2)/2 which is identi-
cal with I−H(B) for H(B) as in (5.22). Our algorithm
embeds the nodes in the space spanned by the eigenvec-
tors of the K = 2 smallest e-values of the latter, hence
the two spectral embeddings are the same.

Extending the asymptotic results of [17] to the
asymmetric case is also possible. We only note here
that the spectrum of the matrix H(B) and of the cor-
responding limit operator (under similar assumptions
to the ones in [17]) is not generally contained in [0, 2];
its essential spectrum does not reduce to a single point
either. Therefore the asymptotic convergence of the
eigenvectors of interest is not assured in all cases.

Finally, let us note that although we have shown
that minimizing weighted cuts in directed graphs by
spectral methods amounts to symmetric spectral clus-
tering on a “symmetrized” matrix H , the symmetriza-
tion obtained differs from the naive approaches S =

4I.e the corresponding eigenspaces are of maximal dimension
[13].

1
2 (A + AT ) (except when the in- and out-degrees are
equal) and S = AAT .

6 Experiments

We ran experiments comparing our approach with sev-
eral other clustering techniques applicable to asymmet-
ric affinity data. All techniques, including ours, consist
of two steps: first the affinity data are mapped to a
low dimensional vector space, then the mapped data are
clustered in that space. The clustering was done in all
cases by both k-means and single link methods; we re-
port results for whichever method of clustering provided
better results with that embedding for the experiment.
The mappings for each method are listed in the table in
table 2.

We measure clustering performance in two metrics:
the classification error (CE), described in [16], and
the variation in information (VI), described in [6]. A
clustering that coincides with the “correct clustering”
will result in both CE and VI being 0.

Synthetic Data. We first tested our algorithm
by using synthetic data sets generated by creating
a set S of data points with a predefined clustering
C, generating random weights between (0,1) for each
directed edge between clusters, and added small random
edges between points in different clusters for noise.

We ran experiments on twenty test data sets of
400 points and six embedded clusters, all generated
according to the above scheme. An image of one
such affinity matrix generated can be seen in Figure
2. The mean and variance of the CE over all runs
may be seen in Table 4, while the mean and variance
of the VI over all runs may be seen in Table 4. We
see here that the WNCut algorithm outperforms other
algorithms with regard to clustering error and VI, and
WACut outperforms many previous existing techniques.
The symmetrized versions of these techniques perform
admirably, but with a slight decrease in performance,
demonstrating the value of maintaining the asymmetry
of the linkage in the graph.

Biological Sequence Data. For our next experi-
ment, we ran the algorithm on a more difficult data set
to cluster: a subset of biological sequence data from the
Structural Classification of Proteins (SCOP) database,
version 1.67 [9]. As mentioned in [8], some algorithms
for measuring the similarity of biological sequence data,
such as the Smith-Waterman algorithm [12], produce
asymmetric affinities between the sequences compared.

The SCOP database contains roughly 24,000 pro-
teins, divided into seven classes. Each class is further
divided into folds, and each fold divided into superfam-
ilies. We took proteins from the five largest folds from
one class of the database - a total of 960 sequences -



Table 2: The algorithms used for testing.

WNCut The BestWCut algo-
rithm with T = D
(weighted normalized
cut)

WACut The BestWCut algo-
rithm run with T =
1, (weighted average
cut)

WNCut(A + AT ) WNCut algorithm
with symmetrized
matrix A + AT as
input

WACut(A + AT ) WACut algorithm
with symmetrized
matrix A + AT as
input

WNCut(AAT ) WNCut algorithm
with symmetrized
matrix AAT as input

WACut(AAT ) WACut algorithm
with symmetrized
matrix AAT as input

SVD Top left K singular
vectors of A

MDS Classical multidimen-
sional scaling

Isomap Isomap algorithm [14]
with l = 5 neighbors

Zhou et al [21] Algorithm of Zhou et
al (BestWCut with
T = π, the stationary
distribution of tele-
porting random walk
with η = 0.85

RHC Recursive hierarchi-
cal clustering algo-
rithm of [8]
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Figure 2: Synthetic affinity matrix with 400 points and
six clusters.

Table 3: Mean and variance of clustering error on clus-
terings of 20 synthetic affinity matrices w/400 points.

Method Mean CE Var CE

BestWCut(WNCut) 0.03 0.00
BestWCut(WACut) 0.14 0.02

BestWCut(WNCut,A + AT ) 0.05 0.01
BestWCut(WACut,A + AT ) 0.20 0.01
BestWCut(WNCut,AAT ) 0.12 0.02
BestWCut(WACut,AAT ) 0.14 0.02

SVD 0.31 0.01
MDS 0.67 0.00

Isomap 0.20 0.01
Zhou et al 0.31 0.00

RHC 0.34 0.00

Table 4: Mean and variance of VI on clusterings of 20
synthetic affinity matrices w/400 points.

Method Mean VI Var VI

BestWCut(WNCut) 0.06 0.01
BestWCut(WACut) 0.22 0.03

BestWCut(WNCut,A + AT ) 0.08 0.03
BestWCut(WACut,A + AT ) 0.33 0.04
BestWCut(WNCut,AAT ) 0.19 0.05
BestWCut(WACut,AAT ) 0.23 0.05

SVD 0.51 0.04
MDS 1.98 0.01

Isomap 0.38 0.04
Zhou et al 0.83 0.04

RHC 1.60 0.13



Table 5: Performance of BestWCut algorithms vs. other
techniques on SCOP and WebKB data.

SCOP WebKB
Method CE VI CE VI

BestWCut(WNCut) 0.41 1.13 0.002 0.03
BestWCut(WACut) 0.34 1.08 0.06 0.13
BestWCut(WNCut,A + AT ) 0.52 1.28 0.01 0.10

BestWCut(WACut,A + AT ) 0.45 1.37 0.68 2.56
BestWCut(WNCut,AAT ) 0.49 1.48 0.57 1.67
BestWCut(WACut,AAT ) 0.47 1.42 0.69 2.50
SVD 0.41 1.16 0.34 1.47
MDS 0.50 0.96 0.37 1.36
Isomap 0.69 2.50 0.47 1.63
Zhou et al 0.53 1.67 0.66 3.22
RHC 0.48 1.48 0.61 1.70

and attempted to cluster them according to their simi-
larities as measured by the Smith-Waterman algorithm.
This data is somewhat more difficult to cluster owing to,
among other issues, the presence of subclusters within
the clusters; algorithms are susceptible to dividing up
clusters according to their superfamilies rather than the
folds. We then compared the clusterings to the true
clustering of the proteins by fold. The results may be
seen in Table 5. The BestWCut algorithms are compet-
itive with or outperform the other techniques tested.

Web Graph Data. For the next experiment, we
used the adjacency matrix A produced by the link graph
of a set of web pages pulled from a crawl of four univer-
sities’ computer science departments (Washington, Wis-
consin, Texas, and Cornell); the crawl was collected for
the WebKB project [2] Some pages from other sites in
the original WebKB crawl were removed. In the matrix
A, Aij = 1 if page i has a link to page j and 0 other-
wise. The test data set contains 3,946 pages and only
8,308 links. Most, but not all, of the links in the graph
are between two pages in the same department, rather
than pages in different departments, and the graph is
very sparse; for this reason, clustering the data can rep-
resent a challenge. Since within-domain links are far
more frequent than between-domain links, we used the
university affiliation of pages as a natural true clustering
for the data, and compared this to the clusterings gener-
ated by the algorithms. These results may also be seen
in Table 5. We see good results from the formulations of
the WNCut algorithm relative to the alternative tech-
niques with regard to both metrics; the CE is consider-
ably lower on both. We see that symmetrization does
provide benefit on this particular problem, however, as
WNCut on the symmetric matrix A+AT performs quite
well.

The last set of experiments highlights some of
the properties of asymmetric matrices with respect
to clustering. For this purpose, we constructed a
highly asymmetric A shown in figure 3. This has
dimension 600, K = 4 clusters, and a distribution of
0, 1 entries, in which the 1’s are sparse and only strictly
above the diagonal. This emulates the (transpose
of) a matrix of citations. The probabilities of links
(“citations”) in the diagonal and off-diagonal blocks is
0.05 and respectively 0.005. The density of the rows
is highly uneven. We made the lower right element
a 1, for purposes of normalization. This matrix has
a stationary distribution with πi = 0 for all i < n.
We have compared on it all the existing algorithms for
asymmetric matrices, and the clustering results are in
figure 3, b. We see that weighting the nodes by the out-
degrees D (WNCut) is optimal, followed closely by the
average cut. The product method of [21] (NCut(Z))
and the method based on piece-wise constantness of
the eigenvectors [8] (PCvec) perform poorly; WPCut
is the method of [19], and differs from the optimal ones
only by the weighting of the nodes, which is done with
the π of a teleporting random walk with α = 0.015.
In figure 3 it is shown why. Because the skewness of
the link structure, the stationary distribution of the
teleporting random walk puts its weights on the last
entries in each cluster, almost independently of the
link structure inside the cluster. However, as it turns
out, for this problem the highly connected nodes can
almost perfectly define the cluster structure (as shown
by the low error rates obtained), so having T = D is
reasonable. We stress once again that the “outdegrees”
in this artificial problem are representing the indegrees
in a real citation matrix.

7 Conclusions and Future Work

While clustering on directed graphs is recognized as im-
portant, defining principled paradigms for it is only be-
ginning. Here we have formulated the clustering prob-
lem as optimization of a weighted cut. This framework
unifies many different criteria used successfuly on undi-
rected graphs, like the normalized cut and the averaged
cut, and for directed graphs [19]. We have also high-
lighted the difference with a previous approach [8] based
on other aspects (the piecewise constantness) of random
walks in a graph.

The paper showed that the discrete optimization
can be relaxed to a (continuous) symmetric eigenprob-
lem. The result is good news for two reasons. First,
many existing spectral clustering algorithms and theo-

5We have tried a large range of α values, including α close to
1, and these results are by far the best for this algorithm.



  WNCut       WACut      NCut(Z)      WPCut         PCvec   
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
E

sdiag=0.05  soff=0.005
Π teleport

out−degrees

a b c

Figure 3: A sparse, strongly asymmetric matrix (a). Clustering results (CE) for several algorithms, (b). The
outdegrees D and stationary distribution Π∗ for the teleporting random walk α = 0.01.

retical results can be applied to this problem with only
minor changes. A few of them have been listed in section
4. In future work, we will develop more detailed asymp-
totic convergence criteria for the generalized weighted
cut. Second, it is known that spectra of asymmetric
matrices are often not robust to even very small per-
turbations, making the eigenvalues and eigenvectors of
such matrices less useful for analysis [15]. By contrast,
eigenvectors of symmetric matrices are both more stable
and more meaningful.

The symmetric matrix obtained by us differs from
the popular ways to turn an assymetric affinity A into a
symmetric one, and gives better experimental results.
We have also shown that what used to be a single
criterion for symmetric graphs, becomes two distinct
criteria (the normalized cut and clustering by random
walks) which are only rarely identical for link data. We
believe that link data is fundamentally different than
symmetric affinity data. Directed graphs allow for a
much richer range of clustering objectives.

Future work will investigate the appropriateness of
each criterion in clustering the different types of link
data, such as social networks, proteins or relational
graphs. Given the many possible versions of weighted
cuts, the natural question is how to find the optimal
weighting T for the current data set? This question is
still awaiting a final answer.

Finally, we note that our method can be easily and
naturally extended to semisupervised learning, by e.g
the same principle as in [21].
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