[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

11.5 Running lm_bayes examples and sample output

If you have been following the tutorial in order, you have altered the parameter file `ped73_ph.par' in order to reduce the number of MCMC iterations for running the lm_lods example. Since lm_bayes DOES NOT perform MCMC at each position, it is not advisable to reduce the number of iterations like we did in the lm_lods example. Before running the example for lm_bayes, ensure that the parameter file `ped73_ph.par' has the larger MC iterations option selected. The relevant section of your parameter file should look like this, with the `set MC iterations 300' commented out and the `set MC iterations 3000' not commented out:

 
	#For actual analyses, recommended number of iterations is
	#on the order of 10^5
set MC iterations 3000            #1
check progress MC iterations 1000      
set global MCMC

	#TO RUN LM_LODS, comment out the line marked #1 (above),
	#and uncomment the line marked #2 (below). This effectively 
	#reduces the number of MC iterations

	#Recall that lm_lods and lm_shnell require less iterations 
	#(order of 10^4) than other programs 

#set MC iterations 300

Under the subdirectory `Lodscores/', run the lm_bayes example by typing:

 
./lm_bayes ped73_ph.par

The results from lm_bayes are the LOD scores toward the end of the output. Two methods of computing the LOD scores are available: (1) count realizations of locations sampled to estimate the posterior probability (crude) and (2) Rao-Blackwellized estimator (R-B). The latter is the preferred method.

 
 LodScore estimates:

 Trait pos #     position (Haldane cM)     pseudo     freq        LodScore    
   or marker        male     female         prior  visited     crude       R-B

           0    unlinked   unlinked      0.020178      116        NA        NA
           1    -115.129   -115.129      0.020560      100   -0.0726   -0.0080
           2     -80.472    -80.472      0.021170      143    0.0700   -0.0203
           3     -45.815    -45.815      0.023718      165    0.0828   -0.0681
           4     -17.834    -17.834      0.035627      122   -0.2250   -0.2402
           5      -5.268     -5.268      0.060088      122   -0.4520   -0.4592
    marker-1       0.000      0.000            NA       NA        NA        NA
           6       3.000      3.000      0.089923      127   -0.6097   -0.6299
           7       7.000      7.000      0.098887      150   -0.5786   -0.6763
    marker-2      10.000     10.000            NA       NA        NA        NA
           8      13.000     13.000      0.106325      102   -0.7776   -0.7095
           9      17.000     17.000      0.105926      111   -0.7393   -0.7091
    marker-3      20.000     20.000            NA       NA        NA        NA
          10      23.000     23.000      0.067969       93   -0.6234   -0.5206
          11      27.000     27.000      0.043461      105   -0.3765   -0.3216
    marker-4      30.000     30.000            NA       NA        NA        NA
          12      33.000     33.000      0.022509      118   -0.0401   -0.0447
          13      37.000     37.000      0.014511       87    0.0182    0.1340
    marker-5      40.000     40.000            NA       NA        NA        NA
          14      43.000     43.000      0.009146      157    0.4751    0.3324
          15      47.000     47.000      0.007793       82    0.2625    0.4142
    marker-6      50.000     50.000            NA       NA        NA        NA
          16      53.000     53.000      0.010758      101    0.2130    0.3376
          17      57.000     57.000      0.017022      121    0.0922    0.1807
    marker-7      60.000     60.000            NA       NA        NA        NA
          18      63.000     63.000      0.025113      117   -0.0913   -0.0129
          19      67.000     67.000      0.027450       45   -0.5449   -0.1115
    marker-8      70.000     70.000            NA       NA        NA        NA
          20      73.000     73.000      0.027063       83   -0.2729   -0.1503
          21      77.000     77.000      0.026552       67   -0.3576   -0.1337
    marker-9      80.000     80.000            NA       NA        NA        NA
          22      83.000     83.000      0.023659       96   -0.1513   -0.0742
          23      87.000     87.000      0.019262       55   -0.3039    0.0179
   marker-10      90.000     90.000            NA       NA        NA        NA
          24      95.268     95.268      0.012658       81    0.0465    0.2023
          25     107.834    107.834      0.011441       87    0.1215    0.2475
          26     135.815    135.815      0.014517       76   -0.0406    0.1441
          27     170.472    170.472      0.017645       90   -0.0520    0.0588
          28     205.129    205.129      0.019069       81   -0.1314    0.0248


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

This document was generated by Elizabeth Thompson on September, 10 2010 using texi2html