7. Asymptotic unbiasedness and consistency; Jan 20, LM 5.7

7.1 Asymptotic unbiasedness LM P406.

Consider estimators based on an n-sample: T,, = T, (X1, ..., X;,), where X, ..., X, are i.i.d.
Even estimators that are biased, may be close to unbiased for large n.

Definition: Estimator T, is said to asymptotically unbiased if by, (0) = E¢(T,,) — 0 — 0 as n — oc.

7.2 Examples

(i) X1,..., X;, an n-sample from U (0, 0); consider estimators based on W,, = max; X;.

EW,) = n/(n+1)0: bw,(0) =nb/(n+1)—0 = —6/(n+1) — 0andn— o

W, is biased, but is asymptotically unbiased: the bias is order 1/n.

(n+ 1)W,,/n has expectation 6; it is unbiased for any n.

(n+2)W,/(n+1) is the estimator with smallest MSE (see 6.5); E((n+2)W,/(n+1)) = n(n+2)0/(n+1)2.
bias = O(n(n+2)—(n+1)2)/(n+1)? = —0/(n+1)> — 0and n — oo

So this estimator is also asymptotically unbiased: bias is order 1/n?.

(ii) X1, ..., X;, an n-sample from N(u,0?): estimate o2 by a multiple of S% = Y"1 | (X; — X,,)2.

The MoM estimator is T,, = S?/n. The unbiased estimator is S?/(n — 1) (see 6.4).
br,(0?) = E(S?/n)—0? = (n—1)o?/n—0? = —0%/n — 0and n — cc.

7.3 Chebychev inquality LM P.408
The reason we liked estimators with small MSE is that they seemed to give estimators with a probability of

being close to the true value of 6. Chebychev’s inequalilty makes this relationship explicit.
Chebychev’s Inequality: For any random variable W: P(|[W — 6| > a) < E((W —0)?)/d?.
Proof: (Case of continuous W with pdf fy (w).)
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7.4 Consistency LM P.406-7
Consider estimators based on an n-sample: T,, = T,,(X1, ..., X;,), where X, ..., X, are i.i.d.

Definition: The estimator 7T}, of 6 is consistent if, for any € > 0, P(|T;, — 0| > €¢) — 0 as n — oc.

But note now from Chebychev’s inequlity, the estimator will be consistent if E((T}, —0)?) — 0asn — oo.
Note also, MSE of T}, is (br, ())? + varg(T},) (see 5.3).

So the estimator will be consistent if it is asymptotically unbiased, and its variance — 0asn — oo.



8. Examples of consistency and other properties

8.1 Back to Binomial and Poisson examples

(i) Xq1,..., X, 1.i.d  ~ Po(h).

MoM estimator of 6 is T,, = > 7 X;/n, and is unbiased E(T,) = 6.

Also var(T,,) = 6/n — 0 as n — oo, so the estimator T, is consistent for 6.
(ii) Xq,..., X, iid ~ Bin(r,0). MoM estimator of 0 is T,, = >_7 X;/rn, and is unbiased E(T,,) = 6. Also
var(T,,) = 0(1 —0)/rn — 0 as n — 00, so the estimator T, is consistent for 6.

(Note r is fixed, it is n that — oo.

8.2 Estimating ;. and ;2

Consider any distribution, with mean p, and variance o2, and X1, ..., X,, an n-sample from this distribution.
Let X, =Y, X;/n. E(X,) = p, and var(X,,) = 02/n (why?).

So X,, is unbiased and a consistent estimator of . (Why?)

Now suppose we want to estimate pu?: we could try X7n2.

E(X,") = var(X,) + (B(X,)? = o*/n + p? (why?)

So )Tn2 is not unbiased for p?, but it is asymptotically unbiased.

What about V&I‘(X7n2) = E(X7n4) — (E(Xifnz))2 ? In general, this is very messy (so we won’t do it), but in
fact, provided E(X}) is finite, var(X7n2) — 0asn — oo.

So in fact (although we have not shown it), X,,” is consistent for p?, provided E(X?) is finite.

8.3 Examples for an n-sample from a uniform U(0,0) distrubution

(i) The MoM estimator of 6 is 2X,, = (2/n) >_I* ; X;. The estimator has expectation  and variance 4var(X;)/n,

so is unbiased and has variance — 0 as n — o0. So the estimator is consistent.

(ii) We had also the “better” estimator (n+1)/n. max(X;). This was also unbiased and has a smaller variance,
in fact of order 1/n%. So clearly this one is also consistent.

(iii) What if we just used W = max(X;)? W has expectation nf/(n + 1) (so asymptotically unbiased) and
also has variance order 1/n%. So it is consistent. In fact, we know the cdf Fyy (w) = P(W < w) = (w/0)". so
we know P(|[W —6| <¢) = P(W > 0—¢) = 1—((0—¢€)/0)". (see LM P.407).

8.4 Careful with the bias

(i) X1,..., Xy, 1.id from fx(z;0) = (1/20)exp(—|z|/0).X; ~ DE(0,0) = oDE(0,1).

T, = Y |Xi|/n. var(T,) = var(|X;|)/n — Oasn — oo.

E(Xil) = JZ12l(1/20) exp(—|zl/0) dz = [7°(z/0)exp(—z/0) dz = o

So T, is consistent for o.

(i) X1,..., Xy, ii.d from N(0,0%) = oN(0,1).

T, = > |Xi|/n. var(T,) = var(|X;|)/n — Oasn — oo.

E(IXi) = J2 |2l(1/(V270)) exp(=5(x/0)?) du = /2/7 [§°(x/0) exp(—5(x/0)?) dv = (V2/m)o

The estimator is not aymptotically unbiased, so it cannot be consistent.



9. Moment generating functions LM 3.12

9.1: Definition and basic properties

(i) Definition: Mx(t) = E(e*X), provided expectation exists. Note Mx (0) = 1.
Discrete case: Mx(t) = >, e“px(x). Continuous case: Mx(t) = [* e fx(z)dx.

(i) Moments: Differentiating: M (t) = E(Xe!X): M4 (0) = E(X).
ML(t) = B(X2%X), M%(0) = E(X?). In general: MV(0) = E(X™).
Although this is basis of name "mgf”, it is not often useful in practice: there are easier ways!

(iii) Uniqueness: Mgfs are unique. That is, if Mx(t) = My (t) for all ¢ in an open interval containing 0, then

X and Y have the same distribution. This is useful, as we will see below.
9.2: Examples of mgf’s; Discrete (for convenience, write z = ).
Binomial: Bin(n,p); ¢=1—p: E(zX) = 22:0( Z )(pz)kqnfk = (¢+p2)"
Poisson: Po(u): E(zX) = Y2 ge #(u2)k/k! = exp(u(z —1))

Geometric: Geo(p): E(z%) = 02, ¢ pzf = pz/(1 — q2)
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9.3: Examples of mgf’s: Continuous
Exponential: £(\): E(e!™) = X [[®exp(—(A —t)z) dz = X/(A —t) provided ¢ < A.

9.4: Mgf of linear functions and sums of independent r.vs
(i) Let Y = aX +b: My(t) = E(exp((aX +b)t)) = e"E(exp((at)X)) = e"Mx(at).
(ii) Let Y = aX where X is exponental £()), then
My (t) = Mx(at) = N/(A—at) = (Na)/((A\/a) —t) which is the Mgf of £(\/a).
So, by uniqueness of Mgf, aX is distributed as £(\/a).
(iii) Let X and Y be independent random variables: W = X + Y
Mi(t) = Blexp(X +Y)t) = E(exp(Xt)exp(Y) = BEXE(E!) = My (t)My ()
(iv) Let Xi,..., X, be i.i.d. with same dsnas X. W =371, X;
Mw(t) = Ilis Mx,(t) = (Mx(t)"

9.5 Immediate conclusions!!

Sum of independent Binomials (same p) is Binomial;
Sum of independent Poisson (any means) is Poisson

Sum of independent Geometrics (same p) is Negative Binomial; and of NegBin is also NegBin.



