
7. Asymptotic unbiasedness and consistency; Jan 20, LM 5.7

7.1 Asymptotic unbiasedness LM P406.

Consider estimators based on an n-sample: Tn = Tn(X1, ..., Xn), where X1, ..., Xn are i.i.d.

Even estimators that are biased, may be close to unbiased for large n.

Definition: Estimator Tn is said to asymptotically unbiased if bTn
(θ) = Eθ(Tn) − θ → 0 as n → ∞.

7.2 Examples

(i) X1, ..., Xn an n-sample from U(0, θ); consider estimators based on Wn = maxi Xi.

E(Wn) = n/(n + 1)θ: bWn
(θ) = nθ/(n + 1) − θ = − θ/(n + 1) → 0 and n → ∞

Wn is biased, but is asymptotically unbiased: the bias is order 1/n.

(n + 1)Wn/n has expectation θ; it is unbiased for any n.

(n+2)Wn/(n+1) is the estimator with smallest MSE (see 6.5); E((n+2)Wn/(n+1)) = n(n+2)θ/(n+1)2.

bias = θ(n(n + 2) − (n + 1)2)/(n + 1)2 = − θ/(n + 1)2 → 0 and n → ∞
So this estimator is also asymptotically unbiased: bias is order 1/n2.

(ii) X1, ..., Xn an n-sample from N(µ, σ2): estimate σ2 by a multiple of S2 =
∑n

i=1(Xi − Xn)2.

The MoM estimator is Tn = S2/n. The unbiased estimator is S2/(n − 1) (see 6.4).

bTn
(σ2) = E(S2/n) − σ2 = (n − 1)σ2/n − σ2 = − σ2/n → 0 and n → ∞.

7.3 Chebychev inquality LM P.408

The reason we liked estimators with small MSE is that they seemed to give estimators with a probability of

being close to the true value of θ. Chebychev’s inequalilty makes this relationship explicit.

Chebychev’s Inequality: For any random variable W : P (|W − θ| > a) ≤ E((W − θ)2)/a2.

Proof: (Case of continuous W with pdf fW (w).)

E((W − θ)2) =

∫

∞

−∞

(w − θ)2fW (w) dw

=

∫ θ−a

−∞

(w − θ)2fW (w) dw +

∫ θ+a

θ−a
(w − θ)2fW (w) dw +

∫

∞

θ+a
(w − θ)2fW (w) dw

≥
∫ θ−a

−∞

(w − θ)2fW (w) dw +

∫

∞

θ+a
(w − θ)2fW (w) dw

≥ a2
∫ θ−a

−∞

fW (w) dw + a2
∫

∞

θ+a
fW (w) dw = a2 P (|W − θ| > a)

7.4 Consistency LM P.406-7

Consider estimators based on an n-sample: Tn = Tn(X1, ..., Xn), where X1, ..., Xn are i.i.d.

Definition: The estimator Tn of θ is consistent if, for any ǫ > 0, P (|Tn − θ| > ǫ) → 0 as n → ∞.

But note now from Chebychev’s inequlity, the estimator will be consistent if E((Tn − θ)2) → 0 as n → ∞.

Note also, MSE of Tn is (bTn
(θ))2 + varθ(Tn) (see 5.3).

So the estimator will be consistent if it is asymptotically unbiased, and its variance → 0 as n → ∞.
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8. Examples of consistency and other properties

8.1 Back to Binomial and Poisson examples

(i) X1, ..., Xn i.i.d ∼ Po(θ).

MoM estimator of θ is Tn =
∑n

1 Xi/n, and is unbiased E(Tn) = θ.

Also var(Tn) = θ/n → 0 as n → ∞, so the estimator Tn is consistent for θ.

(ii) X1, ..., Xn i.i.d ∼ Bin(r, θ). MoM estimator of θ is Tn =
∑n

1 Xi/rn, and is unbiased E(Tn) = θ. Also

var(Tn) = θ(1 − θ)/rn → 0 as n → ∞, so the estimator Tn is consistent for θ.

(Note r is fixed, it is n that → ∞.

8.2 Estimating µ and µ2

Consider any distribution, with mean µ, and variance σ2, and X1, ..., Xn an n-sample from this distribution.

Let Xn =
∑n

i=1 Xi/n. E(Xn) = µ, and var(Xn) = σ2/n (why?).

So Xn is unbiased and a consistent estimator of µ. (Why?)

Now suppose we want to estimate µ2: we could try Xn
2
.

E(Xn
2
) = var(Xn) + (E(Xn))2 = σ2/n + µ2 (why?)

So Xn
2

is not unbiased for µ2, but it is asymptotically unbiased.

What about var(Xn
2
) = E(Xn

4
) − (E(Xn

2
))2 ? In general, this is very messy (so we won’t do it), but in

fact, provided E(X4
i ) is finite, var(Xn

2
) → 0 as n → ∞.

So in fact (although we have not shown it), Xn
2

is consistent for µ2, provided E(X4
i ) is finite.

8.3 Examples for an n-sample from a uniform U(0, θ) distrubution

(i) The MoM estimator of θ is 2Xn = (2/n)
∑n

i=1 Xi. The estimator has expectation θ and variance 4var(Xi)/n,

so is unbiased and has variance → 0 as n → ∞. So the estimator is consistent.

(ii) We had also the “better” estimator (n+1)/n. max(Xi). This was also unbiased and has a smaller variance,

in fact of order 1/n2. So clearly this one is also consistent.

(iii) What if we just used W = max(Xi)? W has expectation nθ/(n + 1) (so asymptotically unbiased) and

also has variance order 1/n2. So it is consistent. In fact, we know the cdf FW (w) = P (W ≤ w) = (w/θ)n. so

we know P (|W − θ| < ǫ) = P (W > θ − ǫ) = 1 − ((θ − ǫ)/θ)n. (see LM P.407).

8.4 Careful with the bias

(i) X1, ..., Xn i.i.d from fX(x; σ) = (1/2σ) exp(−|x|/σ).Xi ∼ DE(0, σ) ≡ σDE(0, 1).

Tn =
∑n

i=1 |Xi|/n. var(Tn) = var(|Xi|)/n → 0 as n → ∞.

E(|Xi|) =
∫

∞

−∞
|x|(1/2σ) exp(−|x|/σ) dx =

∫

∞

0 (x/σ) exp(−x/σ) dx = σ

So Tn is consistent for σ.

(ii) X1, ..., Xn i.i.d from N(0, σ2) ≡ σN(0, 1).

Tn =
∑n

i=1 |Xi|/n. var(Tn) = var(|Xi|)/n → 0 as n → ∞.

E(|Xi|) =
∫

∞

−∞
|x|(1/(

√
2πσ)) exp(−1

2(x/σ)2) dx =
√

2/π
∫

∞

0 (x/σ) exp(−1
2(x/σ)2) dx = (

√

2/π)σ

The estimator is not aymptotically unbiased, so it cannot be consistent.
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9. Moment generating functions LM 3.12

9.1: Definition and basic properties

(i) Definition: MX(t) = E(etX), provided expectation exists. Note MX(0) ≡ 1.

Discrete case: MX(t) =
∑

x etxpX(x). Continuous case: MX(t) =
∫

∞

−∞
etxfX(x)dx.

(ii) Moments: Differentiating: M ′

X(t) = E(XetX) : M ′

X(0) = E(X).

M ′′

X(t) = E(X2etX), M ′′

X(0) = E(X2). In general: M
(n)
X (0) = E(Xn).

Although this is basis of name ”mgf”, it is not often useful in practice: there are easier ways!

(iii) Uniqueness: Mgfs are unique. That is, if MX(t) = MY (t) for all t in an open interval containing 0, then

X and Y have the same distribution. This is useful, as we will see below.

9.2: Examples of mgf’s; Discrete (for convenience, write z = et).

Binomial: Bin(n, p); q = 1 − p: E(zX) =
∑n

k=0 (
n

k
)(pz)kqn−k = (q + pz)n

Poisson: Po(µ): E(zX) =
∑

∞

k=0 e−µ(µz)k/k! = exp(µ(z − 1))

Geometric: Geo(p): E(zX) =
∑

∞

k=1 qk−1pzk = pz/(1 − qz)

Negative binomial: NegB(r, p):

E(zX) =
∑

∞

k=r (
k − 1

r − 1
)qk−rprzk = (pz)r

∑

∞

k=0 (
k + r − 1

k
)(qz)k = (pz)r(1 − qz)−r

9.3: Examples of mgf’s: Continuous

Exponential: E(λ): E(etX) = λ
∫

∞

0 exp(−(λ − t)x) dx = λ/(λ − t) provided t < λ.

9.4: Mgf of linear functions and sums of independent r.vs

(i) Let Y = aX + b: MY (t) = E(exp((aX + b)t)) = ebtE(exp((at)X)) = ebtMX(at).

(ii) Let Y = aX where X is exponental E(λ), then

MY (t) = MX(at) = λ/(λ − at) = (λ/a)/((λ/a) − t) which is the Mgf of E(λ/a).

So, by uniqueness of Mgf, aX is distributed as E(λ/a).

(iii) Let X and Y be independent random variables: W = X + Y :

MW (t) = E(exp((X + Y )t) = E(exp(Xt) exp(Y t)) = E(eXt)E(eY t) = MX(t)MY (t)

(iv) Let X1, ..., Xn be i.i.d. with same dsn as X. W =
∑n

i=1 Xi

MW (t) =
∏n

i=1 MXi
(t) = (MX(t))n.

9.5 Immediate conclusions!!

Sum of independent Binomials (same p) is Binomial;

Sum of independent Poisson (any means) is Poisson

Sum of independent Geometrics (same p) is Negative Binomial; and of NegBin is also NegBin.
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