7. Asymptotic unbiasedness and consistency; Jan 20, LM 5.7

7.1 Asymptotic unbiasedness LM P406.

Consider estimators based on an n-sample: $T_{n}=T_{n}\left(X_{1}, \ldots, X_{n}\right)$, where X_{1}, \ldots, X_{n} are i.i.d.
Even estimators that are biased, may be close to unbiased for large n.
Definition: Estimator T_{n} is said to asymptotically unbiased if $b_{T_{n}}(\theta)=\mathrm{E}_{\theta}\left(T_{n}\right)-\theta \rightarrow 0$ as $n \rightarrow \infty$.

7.2 Examples

(i) X_{1}, \ldots, X_{n} an n-sample from $U(0, \theta)$; consider estimators based on $W_{n}=\max _{i} X_{i}$.
$\mathrm{E}\left(W_{n}\right)=n /(n+1) \theta: b_{W_{n}}(\theta)=n \theta /(n+1)-\theta=-\theta /(n+1) \rightarrow 0$ and $n \rightarrow \infty$
W_{n} is biased, but is asymptotically unbiased: the bias is order $1 / n$.
$(n+1) W_{n} / n$ has expectation θ; it is unbiased for any n.
$(n+2) W_{n} /(n+1)$ is the estimator with smallest MSE (see 6.5); $\mathrm{E}\left((n+2) W_{n} /(n+1)\right)=n(n+2) \theta /(n+1)^{2}$.
bias $=\theta\left(n(n+2)-(n+1)^{2}\right) /(n+1)^{2}=-\theta /(n+1)^{2} \rightarrow 0$ and $n \rightarrow \infty$
So this estimator is also asymptotically unbiased: bias is order $1 / n^{2}$.
(ii) X_{1}, \ldots, X_{n} an n-sample from $N\left(\mu, \sigma^{2}\right)$: estimate σ^{2} by a multiple of $S^{2}=\sum_{i=1}^{n}\left(X_{i}-\overline{X_{n}}\right)^{2}$.

The MoM estimator is $T_{n}=S^{2} / n$. The unbiased estimator is $S^{2} /(n-1)$ (see 6.4).

$$
b_{T_{n}}\left(\sigma^{2}\right)=\mathrm{E}\left(S^{2} / n\right)-\sigma^{2}=(n-1) \sigma^{2} / n-\sigma^{2}=-\sigma^{2} / n \rightarrow 0 \text { and } n \rightarrow \infty
$$

7.3 Chebychev inquality LM P. 408

The reason we liked estimators with small MSE is that they seemed to give estimators with a probability of being close to the true value of θ. Chebychev's inequalilty makes this relationship explicit.
Chebychev's Inequality: For any random variable $W: P(|W-\theta|>a) \leq \mathrm{E}\left((W-\theta)^{2}\right) / a^{2}$.
Proof: (Case of continuous W with pdf $f_{W}(w)$.)

$$
\begin{aligned}
\mathrm{E}\left((W-\theta)^{2}\right) & =\int_{-\infty}^{\infty}(w-\theta)^{2} f_{W}(w) d w \\
& =\int_{-\infty}^{\theta-a}(w-\theta)^{2} f_{W}(w) d w+\int_{\theta-a}^{\theta+a}(w-\theta)^{2} f_{W}(w) d w+\int_{\theta+a}^{\infty}(w-\theta)^{2} f_{W}(w) d w \\
& \geq \int_{-\infty}^{\theta-a}(w-\theta)^{2} f_{W}(w) d w+\int_{\theta+a}^{\infty}(w-\theta)^{2} f_{W}(w) d w \\
& \geq a^{2} \int_{-\infty}^{\theta-a} f_{W}(w) d w+a^{2} \int_{\theta+a}^{\infty} f_{W}(w) d w=a^{2} P(|W-\theta|>a)
\end{aligned}
$$

7.4 Consistency LM P.406-7

Consider estimators based on an n-sample: $T_{n}=T_{n}\left(X_{1}, \ldots, X_{n}\right)$, where X_{1}, \ldots, X_{n} are i.i.d.
Definition: The estimator T_{n} of θ is consistent if, for any $\epsilon>0, P\left(\left|T_{n}-\theta\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
But note now from Chebychev's inequlity, the estimator will be consistent if $\mathrm{E}\left(\left(T_{n}-\theta\right)^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$. Note also, MSE of T_{n} is $\left(b_{T_{n}}(\theta)\right)^{2}+\operatorname{var}_{\theta}\left(T_{n}\right)$ (see 5.3).
So the estimator will be consistent if it is asymptotically unbiased, and its variance $\rightarrow 0$ as $n \rightarrow \infty$.

8. Examples of consistency and other properties

8.1 Back to Binomial and Poisson examples

(i) X_{1}, \ldots, X_{n} i.i.d $\sim \mathcal{P} 0(\theta)$.

MoM estimator of θ is $T_{n}=\sum_{1}^{n} X_{i} / n$, and is unbiased $\mathrm{E}\left(T_{n}\right)=\theta$.
Also $\operatorname{var}\left(T_{n}\right)=\theta / n \rightarrow 0$ as $n \rightarrow \infty$, so the estimator T_{n} is consistent for θ.
(ii) X_{1}, \ldots, X_{n} i.i.d $\sim \operatorname{Bin}(r, \theta)$. MoM estimator of θ is $T_{n}=\sum_{1}^{n} X_{i} / r n$, and is unbiased $\mathrm{E}\left(T_{n}\right)=\theta$. Also $\operatorname{var}\left(T_{n}\right)=\theta(1-\theta) / r n \rightarrow 0$ as $n \rightarrow \infty$, so the estimator T_{n} is consistent for θ.
(Note r is fixed, it is n that $\rightarrow \infty$.

8.2 Estimating μ and μ^{2}

Consider any distribution, with mean μ, and variance σ^{2}, and X_{1}, \ldots, X_{n} an n-sample from this distribution.
Let $\overline{X_{n}}=\sum_{i=1}^{n} X_{i} / n . \mathrm{E}\left(\overline{X_{n}}\right)=\mu$, and $\operatorname{var}\left(\overline{X_{n}}\right)=\sigma^{2} / n$ (why?).
So $\overline{X_{n}}$ is unbiased and a consistent estimator of μ. (Why?)
Now suppose we want to estimate μ^{2} : we could try ${\overline{X_{n}}}^{2}$.
$\mathrm{E}\left({\overline{X_{n}}}^{2}\right)=\operatorname{var}\left(\overline{X_{n}}\right)+\left(\mathrm{E}\left(\overline{X_{n}}\right)\right)^{2}=\sigma^{2} / n+\mu^{2}($ why? $)$
So ${\overline{X_{n}}}^{2}$ is not unbiased for μ^{2}, but it is asymptotically unbiased.
What about $\operatorname{var}\left({\overline{X_{n}}}^{2}\right)=\mathrm{E}\left({\overline{X_{n}}}^{4}\right)-\left(\mathrm{E}\left({\overline{X_{n}}}^{2}\right)\right)^{2}$? In general, this is very messy (so we won't do it), but in fact, provided $\mathrm{E}\left(X_{i}^{4}\right)$ is finite, $\operatorname{var}\left({\overline{X_{n}}}^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$.
So in fact (although we have not shown it), ${\overline{X_{n}}}^{2}$ is consistent for μ^{2}, provided $\mathrm{E}\left(X_{i}^{4}\right)$ is finite.

8.3 Examples for an n-sample from a uniform $U(0, \theta)$ distrubution

(i) The MoM estimator of θ is $2 \overline{X_{n}}=(2 / n) \sum_{i=1}^{n} X_{i}$. The estimator has expectation θ and variance $4 \operatorname{var}\left(X_{i}\right) / n$, so is unbiased and has variance $\rightarrow 0$ as $n \rightarrow \infty$. So the estimator is consistent.
(ii) We had also the "better" estimator $(n+1) / n \cdot \max \left(X_{i}\right)$. This was also unbiased and has a smaller variance, in fact of order $1 / n^{2}$. So clearly this one is also consistent.
(iii) What if we just used $W=\max \left(X_{i}\right)$? W has expectation $n \theta /(n+1)$ (so asymptotically unbiased) and also has variance order $1 / n^{2}$. So it is consistent. In fact, we know the cdf $F_{W}(w)=P(W \leq w)=(w / \theta)^{n}$. so we know $P(|W-\theta|<\epsilon)=P(W>\theta-\epsilon)=1-((\theta-\epsilon) / \theta)^{n}$. (see LM P.407).

8.4 Careful with the bias

(i) X_{1}, \ldots, X_{n} i.i.d from $f_{X}(x ; \sigma)=(1 / 2 \sigma) \exp (-|x| / \sigma) \cdot X_{i} \sim D E(0, \sigma) \equiv \sigma D E(0,1)$.
$T_{n}=\sum_{i=1}^{n}\left|X_{i}\right| / n . \operatorname{var}\left(T_{n}\right)=\operatorname{var}\left(\left|X_{i}\right|\right) / n \rightarrow 0$ as $n \rightarrow \infty$.
$\mathrm{E}\left(\left|X_{i}\right|\right)=\int_{-\infty}^{\infty}|x|(1 / 2 \sigma) \exp (-|x| / \sigma) d x=\int_{0}^{\infty}(x / \sigma) \exp (-x / \sigma) d x=\sigma$
So T_{n} is consistent for σ.
(ii) X_{1}, \ldots, X_{n} i.i.d from $N\left(0, \sigma^{2}\right) \equiv \sigma N(0,1)$.
$T_{n}=\sum_{i=1}^{n}\left|X_{i}\right| / n . \operatorname{var}\left(T_{n}\right)=\operatorname{var}\left(\left|X_{i}\right|\right) / n \rightarrow 0$ as $n \rightarrow \infty$.
$\mathrm{E}\left(\left|X_{i}\right|\right)=\int_{-\infty}^{\infty}|x|(1 /(\sqrt{2 \pi} \sigma)) \exp \left(-\frac{1}{2}(x / \sigma)^{2}\right) d x=\sqrt{2 / \pi} \int_{0}^{\infty}(x / \sigma) \exp \left(-\frac{1}{2}(x / \sigma)^{2}\right) d x=(\sqrt{2 / \pi}) \sigma$
The estimator is not aymptotically unbiased, so it cannot be consistent.

9. Moment generating functions LM 3.12

9.1: Definition and basic properties

(i) Definition: $M_{X}(t)=\mathrm{E}\left(e^{t X}\right)$, provided expectation exists. Note $M_{X}(0) \equiv 1$.

Discrete case: $M_{X}(t)=\sum_{x} e^{t x} p_{X}(x)$. Continuous case: $M_{X}(t)=\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x$.
(ii) Moments: Differentiating: $M_{X}^{\prime}(t)=\mathrm{E}\left(X e^{t X}\right): \quad M_{X}^{\prime}(0)=\mathrm{E}(X)$.
$M_{X}^{\prime \prime}(t)=\mathrm{E}\left(X^{2} e^{t X}\right), \quad M_{X}^{\prime \prime}(0)=\mathrm{E}\left(X^{2}\right)$. In general: $M_{X}^{(n)}(0)=\mathrm{E}\left(X^{n}\right)$.
Although this is basis of name "mgf", it is not often useful in practice: there are easier ways!
(iii) Uniqueness: Mgfs are unique. That is, if $M_{X}(t)=M_{Y}(t)$ for all t in an open interval containing 0 , then X and Y have the same distribution. This is useful, as we will see below.
9.2: Examples of mgf's; Discrete (for convenience, write $z=e^{t}$).

Binomial: $\operatorname{Bin}(n, p) ; q=1-p: \mathrm{E}\left(z^{X}\right)=\sum_{k=0}^{n}\binom{n}{k}(p z)^{k} q^{n-k}=(q+p z)^{n}$
Poisson: $\mathcal{P o}(\mu): \mathrm{E}\left(z^{X}\right)=\sum_{k=0}^{\infty} e^{-\mu}(\mu z)^{k} / k!=\exp (\mu(z-1))$
Geometric: $\operatorname{Geo}(p): \mathrm{E}\left(z^{X}\right)=\sum_{k=1}^{\infty} q^{k-1} p z^{k}=p z /(1-q z)$
Negative binomial: $\operatorname{Neg} B(r, p)$:

$$
\mathrm{E}\left(z^{X}\right)=\sum_{k=r}^{\infty}\binom{k-1}{r-1} q^{k-r} p^{r} z^{k}=(p z)^{r} \sum_{k=0}^{\infty}\binom{k+r-1}{k}(q z)^{k}=(p z)^{r}(1-q z)^{-r}
$$

9.3: Examples of mgf's: Continuous

Exponential: $\mathcal{E}(\lambda): \mathrm{E}\left(e^{t X}\right)=\lambda \int_{0}^{\infty} \exp (-(\lambda-t) x) d x=\lambda /(\lambda-t)$ provided $t<\lambda$.

9.4: Mgf of linear functions and sums of independent r.vs

(i) Let $Y=a X+b: M_{Y}(t)=\mathrm{E}(\exp ((a X+b) t))=e^{b t} \mathrm{E}(\exp ((a t) X))=e^{b t} M_{X}(a t)$.
(ii) Let $Y=a X$ where X is exponental $\mathcal{E}(\lambda)$, then
$M_{Y}(t)=M_{X}(a t)=\lambda /(\lambda-a t)=(\lambda / a) /((\lambda / a)-t)$ which is the Mgf of $\mathcal{E}(\lambda / a)$.
So, by uniqueness of Mgf, $a X$ is distributed as $\mathcal{E}(\lambda / a)$.
(iii) Let X and Y be independent random variables: $W=X+Y$:

$$
M_{W}(t)=\mathrm{E}\left(\exp ((X+Y) t)=\mathrm{E}(\exp (X t) \exp (Y t))=\mathrm{E}\left(e^{X t}\right) \mathrm{E}\left(e^{Y t}\right)=M_{X}(t) M_{Y}(t)\right.
$$

(iv) Let X_{1}, \ldots, X_{n} be i.i.d. with same dsn as $X . W=\sum_{i=1}^{n} X_{i}$

$$
M_{W}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=\left(M_{X}(t)\right)^{n} .
$$

9.5 Immediate conclusions!!

Sum of independent Binomials (same p) is Binomial;
Sum of independent Poisson (any means) is Poisson
Sum of independent Geometrics (same p) is Negative Binomial; and of NegBin is also NegBin.

