Lecture 25: Using the Normal Approximation: Ross 5.4 (Mendel's experiments)

25.1: Using the Normal probability table

The table in Ross, P.222, is of the usual form for the probabilities for a $\mathrm{N}(0,1)$ standard Normal distribution. It gives $P(Z \leq x)$ for values of x from 0 up. This probability is denoted $\Phi(x)$.
For negative $x, P(Z \leq x)=P(Z \geq-x)=1-P(Z \leq-x)$.
(Note that since Z is a continuous random variable, $P(Z<x)=P(Z \leq x)$).
For general $a, b: P(a<Z \leq b)=\Phi(b)-\Phi(a)$.

25.2: Mendel's experiments

Mendel did many experimants of the form of the one with the red/white flowers. He crossed red-flowered plants with white-flowered plants, so he knew the red-flowered offspring were of RW type. These are known as the F_{1} or hybrids. He then crossed these with each other, and expected to get red and white flowers in the ratio 3:1.
Here are four examples:
a) $253 F_{1}$ producing 7324 seeds: 5474 round, 1850 wrinkled: ratio $2.96: 1$
b) $258 F_{1}$ producing 8023 seeds: 6022 yellow, 2001 green: ratio 3.01:1.
c) $929 F_{2} ; 705$ red flowers, 224 white flowers: ratio 3.15:1.
d) $580 F_{2}: 428$ green pods, 152 yellow pods: ratio $2.82: 1$

25.3 Are Mendel's results too good?

There has been much debate as to whether Mendel's results are "too good" - too close to the 3:1 ratio.
Note the larger samples for characteristics that can be observed at the seed stage. These give the ratios closest to 3:1. This is as expected: $\operatorname{var}(X)=n p(1-p)$ but $\operatorname{var}(X / n)=\operatorname{var}(X) / n^{2}=p(1-p) / n$ which decreases as n increases. Are we too close? Recall $Z=(X-n p) / \sqrt{n p(1-p)}$ is approx $\mathrm{N}(0,1)$. Here $p=3 / 4$:
a) $Z_{a}=(5474-7324 \times 0.75) / \sqrt{7324 \times 3 / 16}=-0.5127, P(-0.5127<Z \leq 0.5127)=2 \Phi(0.5127)-1=0.39$.
b) $Z_{b}=(6022-8023 \times 0.75) / \sqrt{8023 \times 3 / 16}=0.1225, P(-0.1225<Z \leq 0.1225)=2 \Phi(0.1225)-1=0.097$.
c) $Z_{c}=(705-929 \times 0.75) / \sqrt{929 \times 3 / 16}=0.6251, P(-0.6251<Z \leq 0.06251)=2 \Phi(0.6251)-1=0.468$.
d) $Z_{d}=(428-580 \times 0.75) / \sqrt{580 \times 3 / 16}=-0.6712, P(-0.6712<Z \leq 0.6712)=2 \Phi(0.6712)-1=0.498$.

So far, with these experiments, there seems no reason to think Mendel's results are "too good".

25.4 Combining the experiments

The fact that these involve different characteristics does not stop us combining them. They are all independent Bernoulli trials with $p=0.75$.
We have $7324+8023+929+580=16856$ trials with $5474+6022+705+428=12629$ "successes". $Z=$ $(12629-16856 \times 0.75) / \sqrt{16856 * 3 / 16}=-0.2312 . P(-0.2312<Z \leq 0.2312)=2 \Phi(0.2312)-1=0.183$. Alternatively, we can combine the Z-values: we could do this even if they came from Bernoulli trials with different p.
Here: $Z_{a}+Z_{b}+Z_{c}+Z_{d}=-0.5127+0.1225+0.6251-0.6712=-0.4363$.
This would be a Normal with mean 0 but variance 4 (why?). So we must standardize it: $Z^{*}=-0.4363 / 2=-0.2182, P(-0.2182<Z \leq 0.2182)=2 \Phi(0.2182)-1=0.173$.

So again, either way, here there is no evidence of the results being "too good".
However, when a large number of Mendel's other results are also grouped together, overall, they do look a bit "too good".

Lecture 26: More examples from Mendel's experiments

26.1 Approximating discrete Binomial with continuous Normal

(a) When approximating $P(X=k)$ for a binomial X by a Normal Y, strictly we should consider $P\left(k-\frac{1}{2}<\right.$ $Y \leq k+1 / 2)$ (see homework example).
(b) However, for large n it makes almost no difference. Recall when X is increased by $1, Z$ is increased by $\delta=1 / \sqrt{n p(1-p)}$.
(c) Example: suppose X is $\operatorname{Bin}(30,2 / 3)$. $\mathrm{E}(X)=20, \operatorname{var}(X)=30 \times(1 / 3) \times(2 / 3)=20 / 3$.

Compute the probability $14 \leq X \leq 18$
(i) Exactly, using the Binomial probabilities: $\sum_{k=14}^{18} P(X=k)$. Answer 0.2689.
(ii) Using the Normal approx, with the range 14 to 18 for X :
$Z=(14-20) / \sqrt{20 / 3}=-2.32$ to $Z=(18-20) / \sqrt{20 / 3}=-0.77$. Answer: 0.2105 .
(iii) Using the Normal approx, with the range 13.5 to 18.5 for X :

$$
Z=(13.5-20) / \sqrt{20 / 3}=-2.517 \text { to } Z=(18.5-20) / \sqrt{20 / 3}=-0.5809 . \text { Answer: } 0.2747 .
$$

26.2 Mendel's experiment: continued

Now Mendel wanted to show not just the 3:1 red:white ratio, but also the 1:2:1 for $R R: R W: W W$. So he needed to find which of his red-flowered F_{2} plants were $R R$ and which were $R W$. To do this he selfed his red-flowered F_{2} pea plants: that is, the parents were $R R$ giving $R R \times R R$ or $R W$ giving $R W \times R W$.

In order to tell whether the parent was $R W$, Mendel grew up 10 offspring, and if all were red he said the plant bred true. Note, under Mendel's hypothesis $P(R R \mid$ red $)=1 / 3$.
Mendel reported his result: from $600 F_{2}$ he found 201 bred true. Assuming $1 / 3$ should breed true, is this result too close to $1 / 3$? Note if $p=1 / 3, \mathrm{E}(X)=200, \operatorname{var}(X)=600 \times 1 / 3 \times 2 / 3=400 / 3$.
(i) Without the correction (considering $X=199,200,201$) show the probability of being this close is about 6.5%. $(Z= \pm 0.08660)$.
(ii) With the correction ($189.5<X<201.5$) show the probability of being this close is a bit over 10% ($Z= \pm 0.12990$).
(Here the continuity correction makes enough difference that is might affect our belief about whether Mendel's results are "too good").

26.3 Mendel's mistake:

Recall that each offspring of an $R W \times R W$ mating is white with probability $1 / 4$.
(i) For each $R W \times R W$ mating, what is the probability Mendel mis-called it as $R R \times R R$?

Answer: $(3 / 4)^{10}=0.0563$.
(ii) If the frequency of $R R$ parents is $1 / 3$ and $R W$ is $2 / 3$, what is the overall probability that all 10 offspring plants are red? Answer: $(1 / 3)+(2 / 3) \times 0.0563=0.371$.

26.4 Probability of being close to $\mathbf{0 . 3 7 1}$

So now the p of Mendel's Binomial should have been $p=0.371$. $\mathrm{E}(X)=222.6, \operatorname{var}(X)=140.01$, st.dev $=$ 11.83. Now we need the probability that Mendel's reported count of 201 would be this far off.
(i) With no correction: $X \leq 201, Z<-1.825$ or $Z>1.825$. Answer: about 6.8%.
(ii) With correction: $X \leq 201.5, Z<-1.783$ or $Z>1.783$. Answer: about 7.4%.
(iii) Or maybe we should ask, this far off in direction of his assumed $1 / 3$, Asnwers: 3.4% and 3.7%.

Either Mendel was, for once, quite unlucky or else his result is too close to what he may have expected, and too far from what he should have found.

Lecture 27: The Cumulative Distribution Function: Ross 4.9, 5.2

27.1 (i) Definition: (Ross 4.1) For any random variable X, the cumulative distribution function is defined as $F_{X}(x)=P(X \leq x)$ for $-\infty<x<\infty$.
(ii) For a discrete random variable with pmf $p_{X}(x), F_{X}(b)=\sum_{x \leq b} p_{X}(x)$.
(iii) For a continuous random variable with pdf $f_{X}(x), F_{X}(b)=\int_{-\infty}^{b} f_{X}(x) d x$.
(iv) For all random variables, $P(a<X \leq b)=F(b)-F(a)$ because $\{X \leq b\}=\{X \leq a\} \cup\{a<X \leq b\}$ and $\{X \leq a\} \cap\{a<X \leq b\}=\Phi$ (empty set).
27.2 Properties: (Ross 4.9)
(i) F_{X} is a non-decreasing function: if $a<b$, then $F_{X}(a) \leq F_{X}(b)$, because $\{X \leq a\} \subset\{a<X \leq b\}$.
(ii) $\lim _{b \rightarrow \infty} F_{X}(b)=1$, because for any increasing sequence $b_{n} \rightarrow \infty, n=1,2,3, \ldots$,
$\Omega=\{X<\infty\}=\cup\left\{X \leq b_{n}\right\}$, so $1=P(\Omega)=\lim _{n \rightarrow \infty} P\left(X \leq b_{n}\right)=\lim _{n \rightarrow \infty} F_{X}\left(b_{n}\right)$.
(iii) $\lim _{b \rightarrow-\infty} F_{X}(b)=0$, because for any decreasing sequence $b_{n} \rightarrow-\infty, n=1,2,3, \ldots$,
$\Phi=\{X=-\infty\}=\cap\left\{X \leq b_{n}\right\}$, so $0=P(\Phi)=\lim _{n \rightarrow \infty} P\left(X \leq b_{n}\right)=\lim _{n \rightarrow \infty} F_{X}\left(b_{n}\right)$.
(iv) F_{X} is right-continuous. That is, for any b and any decreasing sequence $b_{n}, n=1,2,3, \ldots$, with $b_{n} \rightarrow b$ as $n \rightarrow \infty, \lim _{n \rightarrow \infty} F_{X}\left(b_{n}\right)=F_{X}(b)$, because $\{X \leq b\}=\cap\left\{X \leq b_{n}\right\}$.
Note $P(X \leq b)=P(X<b)+P(X=b)$, and $P(X<b)=\lim _{x \rightarrow b^{-}} F(x)$.
If X is discrete, with $P(X=b)>0, F_{X}$ will be discontinuous at $x=b$.
27.3 Case of continuous random variables: (Ross 5.2)

For discrete random variables, $F_{X}(x)$ is just a set of flat (constant) pieces, with jumps in amount $P\left(X=x_{i}\right)$ at each possible value x_{i} of X. This is not very useful.
For continuous random variables, the cdf is very useful!

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(w) d w \text { so } \frac{d F_{X}(x)}{d x}=f_{X}(x)
$$

That is, we get the pdf by differentiating the cdf: the cdf is often easier to consider.
Example: scaling an exponential random variable.
Suppose $f_{X}(x)=\lambda e^{-\lambda x}$ on $x \geq 0$, and let $Y=a X(a>0)$. What is the pdf of Y ?

$$
\begin{aligned}
\text { First, } F_{x}(x) & =\int_{0}^{x} \lambda e^{-\lambda w} d w=\left[-e^{-\lambda w}\right]_{0}^{x}=1-e^{-\lambda x} \text { on } x \geq 0 . \\
\text { Now, } F_{Y}(y) & =P(Y \leq y)=P(a X \leq Y)=P(X \leq y / a)=F_{X}(y / a)=\left(1-e^{\lambda y / a}\right), \\
\text { so } f_{Y}(y) & =F_{Y}^{\prime}(y)=\frac{d}{d y}\left(1-e^{-\lambda y / a}\right)=(\lambda / a) e^{-(\lambda / a) y} \text { on } y \geq 0 .
\end{aligned}
$$

That is Y is an exponential random variable with parameter λ / a.

27.4 Using the cdf to consider functions of random variables

Using the cdf is often the easiest way to consider functions of a random variable.
Example: Suppose X is Uniform $\mathrm{U}(0,1)$. What is the pdf of $Y=X^{3}$?

$$
\begin{gathered}
f_{X}(x)=1,0 \leq x \leq 1 ; \quad F_{X}(x)=x, 0 \leq x \leq 1 \\
F_{Y}(y)=P(Y \leq y)=P\left(X^{3} \leq y\right)=P\left(X \leq y^{1 / 3}\right)=F_{X}\left(y^{1 / 3}\right)=y^{1 / 3}, 0 \leq y \leq 1 \\
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=(1 / 3) y^{-2 / 3} 0 \leq y \leq 1
\end{gathered}
$$

$$
\text { Note: } \mathrm{E}\left(X^{3}\right)=\int_{0}^{1} x^{3} d x=1 / 4 . \quad \mathrm{E}(Y)=\int_{0}^{1} y(1 / 3) y^{-2 / 3} d y=\left[(1 / 3) y^{4 / 3} /(4 / 3)\right]_{0}^{1}=1 / 4
$$

