Lecture 1: Jan 5. Review of random variables Ross 4.2-4.5, 5.1-5.2

1.1 Definitions

(i) **Definition**: A random variable X is a real-valued function on the sample space.

(ii) **Definition**: A random variable X is discrete if it can take only a discrete set of values.

(iii) **Definition**: A continuous random variable X is one that takes values in $(-\infty, \infty)$. That is, in principle. In practice, some values may be impossible.

1.2 Examples

(i) Discrete (finite): the number of heads in 10 tosses of a fair coin.

(ii) Discrete (countable): the number of traffic accidents in a large city in a year.

(iii) Continuous (bounded range): A random number between a and b: values in the interval (a, b).

(iv) Continuous (unbounded range): The waiting time until the bus arrives: values in $(0, \infty)$.

1.3 Probability mass function (pmf) or density (pdf)

(i) **Definition**: The probability mass function (p.m.f.) of a discrete random variable X is the set of probabilities $P(X = x)$ for each of the values $x \in \mathcal{X}$ that X can take.

(ii) $P(X = x) \geq 0$ for each $x \in \mathcal{X}$ and $\sum_x P(X = x) = 1$ where the sum is over all $x \in \mathcal{X}$.

(iii) **Definition**: The probability density function (p.d.f.) of a continuous random variable X is a non-negative function f_X defined for all values x in $(-\infty, \infty)$ such that for any subset B for which $X \in B$ is an event

$$P(X \in B) = \int_B f_X(x) \, dx$$

(iv) X takes some value in $(-\infty, \infty)$ so

$$1 = P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f_X(x) \, dx$$

1.4 Examples

(i) Example (i): **Binomial** $B(10, \frac{1}{2})$. $P(X = x) = \binom{10}{x}(1/2)^x$ for $x = 0, 1, 2, \ldots 10$.

(ii) Example (ii): **Poisson** $Po(\mu)$ mean μ. $P(X = x) = \exp(-\mu)\mu^x / x!$ for $x = 0, 1, 2, 3, 4, \ldots$.

(iii) Example (iii): **Uniform p.d.f**: $f_X(x) = \frac{1}{b-a}$ for $a \leq x \leq b$ and $f_X(x) = 0$ otherwise.

(iv) Example (iv): **Exponential p.d.f**: $f_X(x) = \lambda \exp(-\lambda x)$ for $x \geq 0$ and $f_X(x) = 0$ if $x < 0$.

1.5 Expectations of (functions of) random variables

(i) Discrete case (Ross, 4.3):

If X is discrete with p.m.f. $P(X = x) = p_X(x) > 0$ for $x \in \mathcal{X}$, the expected value of X denoted $E(X)$ is $E(X) = \sum_{x \in \mathcal{X}} x \cdot p_X(x)$, provided this sum exists and is finite.

(ii) Continuous case (Ross 5.2)

If X is continuous with p.d.f. $f_X(x)$, $f_X(x) \geq 0$ for $-\infty < x < \infty$. the expected value of X denoted $E(X)$ is $E(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx$, provided this integral exists and is finite. (Note $\int_{x} f_X(x) \, dx \approx P(x < X \leq x + dx)$.)

(iii) Functions of a random variable:

$$E(g(X)) = \sum_x g(x)p_X(x) \quad \text{(discrete), or} \quad E(g(X)) = \int_{x} g(x)f_X(x) \, dx \quad \text{(continuous).}$$

(iv) Variance: If $E(X) = \mu$, $\var(X) = E(X - \mu)^2$. In fact, $\var(X) = E(X^2) - (E(X))^2$. Note $\var(X) \geq 0$.

1
Lecture 2: Jan 7. Review of Continuous random variables Ross 5.3-5.

2.1 The probability density function: definition and basic properties.

(i) For a subset of the real line B:

$$P(X \in B) = \int_B f_X(x) \, dx$$

(ii) In fact, events can be made up of unions and intersections of intervals of the form $(a, b]$:

$$P(a < X \leq b) = \int_a^b f_X(x) \, dx$$

(iii) Note the value at the boundary does not matter:

$$P(X = a) = \int_a^a f_X(x) \, dx = 0$$

for any continuous random variable.

(iv) Note: $f_X(x) = 0$ is possible for some x-values (see the p.m.f). For example, if $X \geq 0$ (as in the waiting-time example), $f(x) = 0$, if $x < 0$.

2.2 The cumulative distribution function of X is

$$F_X(x) = P(-\infty < X \leq x)$$

The cdf is defined for any random variable, but it is most useful for continuous random variables. In this case

$$F_X(x) = \int_{-\infty}^x f_X(z) \, dz \quad \text{and} \quad f_X(x) = \frac{d}{dx} F_X(x)$$

2.3 The Uniform distribution on (a, b).

$$f(x) = \frac{1}{b-a} \quad \text{for } a \leq x \leq b \quad \text{and} \quad f(x) = 0 \text{ otherwise.}$$

If $a = 0$ and $b = 1$, $f_X(x) = 1$ and $F_X(x) = x$ on $0 < x < 1$. $E(X) = 1/2$, var(X) = 1/12.

2.4 The exponential distribution with rate parameter λ: $\mathcal{E}(\lambda)$.

$$f(x) = \lambda \exp(-\lambda x) \quad \text{for } x \geq 0 \quad \text{and} \quad f(x) = 0 \text{ if } x < 0.$$

$$F_X(x) = 1 - \exp(-\lambda x) \quad \text{for } x > 0. \quad E(X) = 1/\lambda, \var(X) = 1/\lambda^2.$$

2.5 The Normal distribution with mean μ and variance σ^2

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \quad -\infty < x < \infty$$

$E(X) = \mu$. var(X) = σ^2.

If $X \sim N(\mu, \sigma^2)$, then $(X - \mu)/\sigma \sim N(0,1)$.

2.6 Location and scale

(i) A location parameter a shifts a probability density: the pdf is a function of $(x - a)$. For example, we can shift a uniform $U(0, 1)$ pdf to a uniform $U(a, a+1)$ pdf. If $X \sim U(0, 1)$, $Y = a + X \sim U(a, a+1)$.

(ii) A scale parameter stretches (or shrinks) a probability density. For example, to transform a Uniform $U(0, 1)$ density to a Uniform $U(a, b)$, we shift by a and scale by $(b-a)$. If $X \sim U(0, 1)$, $Y = a + (b-a)X \sim U(a, b)$.

(iii) The parameter λ^{-1} of an exponential random variable is also a scale parameter.

If $X \sim \mathcal{E}(\lambda)$, then $\lambda X \sim \mathcal{E}(1)$.

If $X \sim \mathcal{E}(\lambda)$, then $Y = kX \sim \mathcal{E}(\lambda/k)$.

(iv) A Normal random variable has both location μ and scale σ.

If $X \sim N(\mu, \sigma^2)$, then $(X - \mu)/\sigma \sim N(0,1)$.

If $X \sim N(\mu, \sigma^2)$, then $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$.
Lecture 3; Jan 9. Review of the Bernoulli process

3.1: The process

\[0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 : \text{Each trial is success (1) or not (0).} \]

\[X_1X_2X_3X_4 \ldots \quad \ldots \ X_{25} \ldots : \text{Each } X_i \text{ is 0 or 1.} \]

\[\ldots \ldots \ldots \ T_5 \ldots \ldots \ldots \ T_{10} \ldots \ldots \ldots \ T_{15} \ldots \ldots \ldots \ T_{20} \ldots \ldots \ldots \ T_{25} \ldots : \text{ } T_n = X_1 + \ldots + X_n \]

\[\ldots \ldots \ldots \ldots -Y_1 - \ldots - Y_2 Y_3 - Y_4 - \ldots - \ldots - \ldots - Y_5 - Y_6 - \ldots - Y_r : \text{ } Y_r \text{ is } r \text{th inter-arrival time} \]

\[\ldots \ldots W_1 \ldots \ldots \ldots W_2 W_3 \ldots \ldots \ldots W_4 \ldots \ldots \ldots \ldots W_5 \ldots \ldots \ldots W_6 \ldots \ldots \ldots W_7 : \text{ } W_r \text{ is total waiting time to } r \text{th 1.} \]

The Bernoulli process is defined by \(X_i \) independent, with \(P(X_i = 1) = p \) and \(P(X_i = 0) = (1 - p) \).

\[T_n = X_1 + \ldots + X_n \text{ is number of successes (i.e. 1s) in first } n \text{ trials}. \]

\(Y_r \) is the \textit{inter-arrival time}: number of trials from \((r - 1)\)th success to \(r \) th.

\(W_r = Y_1 + Y_2 + \ldots + Y_r \) is number of trials to \(r \) th success.

\(Y_r^* = Y_r - 1 \): number of failures (0) before next success (1).

\(W_r^* = Y_1^* + \ldots + Y_r^* \): number of failures (0) before \(r \) th success. \textbf{Note: } \(W_r > n \) if and only if \(T_n < r \).

3.2: Bernoulli and Binomial random variables Ross 4.6

(i) \(X_i \) is Bernoulli\((p)\). \(P(X_i = 1) = p, P(X_i = 0) = (1 - p) \).

\[E(X_i) = p \times 1 + (1-p) \times 0 = p \]

\[E(X_i^2) = p \times 1^2 + (1-p) \times 0^2 = p, \text{ so } \text{var}(X_i) = E(X_i^2) - (E(X_i))^2 = p - p^2 = p(1-p). \]

\[T_n = X_1 + \ldots + X_n \text{ is Binomial } (n,p). \]

The probability of each sequence of \(k \) 1’s and \((n-k)\) 0’s is \(p^k(1-p)^{n-k} \) and there are \(\binom{n}{k} \) such sequences.

\[P(T_n = k) = \binom{n}{k}p^k(1-p)^{n-k}. \]

Expectations always add: \(E(T_n) = E(X_1) + \ldots + E(X_n) = p + p + \ldots + p = np. \)

In general variances do NOT add, but here they do: \(\text{var}(T_n) = \text{var}(X_1) + \ldots + \text{var}(X_n) = np(1-p). \)

3.3: Geometric and Negative Binomial random variables Ross 4.8.1, 4.8.2

\(Y_r \) are independent, and have Geometric \((p)\) distribution: \(P(Y = k) = (1-p)^{k-1}p \), for \(k = 1, 2, 3, \ldots \).

\[E(Y) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p/(1-(1-p))^2 = 1/p. \text{ var}(Y) = (1-p)/p^2. \]

\(Y_r^* = (Y - 1), P(Y_r^* = k) = (1-p)^k p, \text{ for } k = 0, 1, 2, 3, \ldots \)

\[E(Y_r^*) = E(Y) - 1 = (1-p)/p, \text{ var}(Y_r^*) = \text{var}(Y). \] (Recall \(E(aY + b) = aE(Y) + b \) and \(\text{var}(aY + b) = a^2 \text{var}(Y) \)).

\[W_r = Y_1 + \ldots + Y_r. \text{ Expectations add, so } E(W_r) = r/p. \text{ Again the variances do add, } \text{var}(W_r) = r(1-p)/p^2. \]

\[P(W_r = k) = P(r-1 \text{ successes in } k-1 \text{ trials, and then success}) = \binom{k-1}{r-1}(1-p)^{k-r}p^{r-1} \text{ for } k = r, r+1, \ldots \]

\[W_r^* = W_r - r, E(W_r^*) = E(W_r) - r, \text{ var}(W_r^*) = \text{var}(W_r) \]

\[P(W_r^* = k) = P(r-1 \text{ successes in } r+k-1 \text{ trials, and then success}) = \binom{r+k-1}{r-1}(1-p)^{k-pr-1}p \]

for \(k = 0, 1, 2, 3, \ldots \)

3.4 A reminder about the hypergeometric distribution Ross 4.8.3

Example: the number of red fish, in sampling \(n \) fish without replacement, from a pond in which there are \(N \) fish of which \(m \) are red.

\[P(X = x) = \binom{m}{x} \binom{N-m}{n-x} / \binom{N}{n} \text{ for } x = \max(0, m + n - N), \ldots, \min(m, n). \]
Lecture 4; Jan 12. Introduction to the Poisson process Ross 4.7, 9.1

4.1 The process

Events occur randomly and independently in time, at rate λ.

More formally: the numbers of events N in disjoint time intervals are independent, and the probability distribution of the number of events $N(\ell)$ in an interval depends only on its length, ℓ. Additionally, $P(N(h) = 1) = \lambda h + o(h)$, $P(N(h) \geq 2) = o(h)$.

4.2 The waiting time T to an event

The waiting time T to an event is $> s$, if there are no events in $(0, s)$. That is $P(T > s) = P(N(s) = 0) \equiv P_0(s)$.

\[
P_0(s + h) = P_0(s) \times P_0(h) = P_0(s)(1 - \lambda h - o(h))
\]
\[
P_0(s + h) - P_0(s) = -\lambda h P_0(s) + o(h)
\]
\[
dP_0/P_0 = -\lambda ds \quad \text{or} \quad \log(P_0) = -\lambda s \quad \text{with} \quad P_0(0) = 1
\]

So $P(T > s) = P_0(s) = \exp(-\lambda s)$

So $F_T(s) = P(T \leq s) = 1 - P(T > s) = 1 - \exp(-\lambda s)$

So $f_T(s) = F_T'(s) = \lambda \exp(-\lambda s)$ on $0 < s < \infty$

That is, regardless of where we start waiting, the waiting time to an event is exponential with rate parameter λ. Recall the “forgetting property” of the exponential: $P(T > t+s|T > t) = P(T > s)$.

4.3 The number of events $N(s)$ in a time interval length s

Let $N(s)$ be the number of events in interval $(0, s)$ and $P_n(s) = P(N(s) = n)$.

Note from 4.2, $P_0(s) = P(T > s) = \exp(-\lambda s)$. Then

\[
P_n(s + h) = P_n(s)(1 - \lambda h - o(h)) + P_{n-1}(s)(\lambda h + o(h)) + o(h)
\]
\[
P_n(s + h) - P_n(s) = \lambda h (P_{n-1}(s) - P_n(s)) + o(h)
\]
\[
P_n'(s) = \lambda (P_{n-1}(s) - P_n(s)) \quad \text{letting} \quad h \to 0
\]

Hence from $P_0(s) = \exp(-\lambda s)$ we could determine P_1, P_2,

Instead, consider $q_n(s) = \exp(-\lambda s)(\lambda s)^n/n!$.

Then $q_n'(s) = \exp(-\lambda s)\lambda^n s^{n-1}/n! - \lambda \exp(-\lambda s)(\lambda s)^n/n! = \lambda(q_{n-1}(s) - q_n(s))$.

That is, $P_n(s) \equiv q_n(s)$. That is $N(s)$ is a Poisson random variable with mean λ.

4.4 The conditional distribution of times of events

Suppose we know exactly 1 event occurred in $(0, s)$. At what time T did it occur?

This is a continuous random variable: $P(T = t) = 0$ for every t.

Instead consider the cdf $P(T \leq t)$:

\[
F_T(t) = P(T \leq t | N(s) = 1) = P(T \leq t \cap N(s) = 1)/P(N(s) = 1)
\]
\[
= P_1(t)P_0(s - t)/P_1(s) = (\lambda t \exp(-\lambda t))\exp(-\lambda(s - t))/(\lambda s \exp(-\lambda s)) = t/s
\]

So $F_T(t) = t/s$ on $0 < t < s$, or $f_T(t) = 1/s$, $0 < t < s$.

That is T is uniform on the interval $(0, s)$.