Lecture Three

Normal theory null distributions

Normal (Gaussian) distribution

The normal distribution is often relevant because of the *Central Limit Theorem* (CLT):

A random variable which is a sum of 'many' independent random variables will have an (approximately) normal distribution.

Examples

(1) Many natural responses may be modelled as the additive effect of many factors.

e.g. crop yield:

 $y_1 = a_1 x_{\text{seed}_1} + a_2 x_{\text{soil}_1} + a_3 x_{\text{water}_1} + \cdots$ $y_2 = a_1 x_{\text{seed}_2} + a_2 x_{\text{soil}_2} + a_3 x_{\text{water}_2} + \cdots$ $\vdots \quad \vdots \quad \vdots$ $y_n = a_1 x_{\text{seed}_n} + a_2 x_{\text{soil}_n} + a_3 x_{\text{water}_n} + \cdots$

where

 $x_{\text{seed}1}, \ldots, x_{\text{seed}n}$ are independent samples from a (not necessarily normal) distribution with mean μ_{seed} and variance σ_{seed}^2 ;

 $x_{\text{soil1}}, \ldots, x_{\text{soiln}}$ are independent samples from a distribution with mean μ_{soil} and variance σ_{soil}^2 ;

 $x_{\text{water1}}, \ldots, x_{\text{watern}}$ are independent samples from a distribution with mean μ_{water} and variance σ_{water}^2 ;

it then follows that (y_1, \ldots, y_n) will be independent samples from an approximately normal joint distribution with

$$\mu_Y = a_1 \mu_{\text{seed}} + a_2 \mu_{\text{soil}} + a_3 \mu_{\text{water}} + \cdots$$

$$\sigma_Y^2 = a_1^2 \sigma_{\text{seed}}^2 + a_2^2 \sigma_{\text{soil}}^2 + a_3^2 \sigma_{\text{water}}^2 + \cdots$$

additive effects \Rightarrow normally distributed data

(2) The sampling distribution for \bar{Y} from independent samples from a population

Recap: sampling distribution:

 $\begin{array}{l} \text{Population A} \Rightarrow \text{sample } (y_1^{(1)}, \dots, y_n^{(1)}) \Rightarrow \bar{y}^{(1)} \\ \text{Population A} \Rightarrow \text{sample } (y_1^{(2)}, \dots, y_n^{(2)}) \Rightarrow \bar{y}^{(2)} \\ \vdots & \vdots \\ \text{Population A} \Rightarrow \text{sample } (y_1^{(N)}, \dots, y_n^{(N)}) \Rightarrow \bar{y}^{(N)} \end{array}$

Distribution of $(\bar{y}^{(1)}, \ldots, \bar{y}^{(N)})$ is called the *sampling distribution* of the sample mean \bar{Y} .

For 'reasonable' distributions (finite mean μ and variance σ^2) and non-tiny sample sizes (n > 30), \bar{Y} will have an approximately normal distribution, with mean μ , variance σ^2/n .

Why do we care about the sampling distribution of \bar{Y} ?

Consider H_0 : $E(Y_A) = E(Y_B) = \mu$ (treatment has no effect)

Then regardless of the distribution of the data, under H_0 we have

$$\bar{Y}_A \sim N(\mu, \sigma^2/n_A) \qquad \bar{Y}_B \sim N(\mu, \sigma^2/n_B)$$

hence

$$\bar{Y}_A - \bar{Y}_B \dot{\sim} N(0, (\sigma^2/n_A) + (\sigma^2/n_B))$$

represents a distribution of hypothetical results of a sampling experiment that it could have occurred under H_0 .

(Review of) properties of the Normal Distribution (I)

- (1) If $Y \sim N(\mu, \sigma^2)$, then $aY + b \sim N(a\mu + b, a^2\sigma^2)$; in particular, $(Y \mu)/\sigma \sim N(0, 1)$ N(0, 1) is called the standard Normal distribution.
- (2) If $Y_1 \sim N(\mu_1, \sigma_1^2)$ and $Y_2 \sim N(\mu_2, \sigma_2^2)$ and Y_1, Y_2 independent then $Y_1 + Y_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- (3) If Y_1, \ldots, Y_n are an i.i.d. sample from $N(\mu, \sigma^2)$ then \bar{Y} is statistically independent of

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

Normal theory Null Distributions

Consider the simple hypothesis test:

- $H_0: E(Y) = \mu_0$
- $H_1: E(Y) \neq \mu_0$ (two-sided)

obtain data y_1, \ldots, y_n , evaluate H_0, H_1 with test statistic:

$$d(\mathbf{y}) = d(y_1, \dots, y_n) = \frac{\overline{y} - \mu_0}{\sigma/\sqrt{n}}$$

1. If data are from a normal population $N(\mu, \sigma^2)$ then

$$\bar{Y} - \mu_0 \sim N(\mu - \mu_0, \sigma^2/n)$$
$$d(\mathbf{Y}) = \frac{(\bar{Y} - \mu_0)}{(\sigma/\sqrt{n})} \sim N(\frac{\mu - \mu_0}{\sigma/\sqrt{n}}, 1)$$

and thus if H_0 is true then $d(\mathbf{Y}) \sim N(0, 1)$.

Thus if the null hypothesis is true then we would expect $d(\mathbf{Y})$ to have a standard normal distribution, e.g. in 95% of samples taking a value between -1.96 and +1.96.

Equivalently: the null distribution is standard normal.

2. If data are not normal, but H_0 is true, the variance is σ^2 , and n is fairly big (e.g. n > 30), then by the CLT we have:

$$d(\mathbf{Y}) = \frac{(Y - \mu_0)}{(\sigma/\sqrt{n})} \dot{\sim} N(0, 1)$$

Hypothesis Test

Large values of $|d(\mathbf{Y})|$ provide strong evidence against $H_0 \Rightarrow$ Reject H_0 for larger values of $|d(\mathbf{Y})|$

$$\begin{aligned} \text{p-value} &= \Pr(|d(\mathbf{Y})| \ge |d(\mathbf{y}_{\text{obs}})|) &= \Pr(Z \le -|d(\mathbf{y}_{\text{obs}})|) + \Pr(Z \ge |d(\mathbf{y}_{\text{obs}})|) \\ &= 2\Pr(Z \ge |d(\mathbf{y}_{\text{obs}})|) \\ &= 2*(1 - \texttt{pnorm}(|d(\mathbf{y}_{\text{obs}})|, 0, 1)) \end{aligned}$$

(here we use Z to indicate a standard normal RV). **Problem:** σ^2 is usually unknown

Thus we cannot compute $d(\mathbf{Y})$ (in this sense it is not a genuine test-statistic).

Solution: approximate σ^2 with s^2 , the sample variance, and use

$$t(\mathbf{y}) = \frac{\bar{y} - \mu_0}{s/\sqrt{n}}$$

Q: What is the distribution of $t(\mathbf{Y})$ under H_0 : $E(Y) = \mu_0$? Well, $s \to \sigma$, hence we might hope that:

$$\frac{\bar{y} - \mu_0}{s/\sqrt{n}} \approx \frac{\bar{y} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

For very large samples (> 100) this is a reasonable approximation, but for less large samples we need to take into account that S varies around σ .

Properties of the Normal distribution (2):

χ^2 and *t*-distributions

(4) If $Z_1, \ldots, Z_n \sim_{\text{i.i.d.}} N(0, 1)$ then

$$\sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

the χ^2 ('Chi-squared') distribution with n d.f. (degrees of freedom)

In particular, if $Y_1, \ldots, Y_n \sim \text{i.i.d.} N(\mu, \sigma^2)$, then

$$\frac{Y_1 - \mu}{\sigma}, \frac{Y_2 - \mu}{\sigma}, \dots \frac{Y_n - \mu}{\sigma} \sim_{\text{i.i.d.}} N(0, 1)$$
$$\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2 \sim \chi_n^2$$
$$\frac{n-1}{\sigma^2} S^2 = \frac{n-1}{\sigma^2} \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2 \sim \chi_{n-1}^2$$

Note: the d.f. is the number of *independent* normal RVs that are summed and squared, or equivalently, the dimension of the space in which these variables live:

- Clearly $\frac{Y_i \mu}{\sigma}$ is independent of $\frac{Y_j \mu}{\sigma}$; - But $\frac{Y_j - \bar{Y}}{\sigma}$ is *not* independent of $\frac{Y_{j^*} - \bar{Y}}{\sigma}$, for $j \neq j^*$. - However, if we define $W_i = Y_i - \bar{Y}$ then

$$\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \bar{Y})^2 = \frac{1}{\sigma^2} \sum_{i=1}^n W_i^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n-1} U_i^2$$

where for i = 1, ..., n - 1:

$$U_{i} = -\sqrt{\frac{i}{i+1}}W_{i+1} + \frac{1}{\sqrt{i(i+1)}}\sum_{j=1}^{i}W_{j}$$

and U_j , U_{j^*} are independent for $j \neq j^*$. Thus we see that n-1 is indeed the correct d.f. for S^2 .

(5) If $Z \sim N(0,1), X \sim \chi_k^2$ and Z and X are independent then

$$\frac{Z}{\sqrt{X/k}} \sim t_k$$

Student's t-distribution on k d.f. ('Student' was a pseudonym used by W. Gosset)

Note that as $k \to \infty t_k \to N(0, 1)$ distribution.

The *t*-distribution has *heavier tails* than the standard normal, i.e. for large values of x:

$$P(|Z| > x) < P(|T| > x)$$

where $Z \sim N(0, 1)$ and $T \sim t_k$.

Back to the hypothesis test:

We now return to the question: if $E(Y) = \mu_0$, so H_0 is true, and in addition, $Y_1, \ldots, Y_n \sim_{\text{i.i.d.}} N(\mu_0, \sigma^2)$, what is the distribution of

$$t(\mathbf{Y}) = \frac{\bar{Y} - \mu_0}{S/\sqrt{n}}?$$

• We already showed that if $Y_1, \ldots, Y_n \sim_{\text{i.i.d.}} N(\mu_0, \sigma^2)$

$$\frac{(\bar{Y} - \mu_0)}{(\sigma/\sqrt{n})} \sim N(0, 1) \quad "Z'$$

• Further, from (4) it follows that

$$\frac{n-1}{\sigma^2}S^2 \sim \chi^2_{n-1}$$
 "X" with "k" = $n-1$

- Finally from (3) we have that \overline{Y} and S^2 are independent. Hence "Z" and "X" are independent.
- Thus it follows that

$$\frac{\bar{Y} - \mu_0}{S/\sqrt{n}} = \frac{\frac{Y - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{n-1}{\sigma^2}S^2}} = \frac{"Z''}{\sqrt{"X''/(n-1)}} \sim t_{n-1}$$

• Note that neither "X" nor "Z" are test statistics, since (unless we know σ^2) they cannot be computed from the sample.

One sample t-test

- $H_0: E(Y) = \mu_0$
- $H_1: E(Y) \neq \mu_0$ (two-sided)
- Assumption: if H_0 is true then $Y_1, \ldots, Y_n \sim_{\text{i.i.d.}} N(\mu_0, \sigma^2)$
- Data y_1, \ldots, y_n
- Test statistic:

$$t_{\rm obs} = t(\mathbf{y}) = \sqrt{n} \left(\frac{\bar{y} - \mu_0}{s}\right)$$

- Null distribution: from the assumptions, if H_0 is true then $t(\mathbf{Y}) \sim t_{n-1}$, i.e. the population of hypothetical values of $t(\mathbf{Y})$ that might have been sampled is a t-distribution on n-1 d.f.
- p-value: measuring evidence against H_0 :

$$p = Pr(|t(\mathbf{Y})| \ge |t_{obs}|| H_0) = 2 * (1 - pt(|t_{obs}|, n-1))$$

You can also try t.test(data.vector, $mu=\mu_0$)

Basic Decision Theory

Goal: Reject H_0 when false, accept H_0 when true.

Method: Judge evidence provided by data against H_0 .

	Truth	
Decision	H_0 true	H_0 false
Accept H_0 :	Correct	Type II error
Reject H_0 :	Type I error	Correct

Alternate terminology:

- H_0 : 'no treatment effect' / 'you don't have the disease'
- H_1 : 'treatment effect' / 'you do have the disease'

then Type I errors correspond to *False positives*; Type II errors correspond to *False negatives*.

Note: A type I error can *only* occur when the null hypothesis is true. Conversely, a type II error can *only* occur when the alternative is true.

p-value Decision Procedure:

- (i) Select a level α (0 < α < 1)
- (ii) Compute the observed value of the statistic, and hence the *p*-value.
- (iii) Reject H_0 if p-value $\leq \alpha$; accept H_0 if p-value $> \alpha$.

Note: A large p-value does **not** imply that the alternative hypothesis is false, merely that there is little evidence against the null hypothesis. For this reason some people speak of 'failing to reject' H_0 , rather than 'accepting' H_0 ; the implication being that the null hypothesis has 'escaped' rejection this time, but might not be so 'lucky' next time.

Example: One sample t-test

- $H_0: E(Y) = \mu_0$
- $H_1: E(Y) \neq \mu_0$ (two-sided)

Let t_{obs} be the observed value of the t-statistic $t(\mathbf{y}) = \sqrt{n}(\bar{y} - \mu_0)/s$. Let T_{n-1} be a random variable with a Student t-distribution on n-1 d.f.

reject
$$H_0$$
 iff p-value $\leq \alpha$
 $\Leftrightarrow Pr(|T_{n-1}| \geq |t_{obs}|) \leq \alpha$
 $\Leftrightarrow 2 \times Pr(T_{n-1} \geq |t_{obs}|) \leq \alpha$
 $\Leftrightarrow Pr(T_{n-1} \geq |t_{obs}|) \leq \alpha/2$
 $\Leftrightarrow 1 - Pr(T_{n-1} \leq |t_{obs}|) \leq \alpha/2$
 $\Leftrightarrow Pr(T_{n-1} \leq |t_{obs}|) \geq 1 - \alpha/2$

Let $t_{n-1,1-\alpha/2}$ be the $1-\alpha/2$ quantile of the *t*-distribution with n-1 d.f. i.e. $Pr(T_{n-1} < t_{n-1,1-\alpha/2}) = 1-\alpha/2$.

Let x_1, x_2, x_3 be three numbers such that

$$x_1 < -t_{n-1,1-\alpha/2} < x_2 < t_{n-1,1-\alpha/2} < x_3$$

(picture)

- If $t_{\text{obs}} = x_1$ then $Pr(T_{n-1} \le |x_1|) > 1 \alpha/2$, hence p-value $< \alpha$, so we reject H_0 .
- If $t_{\text{obs}} = x_2$ then $Pr(T_{n-1} \le |x_2|) < 1 \alpha/2$, hence p-value $> \alpha$, so we accept H_0 .
- If $t_{obs} = x_3$ then $Pr(T_{n-1} \le |x_3|) < 1 \alpha/2$, hence p-value $< \alpha$, so we reject H_0 .

Thus we see that for a one sample t-test, the p-value decision procedure is equivalent to

t-statistic Decision Procedure:

- (i) Select a level α (0 < α < 1)
- (ii) Compute the observed $t\text{-statistic}\ t_{\rm obs} = t(\mathbf{y})$
- (iii) Reject H_0 if $|t_{obs}| \ge t_{n-1,1-\alpha/2}$; Accept H_0 if $|t_{obs}| < t_{n-1,1-\alpha/2}$

Terminology The range of values of the test statistic where (for a given α) the null hypothesis is rejected is called the *rejection region*; conversely the range of values for which the null is not rejected is called the *acceptance region*. It should now be obvious that for both decision procedures that

$$P(\text{type I error} \mid H_0 \text{ is true}) = P(\text{reject } H_0 \mid H_0 \text{ is true})$$
$$= P(|t(\mathbf{Y})| \ge t_{n-1,1-\alpha/2} \mid H_0 \text{ is true})$$
$$= 2 \times \alpha/2 = \alpha$$

Such a procedure is called a *level-* α test.

 α controls the *pre-experimental* type-I error rate.

Note that we can construct a decision procedure to give any specified type I error rate.

Note: (Interpretation)

If every experimenter used, for example, $\alpha = 0.05$ then...

- The null hypothesis would be falsely rejected for 5% of those experiments in which H_0 is true, and would correctly not be rejected for 95% of these experiments (where H_0 is true).
- What about those experiments where H_1 is true? For what proportion of these will we incorrectly accept H_0 , and for what proportion will we correctly reject H_0 ? i.e. for such experiments what will our Type II error rate be?
- We will return to this question when we discuss *power* and the control of type II errors. (It will depend on *how* H_1 is true, and our sample size.)