
Lecture Three

Normal theory null distributions

Normal (Gaussian) distribution

The normal distribution is often relevant because of the Central Limit Theorem
(CLT):

A random variable which is a sum of ‘many’ independent random
variables will have an (approximately) normal distribution.

Examples

(1) Many natural responses may be modelled as the additive effect of many
factors.
e.g. crop yield:

y1 = a1xseed1 + a2xsoil1 + a3xwater1 + · · ·
y2 = a1xseed2 + a2xsoil2 + a3xwater2 + · · ·
...

...
...

yn = a1xseedn + a2xsoiln + a3xwatern + · · ·

where

xseed1, . . . , xseedn are independent samples from a (not necessarily
normal) distribution with mean µseed and variance σ2

seed;

xsoil1, . . . , xsoiln are independent samples from a distribution with
mean µsoil and variance σ2

soil;

xwater1, . . . , xwatern are independent samples from a distribution
with mean µwater and variance σ2

water;

it then follows that (y1, . . . , yn) will be independent samples from an ap-
proximately normal joint distribution with

µY = a1µseed + a2µsoil + a3µwater + · · ·
σ2

Y = a2
1σ

2
seed + a2

2σ
2
soil + a2

3σ
2
water + · · ·

additive effects ⇒ normally distributed data

(2) The sampling distribution for Ȳ from independent samples from a popu-
lation

Recap: sampling distribution:
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Population A ⇒ sample (y(1)
1 , . . . , y

(1)
n ) ⇒ ȳ(1)

Population A ⇒ sample (y(2)
1 , . . . , y

(2)
n ) ⇒ ȳ(2)

...
...

Population A ⇒ sample (y(N)
1 , . . . , y

(N)
n ) ⇒ ȳ(N)

Distribution of (ȳ(1), . . . , ȳ(N)) is called the sampling distribution of the
sample mean Ȳ .

For ‘reasonable’ distributions (finite mean µ and variance σ2) and non-tiny
sample sizes (n > 30), Ȳ will have an approximately normal distribution,
with mean µ, variance σ2/n.

Why do we care about the sampling distribution of Ȳ ?

Consider H0: E(YA) = E(YB) = µ (treatment has no effect)

Then regardless of the distribution of the data, under H0 we have

ȲA ∼̇N(µ, σ2/nA) ȲB ∼̇N(µ, σ2/nB)

hence
ȲA − ȲB∼̇N(0, (σ2/nA) + (σ2/nB))

represents a distribution of hypothetical results of a sampling experiment
that it could have occurred under H0.

(Review of) properties of the Normal Distribution (I)

(1) If Y ∼ N(µ, σ2), then aY +b ∼ N(aµ+b, a2σ2); in particular, (Y −µ)/σ ∼
N(0, 1)
N(0, 1) is called the standard Normal distribution.

(2) If Y1 ∼ N(µ1, σ
2
1) and Y2 ∼ N(µ2, σ

2
2) and Y1, Y2 independent then Y1 +

Y2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2)

(3) If Y1, . . . , Yn are an i.i.d. sample from N(µ, σ2) then Ȳ is statistically
independent of

S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2
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Normal theory Null Distributions

Consider the simple hypothesis test:

• H0: E(Y ) = µ0

• H1: E(Y ) 6= µ0 (two-sided)

obtain data y1, . . . , yn, evaluate H0, H1 with test statistic:

d(y) = d(y1, . . . , yn) =
ȳ − µ0

σ/
√

n

1. If data are from a normal population N(µ, σ2) then

Ȳ − µ0 ∼ N(µ− µ0, σ
2/n)

d(Y) =
(Ȳ − µ0)
(σ/

√
n)

∼ N(
µ− µ0

σ/
√

n
, 1)

and thus if H0 is true then d(Y) ∼ N(0, 1).

Thus if the null hypothesis is true then we would expect d(Y) to have
a standard normal distribution, e.g. in 95% of samples taking a value
between −1.96 and +1.96.

Equivalently: the null distribution is standard normal.

2. If data are not normal, but H0 is true, the variance is σ2, and n is fairly
big (e.g. n > 30), then by the CLT we have:

d(Y) =
(Ȳ − µ0)
(σ/

√
n)
∼̇N(0, 1)

Hypothesis Test

Large values of |d(Y)| provide strong evidence against H0 ⇒ Reject H0 for
larger values of |d(Y)|

p-value = Pr(|d(Y)| ≥ |d(yobs)|) = Pr(Z ≤ −|d(yobs)|) + Pr(Z ≥ |d(yobs)|)
= 2Pr(Z ≥ |d(yobs)|)
= 2 ∗ (1− pnorm(|d(yobs)|, 0, 1))

(here we use Z to indicate a standard normal RV).
Problem: σ2 is usually unknown

Thus we cannot compute d(Y) (in this sense it is not a genuine test-statistic).
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Solution: approximate σ2 with s2, the sample variance, and use

t(y) =
ȳ − µ0

s/
√

n

Q: What is the distribution of t(Y) under H0: E(Y ) = µ0?
Well, s → σ, hence we might hope that:

ȳ − µ0

s/
√

n
≈ ȳ − µ0

σ/
√

n
∼ N(0, 1)

For very large samples (> 100) this is a reasonable approximation, but for
less large samples we need to take into account that S varies around σ.

Properties of the Normal distribution (2):

χ2 and t-distributions

(4) If Z1, . . . , Zn ∼i.i.d. N(0, 1) then

n∑
i=1

Z2
i ∼ χ2

n

the χ2 (‘Chi-squared’) distribution with n d.f. (degrees of freedom)

In particular, if Y1, . . . , Yn ∼ i.i.d.N(µ, σ2), then

Y1 − µ

σ
,
Y2 − µ

σ
, . . .

Yn − µ

σ
∼i.i.d. N(0, 1)

1
σ2

n∑
i=1

(Yi − µ)2 ∼ χ2
n

n− 1
σ2

S2 =
n− 1
σ2

1
n− 1

n∑
i=1

(Yi − Ȳ )2 ∼ χ2
n−1

Note: the d.f. is the number of independent normal RVs that are summed
and squared, or equivalently, the dimension of the space in which these
variables live:

– Clearly Yi−µ
σ is independent of Yj−µ

σ ;

– But Yj−Ȳ
σ is not independent of Yj∗−Ȳ

σ , for j 6= j∗.

– However, if we define Wi = Yi − Ȳ then

1
σ2

n∑
i=1

(Yi − Ȳ )2 =
1
σ2

n∑
i=1

W 2
i =

1
σ2

n−1∑
i=1

U2
i
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where for i = 1, . . . , n− 1:

Ui = −
√

i

i + 1
Wi+1 +

1√
i(i + 1)

i∑
j=1

Wj

and Uj , Uj∗ are independent for j 6= j∗.
Thus we see that n− 1 is indeed the correct d.f. for S2.

(5) If Z ∼ N(0, 1), X ∼ χ2
k and Z and X are independent then

Z√
X/k

∼ tk

Student’s t-distribution on k d.f. (‘Student’ was a pseudonym used by
W. Gosset)
Note that as k →∞ tk → N(0, 1) distribution.

The t-distribution has heavier tails than the standard normal, i.e. for large

values of x:
P (|Z| > x) < P (|T | > x)

where Z ∼ N(0, 1) and T ∼ tk.

Back to the hypothesis test:

We now return to the question: if E(Y ) = µ0, so H0 is true, and in addition,
Y1, . . . Yn ∼i.i.d. N(µ0, σ

2), what is the distribution of

t(Y) =
Ȳ − µ0

S/
√

n
?

• We already showed that if Y1, . . . Yn ∼i.i.d. N(µ0, σ
2)

(Ȳ − µ0)
(σ/

√
n)

∼ N(0, 1) “Z ′′

• Further, from (4) it follows that

n− 1
σ2

S2 ∼ χ2
n−1 “X ′′ with “k′′ = n− 1

• Finally from (3) we have that Ȳ and S2 are independent. Hence “Z ′′ and
“X ′′ are independent.

• Thus it follows that

Ȳ − µ0

S/
√

n
=

Ȳ−µ0
σ/
√

n√
n−1
σ2 S2

n−1

=
“Z ′′√

“X ′′/(n− 1)
∼ tn−1

• Note that neither “X ′′ nor “Z ′′ are test statistics, since (unless we know
σ2) they cannot be computed from the sample.
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One sample t-test

• H0: E(Y ) = µ0

• H1: E(Y ) 6= µ0 (two-sided)

• Assumption: if H0 is true then Y1, . . . , Yn ∼i.i.d. N(µ0, σ
2)

• Data y1, . . . , yn

• Test statistic:

tobs = t(y) =
√

n

(
ȳ − µ0

s

)
• Null distribution: from the assumptions, if H0 is true then t(Y) ∼ tn−1,

i.e. the population of hypothetical values of t(Y) that might have been
sampled is a t-distribution on n− 1 d.f.

• p-value: measuring evidence against H0:

p = Pr
(
|t(Y)| ≥ |tobs|

∣∣ H0

)
= 2 ∗ (1− pt(|tobs|, n− 1))

You can also try t.test(data.vector, mu=µ0)

Basic Decision Theory

Goal: Reject H0 when false, accept H0 when true.

Method: Judge evidence provided by data against H0.

Truth
Decision H0 true H0 false

Accept H0: Correct Type II error

Reject H0: Type I error Correct

Alternate terminology:

• H0: ‘no treatment effect’ / ‘you don’t have the disease’

• H1: ‘treatment effect’ / ’you do have the disease’

then Type I errors correspond to False positives;
Type II errors correspond to False negatives.
Note: A type I error can only occur when the null hypothesis is true.
Conversely, a type II error can only occur when the alternative is true.
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p-value Decision Procedure:

(i) Select a level α (0 < α < 1)

(ii) Compute the observed value of the statistic, and hence the p-value.

(iii) Reject H0 if p-value≤ α;
accept H0 if p-value> α.

Note: A large p-value does not imply that the alternative hypothesis is false,
merely that there is little evidence against the null hypothesis. For this reason
some people speak of ‘failing to reject’ H0, rather than ‘accepting’ H0; the impli-
cation being that the null hypothesis has ‘escaped’ rejection this time, but might
not be so ‘lucky’ next time.

Example: One sample t-test

• H0: E(Y ) = µ0

• H1: E(Y ) 6= µ0 (two-sided)

Let tobs be the observed value of the t-statistic t(y) =
√

n(ȳ−µ0)/s. Let Tn−1

be a random variable with a Student t-distribution on n− 1 d.f.

reject H0 iff p-value ≤ α

⇔ Pr(|Tn−1| ≥ |tobs|) ≤ α

⇔ 2× Pr(Tn−1 ≥ |tobs|) ≤ α

⇔ Pr(Tn−1 ≥ |tobs|) ≤ α/2
⇔ 1− Pr(Tn−1 ≤ |tobs|) ≤ α/2

⇔ Pr(Tn−1 ≤ |tobs|) ≥ 1− α/2

Let tn−1,1−α/2 be the 1−α/2 quantile of the t-distribution with n−1 d.f. i.e.
Pr(Tn−1 < tn−1,1−α/2) = 1− α/2.

Let x1, x2, x3 be three numbers such that

x1 < −tn−1,1−α/2 < x2 < tn−1,1−α/2 < x3

(picture)

• If tobs = x1 then Pr(Tn−1 ≤ |x1|) > 1 − α/2, hence p-value < α, so we
reject H0.

• If tobs = x2 then Pr(Tn−1 ≤ |x2|) < 1 − α/2, hence p-value > α, so we
accept H0.

• If tobs = x3 then Pr(Tn−1 ≤ |x3|) < 1 − α/2, hence p-value < α, so we
reject H0.

Thus we see that for a one sample t-test, the p-value decision procedure is
equivalent to

7



t-statistic Decision Procedure:

(i) Select a level α (0 < α < 1)

(ii) Compute the observed t-statistic tobs = t(y)

(iii) Reject H0 if |tobs| ≥ tn−1,1−α/2;
Accept H0 if |tobs| < tn−1,1−α/2

Terminology The range of values of the test statistic where (for a given α) the
null hypothesis is rejected is called the rejection region; conversely the range of
values for which the null is not rejected is called the acceptance region.
It should now be obvious that for both decision procedures that

P (type I error | H0 is true ) = P (reject H0 | H0 is true )
= P (|t(Y)| ≥ tn−1,1−α/2 | H0 is true)
= 2× α/2 = α

Such a procedure is called a level-α test.
α controls the pre-experimental type-I error rate.
Note that we can construct a decision procedure to give any specified type I
error rate.

Note: (Interpretation)
If every experimenter used, for example, α = 0.05 then...

• The null hypothesis would be falsely rejected for 5% of those experiments
in which H0 is true, and would correctly not be rejected for 95% of these
experiments (where H0 is true).

• What about those experiments where H1 is true? For what proportion
of these will we incorrectly accept H0, and for what proportion will we
correctly reject H0? i.e. for such experiments what will our Type II error
rate be?

• We will return to this question when we discuss power and the control of
type II errors. (It will depend on how H1 is true, and our sample size.)
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