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Causation

Democritus (460-390 BC)
(aka the laughing philosopher because he emphasized the value of
cheerfulness)

“I would rather discover a single causal relationship than be king of
Persia”
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The potential outcomes framework: philosophy

Hume (1748) An Enquiry Concerning Human Understanding:

We may define a cause to be an object followed by another, and
where all the objects, similar to the first, are followed by objects
similar to the second, . . .

. . . where, if the first object had not been the second never had
existed.

Note: this is not one of the 3(!) causal theories Hume is famous for.
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Causation

Agricultural field trials: wish to know which seed varieties produce
(cause) the greatest yield... but different plots (of land) have
different fertility, drainage etc.,
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The potential outcomes framework: crop trials

Jerzy Neyman (1923):

To compare v varieties [on m plots] we will consider numbers:

plotsz }| {
U11 . . . U1m

...
...

Uv1 . . . Uvm

9
>=

>;
varieties

Uij is crop yield that would be observed if variety i were planted in plot j.

Physical constraints only allow one variety to be planted in a given plot in
any given growing season ) Observe only one number per col.

Thomas Richardson Simons Day 3.1: Potential Outcomes Slide 6



Application to clinical trials

Each patient in study is assigned to either:
I Treatment (aka Drug) (X = 1)
I Control (aka Placebo) (X = 0)

For each patient we observe one outcome (Y), either:
I Good e.g. Recover (Y = 1)
I Bad e.g. Die (Y = 0)

Plots in a field ) Patients; Kg of wheat ) Live or Die
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Potential outcomes with binary treatment and outcome

For binary treatment X, we define two potential outcome variables:
Y(x = 0): the value of Y that would be observed for a given
unit if assigned X = 0;
Y(x = 1): the value of Y that would be observed for a given
unit if assigned X = 1;

Y(x = 0) and Y(x = 1) are two different random variables
(not different realizations of the same variable).

Notation: We will use Y(xi) as an abbreviation for Y(x = i)

Popularized by Rubin (1974); sometimes called the
‘Neyman-Rubin causal model’.
Alternative notations for Y(x = i) used by other authors: Yx=i or Yx=i.
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Potential Outcomes

Unit Potential Outcomes
Y(x = 0) Y(x = 1)

1 0 1
2 0 1
3 0 0
4 1 1
5 1 0
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Potential Outcomes

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 0 1 1
2 0 1 0
3 0 0 1
4 1 1 1
5 1 0 0
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Potential Outcomes

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 0 1 1 1
2 0 1 0 0
3 0 0 1 0
4 1 1 1 1
5 1 0 0 1
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Consistency Axiom

Y = (1 - X) · Y(x = 0) + X · Y(x = 1)

equivalently:
X = x ) Y = Y(x).

In words, we have the following tautology:

For an individual who has X = x, their observed response Y is
equal to the response Y(x) that would be observed had X been x.
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Drug Response Types:

In the simplest case where Y is a binary outcome we can think of
patients as belonging to one of 4 ‘types’:

Y(x0) Y(x1) Name
0 0 Never Recover
0 1 Helped
1 0 Hurt
1 1 Always Recover
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Actual vs. Potential outcomes

Key Distinction
X is the treatment that a given patient gets;
thus far, this need not be randomly assigned, and could result
from doctor and patient choices;

Y is the observed response for a given patient;

Y(x) is the response that would be observed for a given
paitent if (possibly counter to fact) they received X = x.

Thomas Richardson Simons Day 3.1: Potential Outcomes Slide 14



Potential Outcomes and Missing Data

Fundamental Problem of Causal Inference:
We never observe both Y(x=0) and Y(x=1).

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 ? 1 1 1
2 0 ? 0 0
3 ? 0 1 0
4 ? 1 1 1
5 1 ? 0 1
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Stable Unit Treatment Value Assumption (SUTVA)

Y(x = 0): the value of Y that would be observed for a given
unit if assigned X = 0;
Y(x = 1): the value of Y that would be observed for a given
unit if assigned X = 1;

Implicit Assumption: these outcomes, Y(x = 0), Y(x = 1) are
‘well-defined’. Specifically:

Only one version of X = 1 and X = 0;
(only one version of ‘drug’ and ‘placebo’)
Subject’s outcome only depends on what they receive:
no ‘interference’ between units (SUTVA).
(Might not hold in a vaccine trial for an infectious disease if
subjects are in contact.)
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Average Causal Effect (ACE) of X on Y

ACE(X ! Y) ⌘ E[Y(x1)- Y(x0)]

= p(Helped)- p(Hurt) 2 [-1, 1]

Thus ACE(X ! Y) is the difference in % recovery if
everybody treated (X = 1) vs. if nobody treated (X = 0).
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Identification of the ACE under randomization

If X is assigned randomly then

X ?? Y(x0) and X ?? Y(x1) (1)

P(Y(xi) = 1) = P(Y(xi) = 1 | X = i) (Why?)
= P(Y = 1 | X = i) (Why?)

Thus:

ACE(X ! Y) = E[Y(x1)- Y(x0)]

= E[Y(x1)]- E[Y(x0)]

= E[Y(x1) | X = 1]- E[Y(x0) | X = 0]
= E[Y | X = 1]- E[Y | X = 0].

Thus if (1) holds then ACE(X ! Y) is identified from P(Y | X).
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Two-way Table
Under randomization, the relationship between the counterfactual
distribution P(Y(x0), Y(x1)) and the observed distributions
{P(Y | x0),P(Y | x1)} is:

col sums
P(Y=0 | X=0) P(Y=1 | X=0)

P(Y=0 | X=1) P(Y(x0)=0, Y(x1)=0) P(Y(x0)=1, Y(x1)=0)row
sums

P(Y=1 | X=1) P(Y(x0)=0, Y(x1)=1) P(Y(x0)=1, Y(x1)=1)

Here P(Y= i | X= j) = P(Y(xj)= i) due to randomization.

Equivalently we may write this in terms of types

P(Y=0 | X=0) P(Y=1 | X=0)

P(Y=0 | X=1) P(NR) P(HU)

P(Y=1 | X=1) P(HE) P(AR)
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Identification Problem

Want: P(Y(x0), Y(x1)); Given: P(Y | X=0),P(Y | X=1)

Under randomization, as before: X ?? Y(xi) implies:

P(Y(xi) = 1) = P(Y(xi) = 1 | X = i) = P(Y = 1 | X = i).

Thus the observed joint P(Y|X) puts two restrictions on
P(Y(x0), Y(x1)):

P(Y=1 | X=0) = P(Y(x0)=1, Y(x1)=0) + P(Y(x0)=1, Y(x1)=1)
P(Y=1 | X=1) = P(Y(x0)=0, Y(x1)=1) + P(Y(x0)=1, Y(x1)=1).

Each restriction implies a 2-d subset in �3.
Intersection forms a 1-d subset on which ACE is constant.
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Graphing Calculator Plot

In this plot:
P(Y=1 | X=0) = P(Y(x0) = 1) = %HU+ %AR = 0.3, (yellow)
P(Y=1 | X=1) = P(Y(x1) = 1) = %HE+ %AR = 0.6, (blue)
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Fréchet inequalities

Equation for line segment in simplex:
8
>><

>>:

P(1, 1) = t

P(1, 0) = c0 - t

P(0, 1) = c1 - t

P(0, 0) = 1 - c0 - c1 + t

t 2
⇥
max {0, (c0 + c1)- 1} , min {c0, c1}

⇤

c0⌘P(Y=1 | X=0)
c1⌘P(Y=1 | X=1)

9
>>=

>>;
.

Extreme points are given by ‘Fréchet inequalities’.
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Big Picture: Connecting Distributions in Experiment

P(Y(x0), Y(x1))

�3

Counterfactual

{P(Y | x0),P(Y | x1)}
= {P(Y(x0)),P(Y(x1))}

(by Randomization)

�1 ⇥ �1

Observed

7!

!

7!{%HE, %HU, %NR, %AR} {%HU+ %AR, %HE+ %AR}
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Identification Problem under Experiment

P(Y(x0), Y(x1))

�3

Counterfactual

{P(Y | x0),P(Y | x1)}
= {P(Y(x0)),P(Y(x1))}

(by Randomization)

�1 ⇥ �1

Observed

•

7!

!

7!{%HE, %HU, %NR, %AR} {%HU+ %AR, %HE+ %AR}
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Observational study; no randomization

Suppose that we do not know that X?? Y(x0) and X?? Y(x1).
What can be inferred about the ACE?

P(X,Y) Placebo Drug
X = 0 X = 1

Die: Y = 0 7/20 4/20
Live: Y = 1 3/20 6/20

What is:

The largest proportion of people of type Helped,
P(Y(x0)=0, Y(x1)=1) ? (6 + 7)/20 = 0.65

The smallest proportion of people of type Hurt,
P(Y(x0)=1, Y(x1)=0)? 0

) Max value of ACE: (6 + 7)/20 - 0 = 0.65

Similar logic:

) Min value of ACE: 0 - (4 + 3)/20 = -0.35

(Note, as before, P(Y = 1 |X = 0) = 0.3, P(Y = 1 |X = 1) = 0.6.)

Thomas Richardson Simons Day 3.1: Potential Outcomes Slide 25



Inference for the ACE without randomization

Suppose that we do not know that X?? Y(x0) and X?? Y(x1).

What can be inferred from the observed distribution P(X, Y)?

General case:

-(P(X=0, Y=1) + P(X=1, Y=0))
6 ACE(X ! Y)

6 P(X=0, Y=0) + P(X=1, Y=1)

) Bounds will always include zero.

What further information can we obtain?
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Observational study: one-way table!

Observed Counterfactual

p(X=0,Y=0) p(X=0,Y(x0)=0,Y(x1)=0) p(X=0,Y(x0)=0,Y(x1)=1)

p(X=0,Y=1) p(X=0,Y(x0)=1,Y(x1)=0) p(X=0,Y(x0)=1,Y(x1)=1)

p(X=1,Y=0) p(X=1,Y(x0)=0,Y(x1)=0) p(X=1,Y(x0)=1,Y(x1)=0)

p(X=1,Y=1) p(X=1,Y(x0)=0,Y(x1)=1) p(X=1,Y(x0)=1,Y(x1)=1)

Observed Counterfactual

p(X=0,Y=0) p(X=0, NR) p(X=0, HE)

p(X=0,Y=1) p(X=0, HU) p(X=0, AR)

p(X=1,Y=0) p(X=1, NR) p(X=1, HU)

p(X=1,Y=1) p(X=1, HE) p(X=1, AR)
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Identification Problem

P(X, Y(x0), Y(x1))

�7

Counterfactual

P(X, Y)

�3

Observed

•

7!

!

Wish to know set of P(Y(x0), Y(x1)) margins of distns P(X, Y(x0), Y(x1))
mapping to a given observed distribution P(X, Y).
Want: P(Y(x0), Y(x1)); Given: P(X, Y)
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Bounds on joints P(Y(x0), Y(x1))

Observed Counterfactual

p(X=0,Y=0) p(X=0, NR) p(X=0, HE)

p(X=0,Y=1) p(X=0, HU) p(X=0, AR)

p(X=1,Y=0) p(X=1, NR) p(X=1, HU)

p(X=1,Y=1) p(X=1, HE) p(X=1, AR)

0 6 %HE 6 P(X = 0, Y = 0) + P(X = 1, Y = 1)
0 6 %HU 6 P(X = 0, Y = 1) + P(X = 1, Y = 0)
0 6 %NR 6 P(X = 0, Y = 0) + P(X = 1, Y = 0) = P(Y = 0)
0 6 %AR 6 P(X = 0, Y = 1) + P(X = 1, Y = 1) = P(Y = 1)
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Bounds on margins P(Y(xi))

Observed Counterfactual

p(X=0,Y=0) p(X=0, NR) p(X=0, HE)

p(X=0,Y=1) p(X=0, HU) p(X=0, AR)

p(X=1,Y=0) p(X=1, NR) p(X=1, HU)

p(X=1,Y=1) p(X=1, HE) p(X=1, AR)

We also have the following inequalities on the marginals:

P(Y(x0) = 1) = P(HU) + P(AR)

P(Y(x1) = 1) = P(HE) + P(AR)

P(X = 0, Y = 1) 6 P(Y(x0) = 1) 6 1 - P(X = 0, Y = 0)

P(X = 1, Y = 1) 6 P(Y(x1) = 1) 6 1 - P(X = 1, Y = 0)

Thus we have 6 pairs of parallel planes.
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Polytope for observational study

Set of margins P(Y(x0), Y(x1)) compatible with the Obs. Study.

%H
E

%HU

%
A
R

Obs study
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Checking ACE bounds

%
H
E

%HU%A
R

Observational study

1

1

0
0 0.35

0.65

%HE

This confirms the ACE bounds we derived earlier.
(But why is this helpful!?)
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Summary so far

Causal contrasts compare the potential outcomes of the same
units under different treatments:
In our observed data, for each unit one outcome will be
‘actual’; the others will be ‘counterfactual’.
(Exceptions in fields where cross-over designs are possible.)
The potential outcome framework allows
Causation to be ‘reduced’ to Missing Data
) Conceptual progress!
The ACE is identified if X?? Y(xi) for all values xi.
Randomization of treatment assignment implies X?? Y(xi).
Without independence the ACE is not identified, and cannot
be bounded away from zero.
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