Introduction to Potential Outcomes

Thomas Richardson University of Washington

Simons Causal Bootcamp 20 January 2022

Outline

- A brief History of Causation
- Potential Outcomes and Counterfactuals
- Randomized experiments
- Average Causal Effect (ACE)
- Observation Studies

Causation

Democritus (460-390 BC)

(aka the laughing philosopher because he emphasized the value of cheerfulness)

"I would rather discover a single causal relationship than be king of Persia"

The potential outcomes framework: philosophy

Hume (1748) *An Enquiry Concerning Human Understanding*:

We may define a cause to be an object followed by another, and where all the objects, similar to the first, are followed by objects similar to the second, . . .

. . . where, if the first object had not been the second never had existed.

Note: this is not one of the 3(!) causal theories Hume is famous for.

Causation

Agricultural field trials: wish to know which seed varieties produce (cause) the greatest yield... but different plots (of land) have different fertility, drainage etc.,

The potential outcomes framework: crop trials

Jerzy Neyman (1923):

To compare v *varieties [on* m *plots] we will consider numbers:*

 U_{ii} is crop yield that would be observed if variety i were planted in plot j. Physical constraints only allow one variety to be planted in a given plot in any given growing season \Rightarrow Observe only one number per col.

Application to clinical trials

- Each patient in study is assigned to either:
	- \blacktriangleright Treatment (aka Drug) (X = 1)
	- \blacktriangleright Control (aka Placebo) ($X = 0$)
- For each patient we observe one outcome (Y), either:
	- Good e.g. Recover $(Y = 1)$
	- \blacktriangleright Bad e.g. Die (Y = 0)

Plots in a field \Rightarrow *Patients*; *Kg of wheat* \Rightarrow *Live or Die*

Potential outcomes with binary treatment and outcome

For binary treatment X , we define two potential outcome variables:

- \bullet Y($x = 0$): the value of Y that *would* be observed for a given unit *if* assigned $X = 0$:
- \bullet Y($x = 1$): the value of Y that *would* be observed for a given unit *if* assigned $X = 1$;

 $Y(x = 0)$ and $Y(x = 1)$ are two different random variables (not different realizations of the same variable).

Notation: We will use $Y(x_i)$ as an abbreviation for $Y(x = i)$

Popularized by Rubin (1974); sometimes called the 'Neyman-Rubin causal model'.

Alternative notations for $Y(x = i)$ used by other authors: $Y^{x=i}$ or $Y_{x=i}$.

Potential Outcomes

Potential Outcomes

Potential Outcomes

Consistency Axiom

$$
Y = (1 - X) \cdot Y(x = 0) + X \cdot Y(x = 1)
$$

equivalently:

$$
X = x \qquad \Rightarrow \qquad Y = Y(x).
$$

In words, we have the following tautology:

For an individual who has $X = x$, their observed response Y is *equal to the response* Y(x) *that would be observed had* X *been* x*.*

Drug Response Types:

In the simplest case where Y is a binary outcome we can think of patients as belonging to one of 4 'types':

Actual vs. Potential outcomes

Key Distinction

- \bullet X is the treatment that a given patient gets; thus far, this need not be randomly assigned, and could result from doctor and patient choices;
- Y is the observed response for a given patient;
- \bullet Y(x) is the response that would be observed for a given paitent if (possibly counter to fact) they received $X = x$.

Potential Outcomes and Missing Data

Fundamental Problem of Causal Inference:

We never observe both $Y(x=0)$ and $Y(x=1)$.

Stable Unit Treatment Value Assumption (SUTVA)

- \bullet Y($x = 0$): the value of Y that *would* be observed for a given unit *if* assigned $X = 0$;
- \bullet Y($x = 1$): the value of Y that *would* be observed for a given unit *if* assigned $X = 1$;

Implicit Assumption: these outcomes, $Y(x = 0)$, $Y(x = 1)$ are 'well-defined'. Specifically:

- Only one version of $X = 1$ and $X = 0$; (only one version of 'drug' and 'placebo')
- Subject's outcome only depends on what they receive: no 'interference' between units (SUTVA). (Might not hold in a vaccine trial for an infectious disease if subjects are in contact.)

Average Causal Effect (ACE) of X on Y

$$
ACE(X \rightarrow Y) \equiv E[Y(x_1) - Y(x_0)]
$$

= p(*Helped*) - p(*Hurt*) $\in [-1, 1]$

Thus ACE($X \to Y$) is the difference in % recovery if everybody treated $(X = 1)$ vs. if nobody treated $(X = 0)$.

Identification of the ACE under randomization

If X is assigned randomly then

$$
X \perp \!\!\!\perp Y(x_0) \quad \text{and} \quad X \perp \!\!\!\perp Y(x_1) \tag{1}
$$

$$
P(Y(x_i) = 1) = P(Y(x_i) = 1 | X = i) \quad (Why?)
$$

= P(Y = 1 | X = i) (Why?)

Thus:

$$
ACE(X \to Y) = E[Y(x_1) - Y(x_0)]
$$

= E[Y(x_1)] - E[Y(x_0)]
= E[Y(x_1) | X = 1] - E[Y(x_0) | X = 0]
= E[Y | X = 1] - E[Y | X = 0].

Thus if [\(1\)](#page-17-0) holds then $ACE(X \rightarrow Y)$ is identified from $P(Y | X)$.

Two-way Table

Under randomization, the relationship between the counterfactual distribution $P(Y(x_0), Y(x_1))$ and the observed distributions ${P(Y | x_0), P(Y | x_1)}$ is:

Here $P(Y=i | X = i) = P(Y(x_i) = i)$ due to randomization.

Equivalently we may write this in terms of types

Identification Problem

Want: $P(Y(x_0), Y(x_1))$; Given: $P(Y | X=0), P(Y | X=1)$ Under randomization, as before: $X \perp\!\!\!\perp Y(x_i)$ implies:

$$
P(Y(x_i) = 1) = P(Y(x_i) = 1 \mid X = i) = P(Y = 1 \mid X = i).
$$

Thus the observed joint $P(Y|X)$ puts two restrictions on $P(Y(x_0), Y(x_1))$:

$$
P(Y=1 | X=0) = P(Y(x_0) = 1, Y(x_1) = 0) + P(Y(x_0) = 1, Y(x_1) = 1)
$$

\n
$$
P(Y=1 | X=1) = P(Y(x_0) = 0, Y(x_1) = 1) + P(Y(x_0) = 1, Y(x_1) = 1).
$$

Each restriction implies a 2-d subset in Δ_3 . Intersection forms a 1-d subset on which ACE is constant.

Graphing Calculator Plot

In this plot: $P(Y=1 | X=0) = P(Y(x_0) = 1) = % H U + % AR = 0.3, (yellow)$ $P(Y=1 | X=1) = P(Y(x_1) = 1) = %HE + %AR = 0.6$, (blue)

Fréchet inequalities

Equation for line segment in simplex:

$$
\left\{\begin{array}{ccl} P(1,1) &=& t \\ P(1,0) &=& c_0-t \\ P(0,1) &=& c_1-t \\ P(0,0) &=& 1-c_0-c_1+t \end{array}\right. \quad \begin{array}{c} t\in [max\{0,(c_0+c_1)-1\}, \min\{c_0,c_1\}] \\ c_0 \equiv P(Y=1 \mid X=0) \\ c_1 \equiv P(Y=1 \mid X=1) \end{array}\right\}
$$

Extreme points are given by 'Fréchet inequalities'.

Big Picture: Connecting Distributions in Experiment *Counterfactual Observed*

Identification Problem under Experiment

Observational study; no randomization

Suppose that we do not know that $X \perp\!\!\!\perp Y(x_0)$ and $X \perp\!\!\!\perp Y(x_1)$. What can be inferred about the ACE?

What is:

- The largest proportion of people of type *Helped*, $P(Y(x_0)=0, Y(x_1)=1)$? $(6 + 7)/20 = 0.65$
- The smallest proportion of people of type *Hurt*, $P(Y(x_0)=1, Y(x_1)=0)$? 0

 \Rightarrow Max value of ACE: $(6 + 7)/20 - 0 = 0.65$

Similar logic:

 \Rightarrow Min value of ACE: 0 - (4 + 3)/20 = -0.35

(Note, as before, $P(Y = 1 | X = 0) = 0.3$, $P(Y = 1 | X = 1) = 0.6$.)

Inference for the ACE without randomization

Suppose that we do not know that $X \perp\!\!\!\perp Y(x_0)$ and $X \perp\!\!\!\perp Y(x_1)$.

What can be inferred from the observed distribution $P(X, Y)$?

General case:

$$
-(P(X=0, Y=1) + P(X=1, Y=0))
$$

\$\leq\$ ACE(X \to Y)\$
\$\leq P(X=0, Y=0) + P(X=1, Y=1)\$

 \Rightarrow Bounds will always include zero.

What further information can we obtain?

Observational study: one-way table!

Identification Problem

Wish to know set of $P(Y(x_0), Y(x_1))$ margins of distns $P(X, Y(x_0), Y(x_1))$ mapping to a given observed distribution $P(X, Y)$.

Want: $P(Y(x_0), Y(x_1))$; Given: $P(X, Y)$

Bounds on joints $P(Y(x_0), Y(x_1))$

$$
0 \leqslant \ \ \, \text{96.43} \, \leqslant P(X = 0, Y = 0) + P(X = 1, Y = 1)
$$

$$
0 \leqslant \text{ \%HU } \leqslant P(X = 0, Y = 1) + P(X = 1, Y = 0)
$$

$$
0\leqslant \ \ ^\circ\!\!\!\!\delta NR \ \ \leqslant P(X=0,Y=0)+P(X=1,Y=0) \ = \ P(Y=0)
$$

$$
0 \leqslant \neg \% AR \quad \leqslant P(X = 0, Y = 1) + P(X = 1, Y = 1) \ = \ P(Y = 1)
$$

Bounds on margins $P(Y(x_i))$

We also have the following inequalities on the marginals:

 $P(Y(x_0) = 1) = P(HU) + P(AR)$ $P(Y(x_1) = 1) = P(HE) + P(AR)$

$$
P(X = 0, Y = 1) \leq P(Y(x_0) = 1) \leq 1 - P(X = 0, Y = 0)
$$

$$
P(X = 1, Y = 1) \leq P(Y(x_1) = 1) \leq 1 - P(X = 1, Y = 0)
$$

Thus we have 6 pairs of parallel planes.

Polytope for observational study

Set of margins $P(Y(x_0), Y(x_1))$ compatible with the Obs. Study.

Checking ACE bounds

This confirms the ACE bounds we derived earlier.

(But why is this helpful!?)

Summary so far

- Causal contrasts compare the *potential* outcomes of the same units under different treatments:
- In our observed data, for each unit one outcome will be 'actual'; the others will be 'counterfactual'. *(Exceptions in fields where cross-over designs are possible.)*
- The potential outcome framework allows *Causation* to be 'reduced' to *Missing Data* \Rightarrow Conceptual progress!
- The ACE is identified if $X \perp\!\!\!\perp Y(x_i)$ for all values x_i .
- Randomization of treatment assignment implies $X \perp\!\!\!\perp Y(x_i)$.
- Without independence the ACE is not identified, and cannot be bounded away from zero.