Introduction to Potential Outcomes

Thomas Richardson University of Washington

Simons Causal Bootcamp 20 January 2022

Outline

- A brief History of Causation
- Potential Outcomes and Counterfactuals
- Randomized experiments
- Average Causal Effect (ACE)
- Observation Studies

Causation

Democritus (460-390 BC) (aka the laughing philosopher because he emphasized the value of cheerfulness)

"I would rather discover a single causal relationship than be king of Persia"

The potential outcomes framework: philosophy

Hume (1748) An Enquiry Concerning Human Understanding:

We may define a cause to be an object followed by another, and where all the objects, similar to the first, are followed by objects similar to the second, . . .

... where, if the first object had not been the second never had existed.

Note: this is not one of the 3(!) causal theories Hume is famous for.

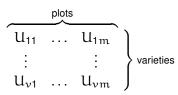
Causation

Agricultural field trials: wish to know which seed varieties produce (cause) the greatest yield... but different plots (of land) have different fertility, drainage etc.,

The potential outcomes framework: crop trials

Jerzy Neyman (1923):

To compare v varieties [on m plots] we will consider numbers:



 U_{ij} is crop yield that would be observed if variety i were planted in plot j. Physical constraints only allow one variety to be planted in a given plot in any given growing season \Rightarrow Observe only one number per col.

Application to clinical trials

- Each patient in study is assigned to either:
 - ► Treatment (aka Drug) (X = 1)
 - ► Control (aka Placebo) (X = 0)
- For each patient we observe one outcome (Y), either:
 - ► Good e.g. Recover (Y = 1)
 - ► Bad e.g. Die (Y = 0)

Plots in a field \Rightarrow Patients; Kg of wheat \Rightarrow Live or Die

Potential outcomes with binary treatment and outcome

For binary treatment X, we define two potential outcome variables:

- Y(x = 0): the value of Y that would be observed for a given unit if assigned X = 0;
- Y(x = 1): the value of Y that would be observed for a given unit if assigned X = 1;

Y(x = 0) and Y(x = 1) are two different random variables (not different realizations of the same variable).

Notation: We will use $Y(x_i)$ as an abbreviation for Y(x=i)

Popularized by Rubin (1974); sometimes called the 'Neyman-Rubin causal model'.

Alternative notations for Y(x = i) used by other authors: $Y^{x=i}$ or $Y_{x=i}$.

Potential Outcomes

Unit	Potential Outcomes		
	Y(x = 0)	Y(x = 1)	
1	0	1	
2	0	1	
3	0	0	
4	1	1	
5	1	0	

Potential Outcomes

Unit	Potential (Outcomes	Obs	erved
	Y(x = 0)	Y(x = 1)	X	Υ
1	0	1	1	
2	0	1	0	
3	0	0	1	
4	1	1	1	
5	1	0	0	

Potential Outcomes

Unit	Potential Outcomes		Obs	served
	Y(x = 0)	Y(x = 1)	X	Y
1	0	1	1	1
2	0	1	0	0
3	0	0	1	0
4	1	1	1	1
5	1	0	0	1

Consistency Axiom

$$Y = (1 - X) \cdot Y(x = 0) + X \cdot Y(x = 1)$$

equivalently:

$$X = x$$
 \Rightarrow $Y = Y(x)$.

In words, we have the following tautology:

For an individual who has X = x, their observed response Y is equal to the response Y(x) that would be observed had X been x.

Drug Response Types:

In the simplest case where Y is a binary outcome we can think of patients as belonging to one of 4 'types':

$Y(x_0)$	$Y(x_1)$	Name
0	0	Never Recover
0	1	Helped
1	0	Hurt
1	1	Always Recover

Actual vs. Potential outcomes

Key Distinction

- X is the treatment that a given patient gets;
 thus far, this need not be randomly assigned, and could result from doctor and patient choices;
- Y is the observed response for a given patient;
- Y(x) is the response that would be observed for a given paitent if (possibly counter to fact) they received X = x.

Potential Outcomes and Missing Data

Fundamental Problem of Causal Inference:

We never observe both Y(x=0) and Y(x=1).

Unit	Potential Outcomes		Obs	served
	Y(x = 0)	Y(x = 1)	X	Y
1	?	1	1	1
2	0	?	0	0
3	?	0	1	0
4	?	1	1	1
5	1	?	0	1

Stable Unit Treatment Value Assumption (SUTVA)

- Y(x = 0): the value of Y that would be observed for a given unit if assigned X = 0;
- Y(x = 1): the value of Y that would be observed for a given unit if assigned X = 1;

Implicit Assumption: these outcomes, Y(x=0), Y(x=1) are 'well-defined'. Specifically:

- Only one version of X = 1 and X = 0;
 (only one version of 'drug' and 'placebo')
- Subject's outcome only depends on what they receive: no 'interference' between units (SUTVA).
 (Might not hold in a vaccine trial for an infectious disease if subjects are in contact.)

Average Causal Effect (ACE) of X on Y

$$\begin{array}{lll} \mathsf{ACE}(X \to Y) & \equiv & \mathsf{E}[Y(x_1) - Y(x_0)] \\ & = & p(\textit{Helped}) - p(\textit{Hurt}) & \in \; [-1,1] \end{array}$$

Thus $ACE(X \rightarrow Y)$ is the difference in % recovery if everybody treated (X = 1) vs. if nobody treated (X = 0).

Identification of the ACE under randomization

If X is assigned randomly then

$$X \perp\!\!\!\perp Y(x_0)$$
 and $X \perp\!\!\!\perp Y(x_1)$ (1)

$$P(Y(x_i) = 1) = P(Y(x_i) = 1 | X = i)$$
 (Why?)
= $P(Y = 1 | X = i)$ (Why?)

Thus:

$$\begin{aligned} \mathsf{ACE}(X \to Y) &=& \mathsf{E}[Y(x_1) - Y(x_0)] \\ &=& \mathsf{E}[Y(x_1)] - \mathsf{E}[Y(x_0)] \\ &=& \mathsf{E}[Y(x_1) \mid X = 1] - \mathsf{E}[Y(x_0) \mid X = 0] \\ &=& \mathsf{E}[Y \mid X = 1] - \mathsf{E}[Y \mid X = 0]. \end{aligned}$$

Thus if (1) holds then $ACE(X \rightarrow Y)$ is identified from $P(Y \mid X)$.

Two-way Table

Under randomization, the relationship between the counterfactual distribution $P(Y(x_0), Y(x_1))$ and the observed distributions $\{P(Y \mid x_0), P(Y \mid x_1)\}$ is:

		$ \begin{array}{c c} & \text{col sums} \\ P(Y=0 \mid X=0) & P(Y=1 \mid X=0) \end{array} $	
		$P(Y=0 \mid X=0)$	$P(Y=1 \mid X=0)$
row	P(Y=0 X=1)	$P(Y(x_0)=0, Y(x_1)=0)$	$P(Y(x_0) = 1, Y(x_1) = 0)$
sums	P(Y=1 X=1)	$P(Y(x_0)=0,Y(x_1)=1)$	$P(Y(x_0) = 1, Y(x_1) = 1)$

Here $P(Y=i \mid X=j) = P(Y(x_i)=i)$ due to randomization.

Equivalently we may write this in terms of types

	$P(Y=0 \mid X=0)$	P(Y=1 X=0)
P(Y=0 X=1)	P(NR)	P(HU)
P(Y=0 X=1) P(Y=1 X=1)	P(HE)	P(AR)

Identification Problem

Want: $P(Y(x_0), Y(x_1))$; Given: P(Y | X=0), P(Y | X=1)

Under randomization, as before: $X \perp \!\!\! \perp Y(x_i)$ implies:

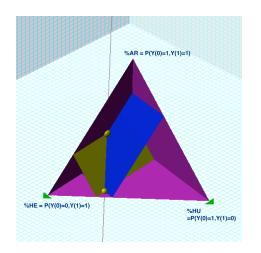
$$P(Y(x_\mathfrak{i})=1)=P(Y(x_\mathfrak{i})=1\mid X=\mathfrak{i})=P(Y=1\mid X=\mathfrak{i}).$$

Thus the observed joint P(Y|X) puts two restrictions on $P(Y(x_0), Y(x_1))$:

$$\begin{array}{lcl} P(Y=1 \mid X=0) & = & P(Y(x_0)=1, Y(x_1)=0) + P(Y(x_0)=1, Y(x_1)=1) \\ P(Y=1 \mid X=1) & = & P(Y(x_0)=0, Y(x_1)=1) + P(Y(x_0)=1, Y(x_1)=1). \end{array}$$

Each restriction implies a 2-d subset in Δ_3 . Intersection forms a 1-d subset on which ACE is constant.

Graphing Calculator Plot

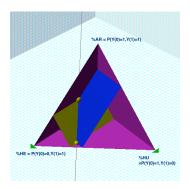


In this plot:

$$P(Y=1 \mid X=0) = P(Y(x_0) = 1) = HU + AR = 0.3,$$
(yellow)

$$P(Y=1 | X=1) = P(Y(x_1) = 1) = \text{%HE} + \text{%AR} = 0.6, \text{(blue)}$$

Fréchet inequalities

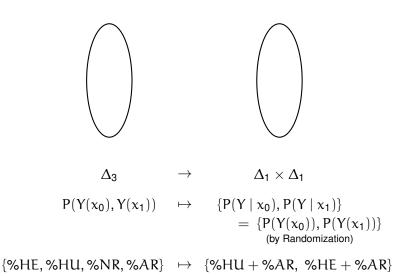


Equation for line segment in simplex:

$$\left\{ \begin{array}{ll} P(1,1) & = & \mathbf{t} \\ P(1,0) & = & c_0 - \mathbf{t} \\ P(0,1) & = & c_1 - \mathbf{t} \\ P(0,0) & = & 1 - c_0 - c_1 + \mathbf{t} \end{array} \right. \begin{array}{l} \mathbf{t} \in \left[\max\{0, (c_0 + c_1) - 1\}, \min\{c_0, c_1\} \right] \\ c_0 \equiv P(Y = 1 \mid X = 0) \\ c_1 \equiv P(Y = 1 \mid X = 1) \end{array} \right\}$$

Extreme points are given by 'Fréchet inequalities'.

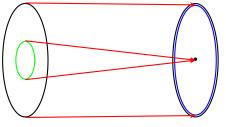
Big Picture: Connecting Distributions in Experiment Counterfactual Observed



Identification Problem under Experiment

Counterfactual

Observed



$$\begin{array}{cccc} \Delta_3 & \rightarrow & \Delta_1 \times \Delta_1 \\ P(Y(x_0),Y(x_1)) & \mapsto & \{P(Y\mid x_0),P(Y\mid x_1)\} \\ & & = \{P(Y(x_0)),P(Y(x_1))\} \\ & & \text{(by Randomization)} \end{array}$$

 $\{\%HE, \%HU, \%NR, \%AR\} \mapsto \{\%HU + \%AR, \%HE + \%AR\}$

Observational study; no randomization

Suppose that we do not know that $X \perp\!\!\!\perp Y(x_0)$ and $X \perp\!\!\!\perp Y(x_1)$. What can be inferred about the ACE?

P(X,Y)	Placebo	Drug
	X = 0	X = 1
<i>Die:</i> Y = 0	7/20	4/20
<i>Live:</i> Y = 1	3/20	6/20

What is:

- The largest proportion of people of type *Helped*, $P(Y(x_0) = 0, Y(x_1) = 1)$? (6+7)/20 = 0.65
- The smallest proportion of people of type *Hurt*, $P(Y(x_0)=1, Y(x_1)=0)$? 0

$$\Rightarrow$$
 Max value of ACE: $(6+7)/20-0=0.65$

Similar logic:

$$\Rightarrow$$
 Min value of ACE: $0 - (4 + 3)/20 = -0.35$

(Note, as before,
$$P(Y = 1 | X = 0) = 0.3$$
, $P(Y = 1 | X = 1) = 0.6$.)

Inference for the ACE without randomization

Suppose that we do not know that $X \perp \!\!\! \perp Y(x_0)$ and $X \perp \!\!\! \perp Y(x_1)$.

What can be inferred from the observed distribution P(X, Y)?

General case:

$$-(P(X=0, Y=1) + P(X=1, Y=0))$$

 $\leqslant ACE(X \to Y)$
 $\leqslant P(X=0, Y=0) + P(X=1, Y=1)$

⇒ Bounds will always include zero.

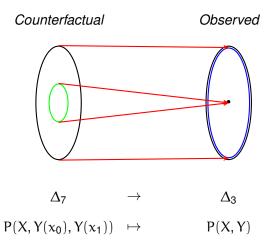
What further information can we obtain?

Observational study: one-way table!

Observed	Counterfactual		
	$p(X=0,Y(x_0)=0,Y(x_1)=0)$		
p(X=0,Y=1)	$p(X=0,Y(x_0)=1,Y(x_1)=0)$	$p(X=0,Y(x_0)=1,Y(x_1)=1)$	
p(X=1,Y=0)	$p(X=1, Y(x_0)=0, Y(x_1)=0)$	$p(X=1,Y(x_0)=1,Y(x_1)=0)$	
p(X=1,Y=1)	$p(X=1,Y(x_0)=0,Y(x_1)=1)$	$p(X=1,Y(x_0)=1,Y(x_1)=1)$	

Observed	Counte	rfactual
p(X=0,Y=0)	p(X=0,NR)	$p(X\!=\!0,HE)$
p(X=0,Y=1)	p(X=0, HU)	p(X=0,AR)
p(X=1,Y=0)	p(X=1, NR)	p(X=1, HU)
p(X=1,Y=1)	p(X=1, HE)	p(X=1,AR)

Identification Problem



Wish to know set of $P(Y(x_0), Y(x_1))$ margins of distns $P(X, Y(x_0), Y(x_1))$ mapping to a given observed distribution P(X, Y).

Want: $P(Y(x_0), Y(x_1))$; Given: P(X, Y)

Bounds on joints $P(Y(x_0), Y(x_1))$

Observed	Counterfactual	
p(X=0,Y=0)	p(X=0,NR)	$p(X\!=\!0,HE)$
p(X=0,Y=1)	p(X=0, HU)	p(X=0,AR)
p(X=1,Y=0)	p(X=1, NR)	p(X=1, HU)
p(X=1,Y=1)	p(X=1, HE)	p(X=1,AR)

$$0 \le %HE \le P(X = 0, Y = 0) + P(X = 1, Y = 1)$$

 $0 \le %HU \le P(X = 0, Y = 1) + P(X = 1, Y = 0)$
 $0 \le %NR \le P(X = 0, Y = 0) + P(X = 1, Y = 0) = P(Y = 0)$
 $0 \le %AR \le P(X = 0, Y = 1) + P(X = 1, Y = 1) = P(Y = 1)$

Bounds on margins $P(Y(x_i))$

Observed	Counterfactual	
p(X=0,Y=0)	p(X=0,NR)	p(X=0, HE)
p(X=0,Y=1)	p(X=0, HU)	p(X=0,AR)
p(X=1,Y=0)	p(X=1, NR)	p(X=1, HU)
p(X=1,Y=1)	p(X=1, HE)	p(X=1,AR)

We also have the following inequalities on the marginals:

$$P(Y(x_0) = 1) = P(HU) + P(AR)$$

 $P(Y(x_1) = 1) = P(HE) + P(AR)$

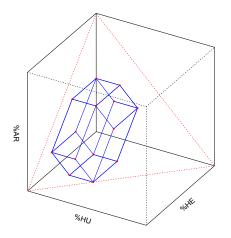
$$P(X = 0, Y = 1) \le P(Y(x_0) = 1) \le 1 - P(X = 0, Y = 0)$$

 $P(X = 1, Y = 1) \le P(Y(x_1) = 1) \le 1 - P(X = 1, Y = 0)$

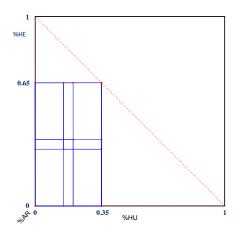
Thus we have 6 pairs of parallel planes.

Polytope for observational study

Set of margins $P(Y(x_0), Y(x_1))$ compatible with the Obs. Study.



Checking ACE bounds



This confirms the ACE bounds we derived earlier.

(But why is this helpful!?)

Summary so far

- Causal contrasts compare the potential outcomes of the same units under different treatments:
- In our observed data, for each unit one outcome will be 'actual'; the others will be 'counterfactual'. (Exceptions in fields where cross-over designs are possible.)
- The potential outcome framework allows Causation to be 'reduced' to Missing Data
 - ⇒ Conceptual progress!
- The ACE is identified if $X \perp \!\!\! \perp Y(x_i)$ for all values x_i .
- Randomization of treatment assignment implies $X \perp\!\!\!\perp Y(x_i)$.
- Without independence the ACE is not identified, and cannot be bounded away from zero.