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Graphical Approach to Causality

X Y

No Confounding

X

H

Y

Confounding

Unobserved

Graph intended to represent direct causal relations.

Convention that confounding variables (e.g. H) are always included
on the graph.

Approach originates in the path diagrams introduced by Sewall
Wright in the 1920s.

If X→ Y then X is said to be a parent of Y; Y is child of X.
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Graphical Approach to Causality

X Y

No Confounding

Associated factorization:

P(x,y) = P(x)P(y | x)

In the absence of confounding the causal model asserts:

P(Y(x) = y) = P(Y = y | do(X = x)) = P(Y = y | X = x).

Thus ACE(X→ Y) is identified under this model.

Q: How does this relate to the non-graphical approach?
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Linking the two approaches

X Y

X ⊥⊥ Y(x0) & X ⊥⊥ Y(x1)

X

H

Y

X 6⊥⊥ Y(x0) or X 6⊥⊥ Y(x1)

Unobserved

Elephant in the room:
The variables Y(x0) and Y(x1) do not appear on these
graphs!!

Thomas Richardson Simons Day 3.3: SWIGs Slide 5



Node splitting: Setting X to 0

X Y

P(X= x̃, Y= ỹ) = P(X= x̃)P(Y= ỹ | X= x̃)

⇒ X x = 0 Y(x = 0)

Can now ‘read’ the independence: X ⊥⊥ Y(x=0).
Also associate a new factorization:

P (X= x̃, Y(x=0)= ỹ) = P(X= x̃)P (Y(x=0)= ỹ)

where:
P (Y(x=0)= ỹ) = P(Y= ỹ |X=0).

This last equation links a term in the original factorization to the
new factorization. We term this the ‘modularity assumption’.
From counterfactual perspective modularity follows from factorization + consistency:

P (Y(x=0)= ỹ) = P (Y(x=0)= ỹ | X=0) = P(Y= ỹ |X=0)
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Node splitting: Setting X to 1

X Y

P(X= x̃, Y= ỹ) = P(X= x̃)P(Y= ỹ | X= x̃)

⇒ X x = 1 Y(x = 1)

Can now ‘read’ the independence: X ⊥⊥ Y(x=1).
Also associate a new factorization:

P (X= x̃, Y(x=1)= ỹ) = P(X= x̃)P (Y(x=1)= ỹ)

where:
P (Y(x=1)=y) = P(Y=y |X=1).
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Marginals represented by SWIGs are identified
The SWIG G(x0) represents P(X, Y(x0)).
The SWIG G(x1) represents P(X, Y(x1)).
Under no confounding these marginals are identified from P(X, Y).
In contrast the distribution P(X, Y(x0), Y(x1)) is not identified.
Y(x=0) and Y(x=1) are never on the same SWIG.
Although we have:

X ⊥⊥ Y(x=0) and X ⊥⊥ Y(x=1)

we do not assume

X ⊥⊥ Y(x=0), Y(x=1)

Had we tried to construct a single graph containing both Y(x=0)
and Y(x=1) this would have been impossible.

⇒ Single-World Intervention Graphs (SWIGs).
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Representing both graphs via a ‘template’

X Y

G

⇒ X x Y(x)

G(x)

Represent both graphs via a template:

Formally the template is a ‘graph valued function’ (not a graph!):

Takes as input a specific value x∗

Returns as output a SWIG G(x∗).

Each instantiation of the template represents a different margin:
SWIG G(x0) represents P(X, Y(x0));
SWIG G(x1) represents P(X, Y(x1)).
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Intuition behind node splitting:
(Robins, VanderWeele, Richardson 2007)

Q: How could we identify whether someone would choose to take
treatment, i.e. have X = 1, and at the same time find out what
happens to such a person if they don’t take treatment Y(x = 0)?

A: Consider an experiment in which, whenever a patient is
observed to swallow the drug have X = 1, we instantly intervene
by administering a safe ‘emetic’ that causes the pill to be
regurgitated before any drug can enter the bloodstream.
Since we assume the emetic has no side effects, the patient’s
recorded outcome is then Y(x = 0).
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Harder Inferential problem

A Z

H B

Y

Query: does this causal graph imply:

Y(a,b) ⊥⊥ B(a) | Z(a),A ?
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Simple solution

A Z

H B

Y
A

a
Z(a)

H

B(a)

b

Y(a,b)

Query does this graph imply:

Y(a,b) ⊥⊥ B(a) | Z(a),A ?

Answer: Yes – applying d-separation to the SWIG on the right we
see that there is no d-connecting path from Y(a,b) given Z(a).
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Single World Intervention Template Construction (1)

Given a graph G, a subset of vertices A = {A1, . . . ,Ak} to be intervened
on, we form G(a) in two steps:

(1) (Node splitting): For every A ∈ A split the node into a random
node A and a fixed node a:

A

· · ·

· · ·

⇒ A

a

Splitting: Schematic Illustrating the Splitting of Node A

The random half inherits all edges directed into A in G;

The fixed half inherits all edges directed out of A in G.
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Single World Intervention Template Construction (2)

(2) Relabel descendants of fixed nodes:

a ⇒
A

B C

D

FE

X

T

Y

Z

· · ·

· · ·

· · ·

· · ·

a

A(. . .)

B(a, . . .) C(a, . . .)

D(a, . . .)

F(a, . . .)E(a, . . .)

X(. . .)

T(. . .)

Y(. . .)

Z(. . .)

· · ·

· · ·

· · ·

· · ·
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Summary Adding Counterfactual Distributions to DAGs

Original graph G : observed distribution P(V)
SWIG G(ã) : counterfactual distribution P(V(ã))

Note that under minimal labeling variables in V(ã) may be not labelled
with the full set ã.

Factorization of counterfactual variables: Distribution P(V(ã)) over
the variables in G(ã) factorizes with respect to the SWIG G(ã)
(ignoring fixed nodes):

Modularity: P(V(ã)) and P(V) are linked as follows:
The conditional density associated with Y(ã) in G(ã) is just the conditional
density associated with Y in G after substituting ãi for any Ai ∈ A that is
a parent of Y.

Consequence: if P(V) is observed then P(V(ã)) is identified.
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Applying d-separation to the graph G(a) (Part 1)
We extend the definition of d-connection to SWIGs as follows:

A red (fixed) node is always blocked if it occurs as a non-endpoint
on a path;

A path on which one endpoint is a red (fixed) node can d-connect
that node to a random node if it satisfies the usual conditions on
colliders and non-colliders;

In G(ã) if subsets B(ã) and C(ã) of random nodes are d-separated by
D(ã), then B(ã) and C(ã) are conditionally independent given D(ã) in the
associated distribution P(V(ã)).

B(ã) is d-separated from C(ã) given D(ã) in G(ã) (1)

⇒ B(ã) ⊥⊥ C(ã) | D(ã) [P(V(ã))].
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Adjustment for Confounding

Thomas Richardson Simons Day 3.3: SWIGs Slide 17



Adjusting for confounding

X Y

L

X x̃ Y(x̃)

L

Here we can read directly from the template that

X ⊥⊥ Y(x̃) | L.

P[Y(x̃) = y] =
∑
l

P[Y(x̃) = y | L = l]P(L = l)

=
∑
l

P[Y(x̃) = y | L = l,X = x̃]P(L = l) indep

=
∑
l

P[Y = y | L = l,X = x̃]P(L = l) consistency
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More Examples (I)

X Y

L

H

(a-i)

X x Y(x)

L

H

(a-ii)

Here we can read directly from the template that

X ⊥⊥ Y(x) | L.
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More Examples (II)

X Y

L

H

(b-i)

X x Y(x)

L

H

(b-ii)

Here we can read directly from the template that

X ⊥⊥ Y(x) | L.
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Labeling Schemes

A B CDAG G

Ancestral: A a B(a) b C(b)

Temporal: A a B(a) b C(a,b)

Uniform: A(a,b) a B(a,b) b C(a,b)

Elsewhere we have used the term ‘minimal’ for the Ancestral Scheme.
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Simplifying the do-Calculus
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Applying d-separation to the graph G(a) (Part 2)
(Malinsky, Shpitser, R, 2019; Robins 2018)

We extend the definition of d-connection to SWIGs as follows:

A red (fixed) node is always blocked if it occurs as a non-endpoint
on a path;

A path on which one endpoint is a red (fixed) node can d-connect
that node to a random node if it satisfies the usual conditions on
colliders and non-colliders;

In G(ã,d), if fixed node d is d-separated from B(ã,d) given C(ã, d) then

P(B(ã,d) | C(ã,d)) = P(B(ã,d ′) | C(ã, d ′)). (2)

In other words, the conditional distribution of B given C after intervening
on A and D does not depend on the value assigned to D.
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do-calculus
Pearl (1995) formulated a set of rules that give graphical conditions
allowing three transformations:

1: Removing observations

p(y | z,w, do(x)) = p(y | w, do(x))

⇔ p(Y(x) | Z(x),W(x)) = p(Y(x) |W(x))

2: Interchanging observation and intervention

p(y | z,w, do(x)) = p(y | w, do(z), do(x))

⇔ p(Y(x) | Z(x),W(x)) = p(Y(x, z) |W(x, z))

3: Removing interventions:

p(y | w, do(z), do(x)) = p(y | w, do(x))

⇔ p(Y(x, z) |W(x, z)) = p(Y(x) |W(x))

Thomas Richardson Simons Day 3.3: SWIGs Slide 24



Do-calculus (details)

Pearl’s do-calculus as originally formulated:

1 : p(y | z,w, do(x)) = p(y | w, do(x))

if (Y ⊥⊥ Z |W,X)GX

2 : p(y | z,w, do(x)) = p(y | w, do(z), do(x))

if (Y ⊥⊥ Z |W,X)GX,Z

3 : p(y | w, do(z), do(x)) = p(y | w, do(x))

if (Y ⊥⊥ Z |W,X)G
X,Z(W)

where GX denotes the graph obtained from G by removing all
edges with arrowheads into X, GZ denotes the graph obtained
from G by removing all directed edges out of Z, and Z(W) is all
elements in Z that are not ancestors of W in GX.
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Potential Outcomes (PO) Calculus (Malinsky, Shpitser, R, 2019; Shpitser, R, Robins, 2020)

Can use SWIGs to formulate (simpler, wlog) counterfactual
versions of Pearl’s rules.

1: If Y(x) is d-separated from Z(x) given W(x) in G(x) then

p(Y(x) | Z(x),W(x)) = p(Y(x) |W(x))

2: If Y(x, z) is d-separated from Z(x, z) given W(x, z) in G(x, z)
then

p(Y(x, z) |W(x, z)) = p(Y(x) |W(x),Z(x) = z)

3: If z has no directed path to Y(x, z) in G(x, z) then

p(Y(x, z)) = p(Y(x))

Note: here we use uniform labelings: e.g. Z(x,z) is the random node for Z in

G(x,z). to make explicit which node is in which graph.
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Potential Outcomes Calculus: TL;DR versions
Suppressing the intervention on X to reduce clutter:

1: If Y is d-separated from Z given W in G then

p(Y | Z,W) = p(Y |W) (Markov property).

2: If Y(z) is d-separated from Z(z) given W(z) in G(z) then

p(Y(z) |W(z)) = p(Y |W,Z = z) (generalized ignorability).

3: If z has no directed path to Y(z) in G(z) then

p(Y(z)) = p(Y) (causal irrelevance).

po-calculus = d-separation + ignorability
+ interventions only affect causal descendants

(!)
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Example Derivation (Front-Door)

A M Y

UG

A a M(a) Y(a)

UG(a)

A a M(a) m Y(a,m)

UG(a,m)

A M m Y(m)

UG(m)

A
p(Y(a))

=p
∑
m

p(Y(a)|M(a) = m)p(M(a) = m)

=2,G(a)
∑
m

p(Y(a)|M(a) = m)p(M = m|A = a)

=2,G(a,m)
∑
m

p(Y(a,m))p(m|a)

=3,G(a,m)
∑
m

p(Y(m))p(m|a)

=p
∑
m

p(m|a)
∑
a′

p(Y(m)|a ′)p(a ′)

=2,G(m)
∑
m

p(m|a)
∑
a′

p(Y|m,a ′)p(a ′)
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How is simplification of Rule 3 possible?
Answer: instances of Rule 3 are already implied by Rule 1 and Rule 2:

Recall condition for Pearl’s Rule 3: (Y ⊥⊥ Z |W,X)GX,Z(W)

where GX denotes the graph obtained from G by removing all edges with
arrowheads into X, and Z(W) is all elements in Z that are not ancestors
of W in GX.

Let Z1 = Z ∩ anG(W) and Z2 = Z \ anG(W) ≡ Z(W).

If Pearl’s rule 3 applies then Z1 is d-separated from Y given W in GXZ2Z1

as this is a subgraph of GXZ2
≡ GXZ(W). So

p(Y | do(Z,X),W) = p(Y | do(Z1,Z2,X),W)

= p(Y | do(Z2,X),Z1,W) (Rule2)

= p(Y | do(Z2,X),W) (Rule1)

The last step follows since if there were path d-connecting Z1 and Y
given W in GXZ2

≡ GXZ(W) then the conditions for Rule 3 does not hold.

⇒ so any vertex in Z that is an ancestor of W may be removed using
Rule 1 + 2. Remaining d-conn paths given W take form Z∗2 → · · · → Y.
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Multiple Treatments
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Sequentially randomized experiment (I)

A B C D

H

A and C are treatments;

H is unobserved (underlying health status);

B is an initial observed response;

D is the final response;

Treatment C is assigned randomly conditional on the observed
history, A and B;

Want to know P(D(ã, c̃)).
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Sequentially randomized experiment (I)

A B C D

H

If the following holds:

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

General result of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).

Does it??
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Sequentially randomized experiment (II)

A ã B(ã) C(ã) c̃ D(ã, c̃)

H

d-separation:

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

g-formula of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).
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Pearl’s Multi-network approach to the same problem

A B C D

H

UH
UB

UC

UD

a B(a) C(a) D(a)

H(a)

a B(a, c) c D(a, c)

H(a, c)
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Another example

A B C D

H2H1

A ã B(ã) C(ã) c̃ D(ã, c̃)

H1 H2

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

g-formula of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).

Can also see that this identification fails if there is a B→ D edge.
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Recap: relating Counterfactuals and ‘do’ notation

Expressions in terms of ‘do’ can be expressed in terms of
counterfactuals:

P(Y(x) = y) ≡ P(Y = y | do(X = x))

Counterfactual notation is more general than ‘do’ notation.

Ex. Distribution of outcomes that would arise among those who
took treatment (X = 1) had counter-to-fact they not received
treatment:

P(Y(x = 0) = y | X = 1)

If treatment is randomized, so X ⊥⊥ Y(x = 0) then this equals
P(Y(x = 0) = y), but in an observational study these may be
different.
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Relating Counterfactuals and Structural Equations

Potential outcomes can be seen as a different notation for
Non-Parametric Structural Equation Models (NPSEMs).

In an NPSEM model associated with a graph each variable is given by an
equation expressing the variable as a function of its parents + error term

M YX

X = fX(εX)

M = fM(X, εM)

Y = fY(X,M, εY)
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Relating Counterfactuals and Structural Equations
In an NPSEM model associated with a graph each variable is given by an
equation expressing the variable as a function of its parents + error term

M YX

But it is clearer to express with potential outcomes

X = fX(εX) X = fX(εX)

M = fM(X, εM) ⇒ M(x) = fM(x, εM)

Y = fY(X,M, εY) Y(x,m) = fY(x,m, εY)

observed variables are given by: M =M(X), Y = Y(X,M(X)).
Counterfactuals make clear equations represent invariant relationships:
intervening to set X and M to 0, the value for Y will be: fY(0, 0, εY).
(Alternative approach via crossing out equations, but this can be confusing since “Y” in the

new system is not “Y” in the old system.)
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Two important caveats:

NPSEMs typically assume all variables are seen as being
subject to well-defined interventions (not so with potential
outcomes)

Pearl’s approach to unifying graphs and counterfactuals
simply associates with a DAG the counterfactual model
corresponding to an NPSEM with Independent Errors
(NPSEM-IEs) aka Structural Causal Models
Pearl: DAGs and Potential Outcomes are ‘equivalent theories’.

However, any counterfactual independences that can be read
from a SWIG will hold under the NPSEM-IE model.
(Though in general the NPSEM-IE will imply extra
independences.)
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Pearl’s Structural Causal Model / NPSEM-IE approach:

Z M Y

Three binary variable model, no confounding; 7 counterfactual RVs:

Z, M(z0),M(z1), Y(m0, z0), Y(m0, z1), Y(m1, z0), Y(m1, z1)

Pearl’s structural causal model assumes cross-world independences:

Z︸︷︷︸
εZ

⊥⊥ {M(z0),M(z1)}︸ ︷︷ ︸
εM

⊥⊥ {Y(m0, z0), Y(m0, z1), Y(m1, z0), Y(m1, z1)}︸ ︷︷ ︸
εY

Dimension of models:

No assumptions (allowing confounding): 127 = 27 − 1;

SWIG (no confounding): 113

Pearl’s NPSEM with indep. errors (no confounding): 19

No. of extra (untestable) counterfactual independence assumptions: 94
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How many experimentally untestable assumptions?

Assumption of independent errors implies super-exponentially
many ‘cross-world’ counterfactual independence assumptions:

No. Actual Vars. 2 3 4 K

Dim. P(V) 3 7 15 2K − 1
No. Cnterfactual Vars. 3 7 15 2K − 1

Dim. Cnterfactual Dist. 7 127 32767 2(2K−1) − 1

Dim. SWIG 5 113 32697 (2(2K−1) − 1) −
∑K−1

j=1 (4j − 2j)

Dim. NPSEM-IE 4 19 274
∑K−1

j=0 (22j

− 1)

No. untestable indep. 1 94 32423 O(22K−2)constrnts in NPSEM-IE

Table: Dimensions of counterfactual models associated with complete
graphs with binary variables.
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Critique of Structural Causal Model (SCM) Independent
Error Assumption

Pearl’s SCM independent error assumption cannot be checked by any
randomized experiment on the variables in the graph.

⇒ Connection between experimental interventions and potential
outcomes, established by Neyman has been severed;

What about faithfulness and causal discovery procedures?

Such inferences are explicit that they rely on faithfulness;

I By contrast: In Pearl’s NPSEM-IE approach the simple act of
using a DAG is viewed as automatically committing you to
making this untestable hypothesis.

Predictions (possibly derived assuming faithfulness) regarding
intervention distributions P(Y(x)) = P(Y | do(x)) can be tested by
randomized experiments.

Thomas Richardson Simons Day 3.3: SWIGs Slide 42



Summary so Far
SWIGs provide a simple way to unify graphs and counterfactuals via
node-splitting

The approach works via linking the factorizations associated with
the two graphs.

The new graph represents a counterfactual distribution that is
identified from the distribution in the original DAG.

This provides a language that allows counterfactual and graphical
people to communicate.

(Not covered) Leads to a complete identification algorithm
(Extended ID)

I “Fixing” operation⇒ Splitting + Marginalization

(Not covered) Can combine information on the absence of individual
and population level direct effects.

(Not covered) Permits formulation of models where interventions on
only some variables are well-defined.
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Interventional Mediation
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Overview of Part Two

A (fairly) new way to think about mediation and direct effects
I Separable Direct Effects

Contrast with other approaches
I Controlled Direct Effects
I Principal Stratum Direct Effects
I Pure (aka Natural) Direct Effects
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Mediation

X M Y

U

Wish to distinguish the ‘direct’ effect of X on Y from the ‘indirect’
effect ‘via’ M.

X is an initial treatment, we assume here randomized;
M is the mediating variable of interest;
Y is the final outcome;
U represents the possibility of unmeasured factors influencing M and Y.
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Linear system

X M Yα β

γ

X = εX

M = αX+ εM

Y = βM+ γX+ εY

Cov(εX, εM) = Cov(εX, εY) = Cov(εM, εY) = 0

E[M(x+ 1) −M(x)] = α

E[Y(x+ 1) − Y(x)] = γ︸︷︷︸
direct

+ αβ︸︷︷︸
indirect

Qu: How to generalize this story to the non-parametric setting?
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Expanded System

All variables binary.

X M

Y ⇒

X N

O

M

Y

X is Smoking status; M is Hypertension; Y is Myocardial Infarction (MI);
Suppose there are additional nodes:

N = Nicotine exposure;

O = Other chemical components of cigarettes;

and in addition, the causal graph on the right holds.
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Expanded System

X M

Y ⇒

X N

O

M

Y

Suppose there are additional nodes N, O, with well-defined
interventions, such that

the effect of X on M is via N;

the effect of X on Y is via O.

We can then consider contrasts, such as:

Direct Effect: E[Y(x = 1,n = 0) − Y(x = 0,n = 0)]

Effect of nicotine-free cigarettes vs. not smoking at all.
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Expanded System

X M

Y ⇒

X N

O

M

Y

Suppose there are additional nodes N, O, with well-defined
interventions, such that

the effect of X on M is via N;

the effect of X on Y is via O.

We can then consider contrasts, such as:

Direct Effect: E[Y(x = 1,n = 0) − Y(x = 0,n = 0)]

Indirect Effect: E[Y(x = 1,o = 1) − Y(x = 0,o = 1)]

Effect of smoking regular cigarettes vs. nicotine-free cigarettes.
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Adding Determinism

X M

Y ⇒

X N

O

M

Y

Suppose further that N and O are components of X, so that in the
original data N = X and O = X, as indicated by the red edges. Then:

Direct Effect: E[Y(x = 1,n = 0) − Y(x = 0,n = 0)]

= E[Y(n = 0,o = 1) − Y(n = 0,o = 0)]

Indirect Effect: E[Y(x = 1,o = 1) − Y(x = 0,o = 1)]

= E[Y(n = 1,o = 1) − Y(n = 0,o = 1)]

Thus E[Y(x = 1) − Y(x = 0)] = Indirect Effect + Direct Effect.
Note that these are contrasts from a four arm (N,O) randomized trial.
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Three Datasets

X M

Y ⇒

X N

O

M

Y
Consider three datasets:

(i) The original observed data from the trial in which X was
randomized: X, M, Y, so the data in arm X = x corresponds to M(x),Y(x);

(ii) Data from a putative four arm (N,O) randomized trial; the data in
each arm (n,o) ∈ {0, 1}2 corresponds to M(n,o), Y(n,o);

(iii) A dataset obtained from the four arm (N,O) trial (ii) by restricting to
the two arms in which n = o.

Since in the original data X = N = O, (iii) is identified from (i).
Among people with X = x we observe N = O = x, hence we observe M(n=x,o=x)

and Y(n=x,o=x).This can be viewed as a consistency assumption. As noted by

Stensrud this can be tested in a six arm trial.
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Three Datasets

X M

Y ⇒

X N

O

M

Y
Consider three datasets:

(i) The original observed data from the trial in which X was
randomized: X, M, Y, so the data in arm X = x corresponds to M(x),Y(x);

(ii) Data from a putative four arm (N,O) randomized trial; the data in
each arm (n,o) ∈ {0, 1}2 corresponds to M(n,o), Y(n,o);

(iii) A dataset obtained from the four arm (N,O) trial (ii) by restricting to
the two arms in which n = o.

Qu: When is (ii) identified from (i)?
Following Stensrud, we say the effects of N and O on M and Y are separable, when this

identification holds.

Thomas Richardson Simons Day 3.3: SWIGs Slide 53



Four arms from two!
Proposition

If the following conditions hold

p(Y(n=1,o) = y |M(n=1,o) = m) (3)

= p(Y(n=0,o) = y |M(n=0,o) = m) for o ∈ {0, 1};

p(M(n,o=0) = m) = p(M(n,o=1) = m) for n ∈ {0, 1}; (4)

then for x ∈ {0, 1} and x̃ = 1 − x we have:

p(M(n=x,o= x̃) = m,Y(n=x,o= x̃) = y) (5)

= p(Y(n= x̃,o= x̃) = y |M(n= x̃,o= x̃) = m)p(M(n=x,o=x) = m).

Note the last two terms are identified by the data in (iii), the two arm trial in which n = o.
Thus under the conditions (3) and (4) we can identify (ii) from (iii).

Proof:

p(M(n=x,o= x̃),Y(n=x,o= x̃))

= p(Y(n=x,o= x̃) |M(n=x,o= x̃))p(M(n=x,o= x̃))

= p(Y(n= x̃,o= x̃) |M(n= x̃,o= x̃))p(M(n=x,o=x)).
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Pearl’s Mediation Formula Recovered

Corollary
If the following conditions hold

p(Y(n=1,o) = y |M(n=1,o) = m) (1)

= p(Y(n=0,o) = y |M(n=0,o) = m) for o ∈ {0, 1};

p(M(n,o=0) = m) = p(M(n,o=1) = m) for n ∈ {0, 1}; (2)

then for x ∈ {0, 1} and x̃ = 1 − x we have:

p(Y(n=x,o= x̃) = y)

=
∑
m

p(Y(n= x̃,o= x̃) = y |M(n= x̃,o= x̃) = m)p(M(n=x,o=x) = m)

=
∑
m

p(Y(x̃) = y |M(x̃) = m)p(M(x) = m)

=
∑
m

p(Y = y |M = m,X= x̃)p(M = m |X = x). (6)

(6) is Pearl’s mediation formula proposed to identify pure (aka natural) direct effects.
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Assumptions for separability

X N n

O o

M(n,o)

Y(n,o)

The assumptions we required for separability are:

p(Y(n=1,o) = y |M(n=1,o) = m)

= p(Y(n=0,o) = y |M(n=0,o) = m) for o ∈ {0, 1};

p(M(n,o=0) = m) = p(M(n,o=1) = m) for n ∈ {0, 1}.
Can be read off the SWIG above with potential outcomes calculus (Malinsky+S+R, 2019).
n is d-separated from Y(n,o) given M(n,o); while o is d-separated from M(n,o).

If there is an unmeasured confounder between M and Y then the first
assumption will fail.
These conditions also follow from NPSEM (individual level) no direct effect assumptions.
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Testable Assumptions for separability

X N n

O o

M(n,o)

Y(n,o)

The assumptions we required for separability are:

p(Y(n=1,o) = y |M(n=1,o) = m)

= p(Y(n=0,o) = y |M(n=0,o) = m) for o ∈ {0, 1};

p(M(n,o=0) = m) = p(M(n,o=1) = m) for n ∈ {0, 1}.

Key Observation:
If (in the future), we carry out the four-arm (N,O) study (ii), then these
assumptions are subject to direct empirical test.
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Contrast with other Approaches to Meidation

The interventional approach to mediation avoids several obstacles
present in other approaches:

Unlike the Pure (or Natural) Direct Effect and Controlled Direct
Effect, the interventional approach does not require well-defined
interventions or counterfactuals on mediators;

Identification assumptions in the interventional approach are (in
principle) subject to empirical test, unlike the (cross-world
independence) assumptions used to identify the Pure Direct Effect
under an NPSEM with independent errors;

Unlike the Principal Stratum Direct Effect, the interventional notions
of direct and indirect effect are not restricted solely to those
subpopulations in which the treatment has no effect on the mediator
(at the individual level);
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Related Interventional Approaches to Mediation

Didelez (2019) extends the approach to the context of survival
analysis and presents concrete examples of treatment
decompositions.

Martinussen and Stensrud (2020) consider estimation of
separable effects when there are competing risks.

The formulation of a notion of direct effects that do not pass
through a mediator without the need for well-defined
interventions on that mediator also motivates the Organic
Mediation approach of Lok (2016, 2020).
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Summary
Given components (N,O) of treatment we can formulate contrasts:

E[Y(n=0,o=1)−Y(n=0,o=0)] E[Y(n=1,o=0)−Y(n=0,o=0)];

If N only affects the mediator, and O only affects Y then the
contrasts correspond to direct and indirect effects;

This approach requires that the counterfactuals M(n,o) and
Y(n,o) be well-defined;

⇒ requires N and O correspond to substantive variables that
could (in principle) be intervened on;

We gave conditions under which the distribution of
P(Y(n = x,o = x̃)) is identified from the data from a randomized
experiment;

The conditions are empirically testable given data from a
(subsequent) four-arm trial in which N and O are both randomized.
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