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Outline

@ Part One: A Complete ldentification Algorithm for Intervention
Distributions in DAGs with Latent Variables

@ (Not Covered Today) Part Two: The Nested Markov Model
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Part One: A Complete ldentification Algorithm

@ The general identification problem for DAGs with unobserved
variables

@ Simple examples
@ Tian's Algorithm

@ Formulation in terms of ‘Fixing' operation
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Intervention distributions (1)

Given a causal DAG G(V) with distribution:

p(V) = 1] p(v | pa(v))

veV

where pa(v) = {x|x — v};
Intervention distribution on X:

p(VAX|do(X =x)) = ] p(v]pa(v)).

ve VA X

here on the RHS a variable in X occurring in pa(v), for some v € V' \ X,
takes the corresponding value in x.
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Example

1'!5'}——————)('!!') ‘I’I} X -——————>(::::>——————>

p(X, LM, Y) = p(L) p(X | L) p(M | X)p(Y | L, M)

p(L MY |do(X=%)) = p(L) x  p(M|)p(Y | L, M)
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Intervention distributions (11)

Given a causal DAG G with distribution:

p(V) =[] p(v | pa(v))

veV

we wish to compute an intervention distribution via truncated
factorization:

p(VAX |do(X=x)) = [ p(v]pa(v)).

veVA\X

Hence if we are interested in Y C V \ X then we simply marginalize:

p(Y [do(X=x)) = S T[ elvIpa(v)).

weEV\(XUY) veV\X

( ‘g-computation’ formula of Robins (1986); see also Spirtes et al. 1993.)

Note: p(Y | do(X = x)) is a sum over a product of terms p(v | pa(v)).
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Example

1'!5'}——————)('!!'} ‘i"} X -——————><::::>——————>

p(X, LM, Y) = p(L)p(X | L)p(M | X)p(Y | L, M)
p(L, M, Y | do(X=X)) = p(L)p(M | X)p(Y | L, M)
p(Y | do(X=X) ZpL Np(M=m | X)p(Y | L=I,M=m)

Note that p(Y | do(X=X)) # p(Y | X=X).
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Special case: no effect of M on Y

@

p(X, L, M, Y) = p(L)p(X [ L)p(M | X)p(Y | L, M)

p(L, M, Y | do(X=X)) = p(L)p(M | X)p(Y | L)
p(Y | do(X=X)) = /ZP(L Np(M=m | X)p(Y | L=1)
:zmip(L Ne(Y | L=1)
=péY)7éP(Y\>?)

since X £ Y. ‘Correlation is not Causation’.
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Example with M unobserved

——) X

p(Y | do(X=5)) = 3 p(L=1)p(M=m | 2)p(Y | L=1, M=m)

I,m

= " p(L=Np(M=m | %, L=1)p(Y | L=1,M=m, X =%)
I,m

_ ZP(LZ/)P(Y» M=m| L= X=X)
I,m

=) p(L=Np(Y | L=1,X=X).
/

Here we have used that M L L | X and Y L X | L, M.
= can find p(Y | do(X=X)) even if M not observed.

This is an example of the ‘back door formula’, aka ‘standardization’. 1050



Example with L unobserved

(L)
——0 —0—O

p(Y | do(X =5))
= 3" p(M=m| do(X=5))p(Y | do(M=m))

=" p(M=m | X=%)p(Y | do(M=m))

— Zp(M:m | X =X) (Z p(X=x")p(Y | M—m,X—X*)>

= can find p(Y | do(X=X)) even if L not observed.

This is an example of the ‘front door formula’ of Pearl (1995).
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But with both L and M unobserved....

...we are out of luck!

Given P(X,Y), absent further assumptions we cannot distinguish:

¢ o coc
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General ldentification Question

Given: a latent DAG G(O U H), where O are observed, H are hidden, and
disjoint subsets X, Y C O.

Q: Is p(Y | do(X)) identified given p(O)?
: Provide either an identifying formula that is a function of p(O)
report that p(Y | do(X)) is not identified.

Motivations:

@ Characterize which interventions can be identified without
parametric assumptions;

@ Understand which functionals of the observed margin have a causal
Interpretation;
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Latent Projection

Can preserve conditional independences and causal coherence with
latents using paths. DAG G on vertices V = OUH, define latent
projection as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

O—O— —O—0
Whenever there is a path of the form
O—O——O—0

Then remove all latent variables H from the graph.

add

add
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ADMGs

o (2) —
—>
0 project

Latent projection leads to an acyclic directed mixed graph (ADMG)
Can read off independences with d/m-separation.

The projection preserves the (algebraic*) causal structure; Verma and
Pearl (1992).

* Some information relating to inequality constraints is lost.
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‘Conditional’ Acyclic Directed Mixed Graphs

An ‘conditional” acyclic directed mixed graph (CADMG) is a bi-partite
graph G(V, W), used to represent structure of a distribution over V/,
indexed by W, for example P(V | do(W)).

We require:

(i) The induced subgraph of G on V is an ADMG;
(ii) The induced subgraph of G on W contains no edges;
(iii) Edges between vertices in W and V take the form w — v.

We represent V' with circles, W with squares:

£ —
RY_EEO

Here V = {L1, Y} and W = {Ag, A;}.
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Ancestors and Descendants

In a CADMG G(V, W) for v € V, let the set of ancestors , descendants
of v be:

ang(v)={a|la— - ---—>vora=vinG,aec VUW}

deg(v)={d|d<+ -« vord=vinG,de VUW}

In the example above:
an(y) = {ao, h,a1,y}.
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Districts
Define a district in a C/ADMG to be maximal sets connected by

bi-directed edges:

1 (3) ® O—60—0O
2 >(4) (V)
@—®

> p(u) p(xalu)plalu) p(v) p(xs|xi, v) p(xa| X2, v)  p(xs | x3)

u,v

= p(u) p(xa|u) p(xa|u) > p(v)p(xs|x,v)p(x|x2,v) plxs|xs)

— q(X17X2) ’ Q(X3,X4 |X17X2) ) q(X5 |X3) .
— H qp, (XD; | Xpa(Dy)\D;)

Districts are called ‘c-components’ by Tian.
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Edges between districts

There is no ordering on vertices such that parents of a district precede
every vertex in the district.

(Cannot form a ‘chain graph’ ordering.)
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Notation for Districts

R OaZ

In a CADMG G(V, W) for v € V, the district of v is:
disg(v)={d|d+ -~ vord=vinG,de V}

Only variables in V' are in districts.

In example above:

dis(y) = {l, h,y}, dis(a1) ={a1}.
We use D(G) to denote the set of districts in G.
In example D(g) — { {/07 llay}a {31} }
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Tian’s ID algorithm for identifying P(Y | do(X))

Jin Tian

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

pLY 1do(X)) = LT p(01 | o(pa(D) \ D)

(B) Check whether each term: p(D; | do(pa(D;) \ D;)) is identified.
This is clearly sufficient for identifiability.

Necessity follows from results of Shpitser (2006); see also Huang and
Valtorta (2006).
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(A) Decomposing the query

©@ Remove edges into X:
Let G[V \ X] denote the graph formed by removing edges with an
arrowhead into X.

@ Restrict to variables that are (still) ancestors of Y:
Let T = ang[\/\x](Y)
be vertices that lie on directed paths between X and Y (after cutting
edges into X) Equivalently, T are variables on ‘proper causal paths’ from X to Y.
Let G* be formed from G[V \ X]| by removing vertices not in T.

© Find the districts:
Let Dy,..., Ds be the districts in G*.

Then:
P(Y[do(X))= 3 T]p(D:|do(pa(Di)\ Dy)).

T\(XUY) D;
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Example: front door graph

g

O=0O=0

p(Y [do(X))

Gv\ixy = 6"

—@—®

T={X,M, Y}

Districts in T \ {X} are D; = {M}, D, ={Y}.

p(Y |do(X)) Zp M | do(X

p(Y | do(M))
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Example: Sequentially randomized trial

Aq is randomized; A, is randomized conditional on L, Aq;

Iiv\iaal | Ao [— A —
\/
T ={A0, A, Y}
G* Ao \w
Dy = 1Y}

(Here the decomposition is trivial since there is only one district and no
summation.)
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(B) Finding if P(D |do(pa(D)\ D)) is identified

Idea: Find an ordering ri,...,r, of O\ D such that:
It P(O\{r,...,r—1}|do(r,...,rr_1)) is identified
Then P(O\{n,...,re}|do(r,...,r)) is also identified.

Sufficient for identifiability of P(D |do(pa(D) \ D)), since:
P(O) is identified

D=0\{rn,...,r} so
P(O\{n,...,rp}|do(r,...,r,)) = P(D|do(pa(D) \ D)).

Such a vertex r; will said to be ‘fixable’, given that we have already
‘fixed’ NM,...,k_1:

‘fixing' differs formally from ‘do’ /cutting edges since the latter does not
preserve identifiability in general.

To do:

@ Give a graphical characterization of ‘fixability’;
@ Construct the identifying formula.
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The set of fixable vertices

Given a CADMG G(V, W) we define the set of fixable vertices,
F(G)={v|ve V,disg(v)Ndeg(v)={v}}.

In words, a vertex v € V is fixable in G if there is no (proper) descendant
of v that is in the same district as v in G.

Thus v is fixable if there is no vertex y # v such that
V-4 y and v—---—y ing.

Note that the set of fixable vertices is a subset of V/, and contains at
least one vertex from each district in §G.
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Example: Front door graph

o~
CF—()—()
F(G)={M,Y}

X is not fixable since Y is a descendant of X and

Y is in the same district as X
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Example: Sequentially randomized trial

SZogozc

Here F(G) = {Ao, A1, Y}
L1 is not fixable since Y is a descendant of L; and

Y is in the same district as L;.
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The graphical operation of fixing vertices

Given a CADMG G(V, W, E), for every r € F(G) we associate a
transformation ¢, on the pair (G, P(Xy | Xw)):

6r(G) =G (V\ {r}, Wu{r}),

where in GT we remove from G any edge that has an arrowhead at r.

The operation of ‘fixing r' simply transfers r from V' to ‘"W’ and
removes edges r <> or r <.
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Example: front door graph

i O —@—®

F(G) =M, Y}

6m(G) @‘/M}@

Flom(9)) =1X, Y5
Note that X was not fixable in G,
but it is fixable in ¢p(G) after fixing M.
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Example: Sequentially randomized trial

. TT

Here F(G) = {Ao, A1, Y.

62, (0)

Notice F(¢a,(G)) = {Ao, L1, Y}.

Thus Ly was not fixable prior to fixing Aj,

but L is fixable in ¢4,(G) after fixing A;.
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The probabilistic operation of fixing vertices

Given a distribution P(V | W) we associate a transformation:

PV W)
P(r [ mbg(r))

Here
mbg(r) ={y #r|(r<y)or (r<vo---o0<vy)or (r<vo---0<r0<y)h.

In words: we divide by the conditional distribution of r given the other vertices
in the district containing r, and the parents of the vertices in that district.

It can be shown that if r is fixable in G then:
¢r(P(V | do(W));G) = P(V\ {r} | do(W U{r})).

as required.

Note: If r is fixable in G then mbg(r) is the ‘Markov blanket’ of r in ang(disg(r)).
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Unifying Marginalizing and Conditioning

Some special cases:
@ If mbg(r) = (VUW)N\ {r} then fixing corresponds to marginalizing:

PV W)
(r [ (VUW)\{r})

@ If mbg(r) = W then fixing corresponds to ordinary conditioning:

o(P(V | W) G) = 5 = P(V\A{r} | W)

OAP(V | W) = L) = POVA L) [ WU 1)

@ In the general case fixing corresponds to re-weighting, so

¢r(P(V | W), G) = PE(VALr} [WU{r}) # P(V\{ry | WU {r})

Having a single operation simplifies the identification algorithm.

33/80



Composition of fixing operations

We use o to indicate composition of operations in the natural way.

If s is fixable in G and then r is fixable in ¢s(G) (after fixing s) then:

¢r 0 ¢s(9)

¢r o ¢s(P(V | W); G)

or(9s(9))

¢r (s (P(V | W);G): ¢s(9))
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Back to step (B) of identification

Recall our goal is to identify P(D | do(pa(D) \ D)), for the districts D in
G*:

G Gv\ixy = 9°
D0  [J—@—
p(Y | do(X)) T ={X,M,Y}

Districts in T\ {X} are D; = {M}, D, ={Y}.

p(Y |do(X)) Zp/w\do p(Y |do(M))
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Example: front door graph: D; = {M}

i —@—®

F(G) = {M,Y}

ov (@)  CO—m) |y

F(oy(9)) = X, M}

dx o py(G) | X 4)@ Y

This proves that p(M | do(X)) is identified.
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Example: front door graph: D, = {Y}

OO0

F(G) = {M,Y}

@) @ M0

Flom(G)) =X, Y}

¢x o dpm(G)

X

M

—®

This proves that p(Y | do(M)) is identified.
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Example: Sequential Randomization

OO0

62 ()

¢, © P4, (G) @ Ly A1

quo © ¢L1 © ¢A1(g) Ao L1 Aq

This establishes that P(Y | do(Ag, A1)) is identified.
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Review: Tian’s ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

p(Y | do(X ZHp i | do(pa(D;) \ D;)).

» Cut edges into X;
» Restrict to vertices that are (still) ancestors of Y;
» Find the set of districts D1, ..., D,.

(B) Check whether each term: p(D; | do(pa(D;) \ D;)) is identified:

> lteratively find a vertex that r: that is fixable in ¢,,_, o---0¢,(G),
with r: € D;;
> If no such vertex exists then P(D; | do(pa(D;) \ D;)) is not identified.
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Not identified example

i OE=®—0) i xX—O®

Suppose we wish to find p(Y | do(X)).
There is one district D = {Y'} in G*.

But since the only fixable vertex in G is Y, we see that p(Y | do(X)) is
not identified.
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Reachable subgraphs of an ADMG

A CADMG G(V, W) is reachable from ADMG G*(V U W) if there is an
ordering of the vertices in W = (wy, ..., wy), such that for j =1,... k,

wy € F(G*) and for j =2,... k,
wj € F(¢w,_; 009w (G7)).

Thus a subgraph is reachable if, under some ordering, each of the vertices
in W may be fixed, first in G*, and then in ¢,,(G*), then in
Pw, (Pwy (G7)), and so on.
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Invariance to orderings

In general, there may exist multiple sequences that fix a set W, however,
they all result in both the same graph and distribution.

This is a consequence of the following:

Lemma

Let G(V, W) be a CADMG with r,s € F(G), and let qv(V | W) be
Markov w.r.t. G, and further (a) ¢,(qyv;G) is Markov w.r.t. ¢,(G); and
(b) ¢s(qv; G) is Markov w.r.t. ¢s(G). Then

¢r o ¢s(g) = gbs o Cbr(g)y
Cbr O¢s(qv;g) — Qbsogbr(qv;g)-

Consequently, if G(V, W) is reachable from G(V U W) then
ov(p(V, W);G) is uniquely defined.
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Intrinsic sets

A set D is said to be intrinsic if it forms a district in a reachable
subgraph. If D is intrinsic in G then p(D | do(pa(D) \ D)) is identified.

Let Z(G) denote the intrinsic sets in G.

Theorem
Let G(H U V) be a causal DAG with latent projection G(V'). For
AUY C V, let Y* = angyy, ,(Y). Then if D(G(V)y-) € Z(G(V)),

V\A

p(Y | dog(huvy(A)) = Z H dwv\p(p(V);G(V)). (%)

Y*\Y DeD(G(V)yx)

If not, there exists D € D(G(V)y~) \ Z(G(V)) and p(Y | dog(huv)(A))
is not identifiable in G(H U V).

Thus p(D | do(pa(D) \ D)) for intrinsic D play the same role as
P(v | do(pa(v))) = p(v | pa(v)) in the simple fully observed case.

Shpitser+R-+Robins (2012) give an efficient algorithm for computing ().
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Intrinsic sets and ‘hedges’

Shpitser (2006) provided a characterization in terms of graphical
structures called ‘hedges’ of those interventional distributions that were
not identified.

It may be shown that if a <»-connected set is not intrinsic then there
exists a hedge, hence we have:

<»-connected set S is intrinsic iff p(S | do(pa(S) \ 5)) is identified.

It follows that intrinsic sets may thus also be defined in terms of the
non-existence of a hedge.
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Part Two: The Nested Markov Model

@ Deriving constraints via fixing

@ The Nested Markov Model
e Finer Factorizations

@ Discrete Parameterization

© Testing and Fitting

@ Completeness
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Motivation

@ So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

@ We also may have multiple identifying expressions: which one should
we use?

p(Y | do(X))
front door?

@ back door?
does it matter?

@ We can test constraints separately, but ultimately don't have a way
to check if the model is a good one.

@ Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

@ Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.
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