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Part One: A Complete Identification Algorithm

The general identification problem for DAGs with unobserved
variables

Simple examples

Tian’s Algorithm

Formulation in terms of ‘Fixing’ operation
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Intervention distributions (I)

Given a causal DAG G(V ) with distribution:

p(V ) =
Y

v2V

p(v | pa(v))

where pa(v) = {x | x ! v};

Intervention distribution on X :

p(V \ X | do(X = x)) =
Y

v2V\X

p(v | pa(v)).

here on the RHS a variable in X occurring in pa(v), for some v 2 V \ X ,
takes the corresponding value in x.
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Example

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L) p(X | L) p(M | X )p(Y | L,M)

p(L,M,Y | do(X = x̃)) = p(L) ⇥ p(M | x̃)p(Y | L,M)
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Intervention distributions (II)

Given a causal DAG G with distribution:

p(V ) =
Y

v2V

p(v | pa(v))

we wish to compute an intervention distribution via truncated
factorization:

p(V \ X | do(X = x)) =
Y

v2V\X

p(v | pa(v)).

Hence if we are interested in Y ⇢ V \ X then we simply marginalize:

p(Y | do(X = x)) =
X

w2V\(X[Y )

Y

v2V\X

p(v | pa(v)).

( ‘g-computation’ formula of Robins (1986); see also Spirtes et al. 1993.)

Note: p(Y | do(X = x)) is a sum over a product of terms p(v | pa(v)).
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Example

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L,M)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L,M)

p(Y | do(X = x̃)) =
X

l,m

p(L= l)p(M=m | x̃)p(Y | L= l ,M=m)

Note that p(Y | do(X = x̃)) 6= p(Y | X = x̃).
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Special case: no e↵ect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L,M)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
X

l,m

p(L= l)p(M=m | x̃)p(Y | L= l)

=
X

l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6?? Y . ‘Correlation is not Causation’.
9 / 80



Example with M unobserved

X M Y

L

X M Y

L

p(Y | do(X = x̃)) =
X

l,m

p(L= l)p(M=m | x̃)p(Y | L= l ,M=m)

=
X

l,m

p(L= l)p(M=m | x̃ , L= l)p(Y | L= l ,M=m,X = x̃)

=
X

l,m

p(L= l)p(Y ,M=m | L= l ,X = x̃)

=
X

l

p(L= l)p(Y | L= l ,X = x̃).

Here we have used that M ?? L | X and Y ?? X | L,M.

) can find p(Y | do(X = x̃)) even if M not observed.

This is an example of the ‘back door formula’, aka ‘standardization’.
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Example with L unobserved

X M Y

L

X M Y

L

p(Y | do(X = x̃))

=
X

m

p(M=m | do(X = x̃))p(Y | do(M=m))

=
X

m

p(M=m | X = x̃)p(Y | do(M=m))

=
X

m

p(M=m | X = x̃)

 
X

x⇤

p(X =x⇤)p(Y | M=m,X =x⇤)

!

) can find p(Y | do(X = x̃)) even if L not observed.

This is an example of the ‘front door formula’ of Pearl (1995).
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But with both L and M unobserved....

X M Y

L

...we are out of luck!

Given P(X ,Y ), absent further assumptions we cannot distinguish:

X Y

L

X M Y
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General Identification Question

Given: a latent DAG G(O [H), where O are observed, H are hidden, and
disjoint subsets X ,Y ✓ O.

Q: Is p(Y | do(X )) identified given p(O)?

A: Provide either an identifying formula that is a function of p(O)

or report that p(Y | do(X )) is not identified.

Motivations:

Characterize which interventions can be identified without
parametric assumptions;

Understand which functionals of the observed margin have a causal
interpretation;
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Latent Projection
Can preserve conditional independences and causal coherence with
latents using paths. DAG G on vertices V = O[̇H, define latent
projection as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

x h1 · · · hk y

add
x y

Whenever there is a path of the form

x h1 · · · hk y

add
x y

Then remove all latent variables H from the graph.
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ADMGs

u

x

y

z

w t

�!

project

x

y

z

t

Latent projection leads to an acyclic directed mixed graph (ADMG)

Can read o↵ independences with d/m-separation.

The projection preserves the (algebraic*) causal structure; Verma and
Pearl (1992).

* Some information relating to inequality constraints is lost.
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‘Conditional’ Acyclic Directed Mixed Graphs

An ‘conditional’ acyclic directed mixed graph (CADMG) is a bi-partite
graph G(V ,W ), used to represent structure of a distribution over V ,
indexed by W , for example P(V | do(W )).

We require:

(i) The induced subgraph of G on V is an ADMG;

(ii) The induced subgraph of G on W contains no edges;

(iii) Edges between vertices in W and V take the form w ! v .

We represent V with circles, W with squares:

A0 L1 A1 Y

Here V = {L1,Y } and W = {A0,A1}.
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Ancestors and Descendants

L0 A0 L1 A1 Y

In a CADMG G(V ,W ) for v 2 V , let the set of ancestors , descendants
of v be:

anG(v) = {a | a! · · ·! v or a = v in G, a 2 V [W },

deG(v) = {d | d  · · · v or d = v in G, d 2 V [W },

In the example above:

an(y) = {a0, l1, a1, y}.
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Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5 1 3 5

u v

2 4

X

u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=

X

u

p(u) p(x1 | u) p(x2 | u)
X

v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=

Y

i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.
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Edges between districts

1 2

3 4

There is no ordering on vertices such that parents of a district precede
every vertex in the district.

(Cannot form a ‘chain graph’ ordering.)
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Notation for Districts

L0 A0 L1 A1 Y

In a CADMG G(V ,W ) for v 2 V , the district of v is:

disG(v) = {d | d $ · · ·$ v or d = v in G, d 2 V }.

Only variables in V are in districts.

In example above:

dis(y) = {l0, l1, y}, dis(a1) = {a1}.

We use D(G) to denote the set of districts in G.

In example D(G) = { {l0, l1, y}, {a1} }.
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Tian’s ID algorithm for identifying P(Y | do(X ))

Jin Tian

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

p(Y | do(X )) =
XY

i

p(Di | do(pa(Di ) \ Di )).

(B) Check whether each term: p(Di | do(pa(Di ) \ Di )) is identified.

This is clearly su�cient for identifiability.

Necessity follows from results of Shpitser (2006); see also Huang and
Valtorta (2006).
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(A) Decomposing the query

1 Remove edges into X :
Let G[V \ X ] denote the graph formed by removing edges with an
arrowhead into X .

2 Restrict to variables that are (still) ancestors of Y :
Let T = anG[V\X ](Y )
be vertices that lie on directed paths between X and Y (after cutting
edges into X ). Equivalently, T are variables on ‘proper causal paths’ from X to Y .

Let G⇤ be formed from G[V \ X ] by removing vertices not in T .
3 Find the districts:

Let D1, . . . ,Ds be the districts in G⇤.

Then:

P(Y | do(X )) =
X

T\(X[Y )

Y

Di

p(Di | do(pa(Di ) \ Di )).
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Example: front door graph

X M Y

p(Y | do(X ))

G

X M Y

G[V\{X}] = G⇤

T = {X ,M,Y }

Districts in T \ {X} are D1 = {M}, D2 = {Y }.

p(Y | do(X )) =
X

M

p(M | do(X ))p(Y | do(M))
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Example: Sequentially randomized trial
A1 is randomized; A2 is randomized conditional on L,A1;

A0 L1 A1 YG

p(Y | do(A0,A1))

A0 L1 A1 Y

T = {A0,A1,Y }

G[V\{A0,A1}]

A0 A1 Y

D1 = {Y }

G⇤

(Here the decomposition is trivial since there is only one district and no
summation.)
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(B) Finding if P(D |do(pa(D) \ D)) is identified
Idea: Find an ordering r1, . . . , rp of O \ D such that:

If P(O \ {r1, . . . , rt�1} | do(r1, . . . , rt�1)) is identified

Then P(O \ {r1, . . . , rt} | do(r1, . . . , rt)) is also identified.

Su�cient for identifiability of P(D | do(pa(D) \ D)), since:

P(O) is identified

D = O \ {r1, . . . , rp}, so
P(O \ {r1, . . . , rp} | do(r1, . . . , rp)) = P(D | do(pa(D) \ D)).

Such a vertex rt will said to be ‘fixable’, given that we have already
‘fixed’ r1, . . . , rt�1:

‘fixing’ di↵ers formally from ‘do’/cutting edges since the latter does not
preserve identifiability in general.

To do:

Give a graphical characterization of ‘fixability’;
Construct the identifying formula.
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The set of fixable vertices

Given a CADMG G(V ,W ) we define the set of fixable vertices,

F (G) ⌘ {v | v 2 V , disG(v) \ deG(v) = {v}} .

In words, a vertex v 2 V is fixable in G if there is no (proper) descendant
of v that is in the same district as v in G.

Thus v is fixable if there is no vertex y 6= v such that

v $ · · ·$ y and v ! · · ·! y in G.

Note that the set of fixable vertices is a subset of V , and contains at
least one vertex from each district in G.
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Example: Front door graph

X M Y

G

F (G) = {M,Y }

X is not fixable since Y is a descendant of X and

Y is in the same district as X
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Example: Sequentially randomized trial

A0 L1 A1 Y

Here F (G) = {A0,A1,Y }.

L1 is not fixable since Y is a descendant of L1 and

Y is in the same district as L1.
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The graphical operation of fixing vertices

Given a CADMG G(V ,W ,E ), for every r 2 F (G) we associate a
transformation �r on the pair (G,P(XV | XW )):

�r (G) ⌘ G†(V \ {r},W [ {r}),

where in G† we remove from G any edge that has an arrowhead at r .

The operation of ‘fixing r ’ simply transfers r from ‘V ’ to ‘W ’, and
removes edges r $ or r  .
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Example: front door graph

X M YG

F (G) = {M,Y }

X M Y�M(G)

F (�M(G)) = {X ,Y }

Note that X was not fixable in G,

but it is fixable in �M(G) after fixing M.
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Example: Sequentially randomized trial

A0 L1G A1 Y

Here F (G) = {A0,A1,Y }.

A0 L1�A1(G) A1 Y

Notice F (�A1(G)) = {A0, L1,Y }.

Thus L1 was not fixable prior to fixing A1,

but L1 is fixable in �A1(G) after fixing A1.
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The probabilistic operation of fixing vertices

Given a distribution P(V | W ) we associate a transformation:

�r (P(V | W );G) ⌘ P(V | W )

P(r | mbG(r))
.

Here
mbG(r) = {y 6= r | (r y) or (r$� · · · �$y) or (r$� · · · �$ � y)}.

In words: we divide by the conditional distribution of r given the other vertices
in the district containing r , and the parents of the vertices in that district.

It can be shown that if r is fixable in G then:

�r (P(V | do(W ));G) = P(V \ {r} | do(W [ {r})).

as required.

Note: If r is fixable in G then mbG(r) is the ‘Markov blanket’ of r in anG(disG(r)).
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Unifying Marginalizing and Conditioning

Some special cases:

If mbG(r) = (V [W ) \ {r} then fixing corresponds to marginalizing:

�r (P(V | W );G) = P(V | W )

P(r | (V [W ) \ {r}) = P(V \ {r} | W )

If mbG(r) = W then fixing corresponds to ordinary conditioning:

�r (P(V | W );G) = P(V | W )

P(r | W )
= P(V \ {r} | W [ {r})

In the general case fixing corresponds to re-weighting, so

�r (P(V | W );G) = P⇤(V \ {r} | W [ {r}) 6= P(V \ {r} | W [ {r})

Having a single operation simplifies the identification algorithm.
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Composition of fixing operations

We use � to indicate composition of operations in the natural way.

If s is fixable in G and then r is fixable in �s(G) (after fixing s) then:

�r � �s(G) ⌘ �r (�s(G))

�r � �s(P(V | W );G) ⌘ �r (�s (P(V | W );G) ;�s(G))
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Back to step (B) of identification

Recall our goal is to identify P(D | do(pa(D) \ D)), for the districts D in
G⇤:

X M Y

p(Y | do(X ))

G

X M Y

G[V\{X}] = G⇤

T = {X ,M,Y }

Districts in T \ {X} are D1 = {M}, D2 = {Y }.

p(Y | do(X )) =
X

M

p(M | do(X ))p(Y | do(M))
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Example: front door graph: D1 = {M}

X M YG

F (G) = {M,Y }

X M Y�Y (G)

F (�Y (G)) = {X ,M}

X M Y�X � �Y (G)

This proves that p(M | do(X )) is identified.
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Example: front door graph: D2 = {Y }

X M YG

F (G) = {M,Y }

X M Y�M(G)

F (�M(G)) = {X ,Y }

X M Y�X � �M(G)

This proves that p(Y | do(M)) is identified.
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Example: Sequential Randomization

A0 L1G A1 Y

A0 L1�A1(G) A1 Y

A0 L1�L1 � �A1(G) A1 Y

A0 L1�A0 � �L1 � �A1(G) A1 Y

This establishes that P(Y | do(A0,A1)) is identified.
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Review: Tian’s ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

p(Y | do(X )) =
XY

i

p(Di | do(pa(Di ) \ Di )).

I Cut edges into X ;

I Restrict to vertices that are (still) ancestors of Y ;

I Find the set of districts D1, . . . ,Dp.

(B) Check whether each term: p(Di | do(pa(Di ) \ Di )) is identified:
I Iteratively find a vertex that rt that is fixable in �rt�1 � · · · � �r1(G),

with rt /2 Di ;

I If no such vertex exists then P(Di | do(pa(Di ) \Di )) is not identified.
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Not identified example

L X YG X YG⇤

Suppose we wish to find p(Y | do(X )).

There is one district D = {Y } in G⇤.

But since the only fixable vertex in G is Y , we see that p(Y | do(X )) is
not identified.
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Reachable subgraphs of an ADMG

A CADMG G(V ,W ) is reachable from ADMG G⇤(V [W ) if there is an
ordering of the vertices in W = hw1, . . . ,wki, such that for j = 1, . . . , k ,

w1 2 F (G⇤) and for j = 2, . . . , k ,

wj 2 F (�wj�1 � · · · � �w1(G⇤)).

Thus a subgraph is reachable if, under some ordering, each of the vertices
in W may be fixed, first in G⇤, and then in �w1(G⇤), then in
�w2(�w1(G⇤)), and so on.
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Invariance to orderings

In general, there may exist multiple sequences that fix a set W , however,
they all result in both the same graph and distribution.

This is a consequence of the following:

Lemma

Let G(V ,W ) be a CADMG with r , s 2 F(G), and let qV (V |W ) be
Markov w.r.t. G, and further (a) �r (qV ;G) is Markov w.r.t. �r (G); and
(b) �s(qV ;G) is Markov w.r.t. �s(G). Then

�r � �s(G) = �s � �r (G);
�r � �s(qV ;G) = �s � �r (qV ;G).

Consequently, if G(V ,W ) is reachable from G(V [W ) then
�V (p(V ,W );G) is uniquely defined.
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Intrinsic sets
A set D is said to be intrinsic if it forms a district in a reachable
subgraph. If D is intrinsic in G then p(D | do(pa(D) \ D)) is identified.

Let I(G) denote the intrinsic sets in G.

Theorem

Let G(H [ V ) be a causal DAG with latent projection G(V ). For
A[̇Y ⇢ V , let Y ⇤ = anG(V )V\A(Y ). Then if D(G(V )Y ⇤) ✓ I(G(V )),

p(Y | doG(H[V )(A)) =
X

Y ⇤\Y

Y

D2D(G(V )Y⇤ )

�V\D(p(V );G(V )). (∗)

If not, there exists D 2 D(G(V )Y ⇤) \ I(G(V )) and p(Y | doG(H[V )(A))
is not identifiable in G(H [ V ).

Thus p(D | do(pa(D) \ D)) for intrinsic D play the same role as
P(v | do(pa(v))) = p(v | pa(v)) in the simple fully observed case.

Shpitser+R+Robins (2012) give an e�cient algorithm for computing (⇤).
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Intrinsic sets and ‘hedges’

Shpitser (2006) provided a characterization in terms of graphical
structures called ‘hedges’ of those interventional distributions that were
not identified.

It may be shown that if a $-connected set is not intrinsic then there
exists a hedge, hence we have:

$-connected set S is intrinsic i↵ p(S | do(pa(S) \ S)) is identified.

It follows that intrinsic sets may thus also be defined in terms of the
non-existence of a hedge.
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Part Two: The Nested Markov Model

1 Deriving constraints via fixing

2 The Nested Markov Model

3 Finer Factorizations

4 Discrete Parameterization

5 Testing and Fitting

6 Completeness
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Motivation

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.
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