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Abstract

Despite their success in transferring the pow-
erful human faculty of causal reasoning to
a mathematical and computational form,
causal models have not been widely used
in the context of core AI applications such
as robotics. In this paper, we argue that
this discrepancy is due to the static, proposi-
tional nature of existing causality formalisms
that make them difficult to apply in dynamic
real-world situations where the variables of
interest are not necessarily known a priori.
We define Causal Logic Models (CLMs), a
new probabilistic, first-order representation
which uses causality as a fundamental build-
ing block. Rather than merely converting
causal rules to first-order logic as various
methods in Statistical Relational Learning
have done, we treat the causal rules as basic
primitives which cannot be altered without
changing the system. We provide sketches of
algorithms for causal reasoning using CLMs,
preliminary results for causal explanation,
and explore the significant differences be-
tween causal reasoning in CLMs and fixed
causal graphs, including the non-locality of
manipulation and the non-commutability be-
tween observation and manipulation.

1 Introduction

Most existing causal models used in AI are based on
structural equation modelling [Strotz and Wold, 1960,
Simon, 1954, Haavelmo, 1943], a formalism which orig-
inated in the econometrics literature and which is still
used commonly in the economic and social sciences.
The models used in these disciplines typically involve
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real-valued variables, linear equations and Gaussian
noise distributions. In AI these models have been
generalized by Pearl [2000] and others [e.g., Spirtes
et al., 2000] to include discrete propositional variables,
of which Bayesian networks can be viewed as a subset.

There has also been a good deal of awareness that in
some systems, the complexity of Bayesian networks
can be reduced by exploiting context-specific indepen-
dence [Boutilier et al., 1996]. This observation typ-
ically leads to more efficient learning and inference
algorithms, but can also lead to more intuitive ex-
planation of causal systems. For example the causal
chain event graphs of Thwaites et al. [2010] generalize
Bayesian networks by explictely representing context-
specific asymmetries in the network structure.

The overwhelming majority of these causal represen-
tations in AI are based on propositional logic. One
of the key consequences of this fact is that impor-
tant variables must be known at the time the model is
created. In the economic and macroscopic social sci-
ences, this constraint is not a burden. The quantities
of interest are typically known and fixed, such as infla-
tion, GDP, unemployment, etc. However, despite their
success in transferring the powerful human faculty of
causal reasoning to a mathematical and computational
form, such causal models have not been widely used
in the context of core AI applications such as robotics.
In this paper, we argue that this discrepency has to
do with their propositional nature, and we provide a
probabilistic first-order representation which we call
Causal Logic Models (CLMs) that is more suitable for
the real world when events of interests are not known
in advance.

Probabilistic first-order representations have been
widely studied in the past decade in the context of
graphical models, giving rise to an entire sub-field of
AI called statistical relational AI. 1 While these meth-

1A good overview of this field is provided by Getoor and
Taskar [2007].



ods often use rules that are based in causality, they
typically convert those rules to first-order logic formu-
lae and thereafter ignore their causal nature. Thus
these methods treat logic and probability as the fun-
damental elements and do not attempt to peform ex-
plicit causal reasoning. CLMs, by contrast, are first-
order models that treat causality as the fundamen-
tal building block. Finally, like causal chain event
graphs, CLMs represent context-specificity directly in
the structure of the graphical model; however CLMs
produce these structures dynamically, in response to
observed variables, and produce much simpler struc-
tures than causal chain event graphs.

In this paper our contributions are as follows:

• We define a probabilistic first-order representa-
tion for causality as an alternative to fixed causal
models and build intuition for why these models
can handle dynamic situations much better.

• We define methods for performing explicit causal
inference such as explanation, prediction and
counterfactual reasoning.

• We show that manipulations on CLMs are much
different than manipulations in fixed causal mod-
els, possibly resulting in global changes to the
causal graphs.

• We show that manipulation and observation do
not necessarily commute in CLMs.

The paper is organized as follows: in Section 2 we
present a motivating example which illustrates the
shortcomings of propositional causal models for real-
world AI applications. In Section 3 we define CLMs, in
Section 4 we discuss several types of causal reasoning
we would like to enable with CLMs, and in Section 5 we
present sketches of algorithms using CLMs to achieve
these types of reasoning, and some preliminary empir-
ical results. Finally, in Section 6 we summarize and
discuss future work.

2 Causal Reasoning in Dynamic
Situations

To illustrate the type of reasoning we would like to en-
able, consider the following simplistic running example
of “human-like” causal inference:

While you are in a business meeting with

Tom, Bob suddenly bursts into your office

and punches Tom in the face. Tom falls to

the ground, then gets up and punches Bob

back.

In this example, there are three main events spaced
out in time: Punch(Bob,Tom,T1), Fall(Tom,T2), and
Punch(Tom,Bob,T3) with T1 < T2 < T3. Most hu-
mans, given their knowledge of human behavior and
physical interactions would have little trouble con-
structing a causal graph that relates these three events.
They might construct the graph of Figure 1(a). They

Figure 1: (a) a simple causal explanation (b) a more
elaborate causal explanation

may also be able to expand on these observed events to
include hypothetical (unobserved) causes as well. For
example, they may infer that Bob was Angry prior
to T1 and that Tom was angry after T2, as shown in
Figure 1(b).

In order to model this very simple example using a
standard propositional causal model, it quickly gets
overwhelmingly complicated. One would first need to
have a model that included the variables shown in Fig-
ure 1. This would not be possible if Bob was a per-
son that up until now one had no knowledge of. In
addition, hypothetically it could have been Tom who
barged in on Bob, in which case we would need to
essentially mirror the structure of Figure 1 only with
Bob and Tom reversed. If we have tens or hundreds
of people in the office, this type of model will explode
combinatorially. The point is, to have a propositional
model pre-built is not a practical solution when the
events of interest are part of a dynamic environment
where “anything” could happen.

This type of reasoning–taking a general knowledge
base about the world, applying it to specific (tem-
poral) facts that have been observed, and reasoning
about causality between those facts–is useful, and we
would like to create algorithms that can automate it.
This particular case is an example of causal explana-
tion, and in Section 4 we formalize causal explanation
as well as other types of reasoning in the context of
our first-order representation. First we define Causal
Logic Models.



3 Representation

A Causal Logic Model (CLM) is defined by a set of
predicates and a set of formulas. A predicate is speci-
fied by a name and a set of argument types. A formula
is a causal statement that has a probability associ-
ated with it. In Section 3.1 we elaborate on the Office
Brawl example given previously, and in Section 3.2, we
present formal definitions.

3.1 The Office Brawl System

In Section 1 we presented a simple example of an office
brawl system to build intuition for the dynamic envi-
ronment we wish to handle. Here we provide more
details for this example system. The predicates for
this system might look like:

Angry(Person,Person,Time)

Punch(Person,Person,Time)

Fall(Person,Time).

Each predicate is indexed by a discrete time index.
The set of formulas could be chosen as

0.25 :Angry(P1,P2,T1) −→ Punch(P1,P1,T2) (1)

0.4 :Punch(P1,P2,T1) −→ Fall(P2,T2) (2)

0.9 :Punch(P1,P2,T2) −→ Angry(P2,P1,T2) (3)

0.9 :Punch(P1,P2,T2) −→ ¬Angry(P1,P2,T2) (4)

0.8 :Angry(P1,P2,T1) −→ Angry(P1,P2,T2) (5)

0.1 :Angry(P1,P2,T1) (6)

0.01 :Punch(P1,P2,T1) (7)

0.01 :Fall(P1,T1). (8)

Formula 1 indicates that if someone is angry then they
are more likely to punch. Formula 2 embodies the prin-
ciple that someone who gets punched may fall down.
Formula 3 and 4 expresses the idea that the person who
gets punched will get more angry, but the puncher will
get less angry. Formula 5 makes anger persistent over
time. Formula 6, 7, and 8 are simply prior probabili-
ties for each of the predicates.

We define two types of formulaes: causal formulae and
prior formulae. Causal formulae express a causal re-
lationship between a set of causes and an effect. All
predicates that match the set of causes in a formula
must have the same time index T1, and the predicate
matching the effect must have a time index T2 such
that T1 < T2. Causal formulae are drawn from the
subset of first-order logic that includes formulae con-
taining a conjunction of (possibly negated) causes re-
lating to a single (possibly negated) single effect. Prior
formulas are composed of a single predicate with no

causal claim, and are meant to express the prior prob-
ability of events occurring. Prior formulae are neces-
sary in CLMs to be able to model cases where causal
formulae are not present, and we demand that each
predicate contain a prior formulae.

Restricting the form of the formulas is common in
computational logic systems (e.g., Prolog makes the
even more restrictive assumption of only allowing Horn
clauses), and we do it here mainly for convenience. We
intend to relax these constraints on formulas in future
work.

The predicates and formulas given above define a
CLM. As we make observations about our system,
these formulae provide possible explanations that can
tie those observations together causally. The algo-
rithm that we present in Section 5 accomplishes this
by searching for the the structure with maximum like-
lihood given the evidence. In order to score the likeli-
hood of structures, we first need to convert the CLM
into a Bayesian network, and calculate the probability
of the evidence given the structure. Figure 1(b) gives
a possible explanation for the office brawl scenario.

Figure 1(b) shows the cause and effect relationships
between predicates but it does not specify how prob-
abilities for the given predicates could be calculated.
In order to construct a Bayesian network that can be
used to score a hypothesis, it is necessary to convert
the formulae from a CLM into conditional probability
tables. In other statistical relational methods, simi-
lar conversions are typically done using combination

rules, of which noisy-or is the most popular. We also
use noisy-or in the work presented here, but we feel
this combination rule is not fully adequate, and we
are actively looking for better ones.

As an example, the CPT for the root node
P (Angry(Bob,Tom,T0)) is given by the prior
probability of a person being angry (Formula 6).
The CPT for predicate Punch(Bob,Tom,T1)
is defined by combining Formula 1, that is,
P (Punch(Bob,Tom,T1)|Angry(Bob,Tom,T0)) = 0.7,
with the prior formula for Punch.

3.2 Formal Definitions

Here we make a first attempt at formally defining
CLMs.

The key constituent of CLMs are predicates and for-

mulas. Predicates in CLMs are n-ary and typed. We
define two types of formulae, causal formulae and prior

formulae.

Definition 1 (causal formula). A causal formula is a



formula of the form:

p : C1 ∧ C2 ∧ . . . , Cn −→ E,

where the Ci and E are (possible negated) predicates

and 0 ≤ p ≤ 1. The symbol −→ indicates that the Ci

variables cause E in the future. The time index T1 for

each cause must agree with the other causes, and the

time index T2 for E must obey T1 < T2.

Because −→ denotes causality and not merely logi-
cal implication, it is not possible in general to ap-
ply rules of logic to rewrite the form of this equation.
This restriction is similar to the restriction placed on
structural equation models where systems of struc-
tural equations cannot be algebraically manipulated
into equivalent systems without altering the struc-
ture, and it is this structural restriction that makes
CLMs unique compared to other probabilistic first-
order methods.

Definition 2 (prior formula). A prior formula is a

formula of the form:

p : X,

where X is a non-negated predicate and 0 ≤ p ≤ 1.

In the rest of this paper, we assume that p is defined
as P (E|C1, C2, . . . , Cn) for causal rules and as P (X)
for prior rules under the assumption that there are no
other causes. This assumption possibly impacts and
is impacted by the choice of combination rule, but for
noisy-or, we can ensure it to be the case.

Using these definitions, we can now define a CLM:

Definition 3 (Causal Logic Model). A Causal Logic

Model is a pair �P,F�, where P is a set of predicates,

F is a set of formulas over P.

An constant is a primitive symbol over which we wish
to reason. A ground predicate P̂ is a predicate with
all variables instantiated with constants. Similarly,
a ground formula F̂ is a formula with all predicates
grounded.

Definition 4 (Causal Logic Database). A causal logic

database is a pair �C, P̂� where C is a set of constant

and P̂ is a set of predicates grounded with constants

in C.

We call a set of grounded formulas a Causal Logic Hy-

pothesis or Hypothesis for short. Finally, a Hypothesis
defines a directed acyclic graph which we call a Causal

Logic Network as follows:

Definition 5 (Causal Logic Network (CLN)). Given

a Causal Logic Hypothesis F̂ a CLN GC = �N,E� is a
directed acyclic graph, where N is a set of nodes and

E is a set of directed edges, such that a node exists for

each ground predicate appearing in a formula F ∈ F̂P̂
and an edge E12 ≡ P1 → P2 ∈ E iff P1 is a cause of

P2 in a formula F ∈ F̂P̂.

4 Causal Reasoning with CLMs

In this section, we define the concept of causal rea-

soning. Often this concept is partitioned into different
sub-classes such as explanation, prediction and coun-

terfactual reasoning using operators such as observa-

tion and manipulation. Although these types of rea-
soning have been discussed at length elsewhere [c.f.
Pearl, 2000], here we relate these concepts to CLMs
and we raise several new issues that arise in this con-
text such as the commutability between observation
and manipulation.

In general, causal reasoning with CLMs is the act of
inferring a causal structure relating events in the past
or future. The events themselves can be observed, hy-
pothesized (i.e., latent) or manipulated. Given a CLM
C and a sequence of events E1,E2, . . . ,En, all causal
reasoning can be cast into the problem of finding a
most-likely structure Ŝ given a set of information:

Ŝ = argmax
S

P (S|C,E1,E2, . . .En)

We consider sequences of events rather than one big
set of events E = ∪iEi because when we consider ma-
nipulation of the system, then it will sometimes be the
case that manipulation does not commute with obser-
vation. So we need to preserve the sequence in which
events are observed and manipulated. We discuss this
issue more in Section 4.3 below, but first we show how
our definition of causal reasoning performs explana-
tion, prediction and counterfactual reasoning.

4.1 Causal Explanation

We have already shown an example of causal explana-
tion in Figure 1. Roughly speaking, causal explanation
seeks to explain a set of observed events in terms of the
hypothesized latent events that caused those observa-
tions. If we have multiple observed events spaced out
in time, causal explanation may produce hypotheses
about how those events are related causally. Figure
2(a) shows a schematic example of causal explanation.

Formally, we define causal explanation as the most
likely causal graph given a CLM and a set of evidence:

Definition 6 (causal explanation). Given

a CLM C and a set of observed events

E = {[E1, T1], [E2, T2], . . . , [En, Tn]}, a causal ex-

planation is a directed acyclic graph Ŝ such that

Ŝ = argmaxs P (S = s|C,E).



Figure 2: Different types of causal reasoning generated
by combining explanation, prediction, observation and
manipulation.

Compare this definition to that used in standard causal
modeling where an explanation is a joint state of the
variables represented by a fixed causal graph. Thus
in standard causal modeling, no matter what was ob-
served, the causal structure does not change, only
likely states of variables change. In CLMs a causal
explanation is the graph itself. Not only does this
feature allow us to reason about previously unknown
constants, but it produces explanations that are more
like the types of explanations humans would give, i.e.,
a causal graph that changes depending on the obser-
vations.

4.2 Causal Prediction

Causal Prediction is the act of predicting what se-
quences of cause and effect will occur in the future
given evidence observed in the past. For example, we
may predict, given that Bob punches Tom at time 2
that at time 3 Tom will be angry with Bob and at time
4 Tom will punch Bob. This may in turn cause Bob
to get Angry at Tom, thus repeating the cycle indef-
initely. This graph is shown in Figure 3. Formally,
we define causal prediction in a way similar to causal
explanation as the most likely graph extending into
the future given a CLM and a set of evidence in the
present or past. Prediction is not restricted to only
inferring events in the future. In practice, the events
in the past that led to the observations in the present
may be relevant for predicting future variables as well,
so we must perform inference on past events in order
to better predict the future. In general, the distinc-

Figure 3: Causal prediction produces the most likely
graph relating known events in the present or past to
unknown (hypothesized) events in the future.

tion between explanations, predictions, and counter-
factuals is somewhat arbitrary and can be combined
in various ways as seen in Figure 2.

4.3 Counterfactuals and Manipulation in

CLMs

One key concept in causal reasoning is understand-
ing the effects of manipulating variables in the model.
In the propositional directed graph representations of
causality, this is accomplished, for example, by the
Do operator of Pearl, which modifies the fixed causal
structure by cutting all arcs coming into a node that
is being manipulated to a value. Inference results can
change depending on whether the state of some evi-
dence is determined by mere observation or by active
manipulation.

Manipulation in CLMs is quite different in terms of its
effect on the causal structure. Rather than operating
on graphs, manipulation in CLMs operates on formu-
lae: if a variable X is manipulated to some value, then
all formula that normally would cause X to achieve
that value get struck from the model. This can have
very non-local effects on the most likely structure Ŝ
that results.

To see the non-local effects of manipulation in CLMs,
consider the example in Figure 4. Figure 4(a) shows a
typical causal explanation when Punch(B, T, 2) and
Punch(T,B, 5) (circular gray nodes) are observed
given the Office Brawl system presented in Section 3.
The circular clear nodes are hypothesized states that
connect the observed states and thus increase the prob-
ability of the evidence. In Figure 4(b), we manipulate
the system by setting Punch(B, T, 2) = False. In
this example, since Bob does not punch Tom, then
his anger persists based on the “persistence” formula
given in Equation 5. Furthermore, all the formulae
that were fulfilled by Punch(B, T, 2) = True are now
no longer valid, so all the children of Punch(B, T, 2)
are altered in addition to its parents. What is left is a
causal structure that looks little like the original one
prior to manipulation.

Another important observation comes out of this ex-



Figure 4: An example of counterfactual reasoning with
CLMs using the Office Brawl model. A ≡ Angry,
P ≡ Punch, B = Bob and T = Tom. (a) The
causal explanation when Bob punches Tom at time
2 and Tom punches Bob at time 5. (b) Unlike with
fixed causal graphs, manipulation of variables can
cause sweeping global changes to the structure. (c)
Manipulation and observation do not commute: Ma-
nipulation followed by observing Punch(Tom,Bob, 5)
produces a much different graph than observing
{Punch(Bob, Tom, 2), Punch(Tom,Bob, 5)} and then
manipulating Punch(Bob, Tom, 2) = False.

ample: unlike for fixed-structure causal models, ma-
nipulation and observation in CLMs do not com-
mute. To see this, imagine that after manipulating
Punch(Bob, Tom, 2) = False we then still proceeded
to observe Punch(Tom,Bob, 5). In this case, given
Bob’s persistent state of anger, a likely explanation
may very well be that Bob punched Tom in a later time
causing Tom to get angry and punch back. This fea-
ture of very different causal structures resulting based
on different combinations of observation and manipu-
lation seem to square much better with human causal
reasoning than the method of fixed graphs.

To our knowledge, the issues of the lack of commutabil-
ity between observation and manipulation has not
been addressed elsewhere. This result is similar to the
violation of Equilibration-Manipulation Commutability

presented in Dash [2005]; however in our case no equi-
libration is required for violation of commutability.

5 Algorithm and Preliminary Results

In this section we describe an algorithm that finds an
explanation given an evidence set, and we then apply
this algorithm to the office example. The algorithm is
a greedy search algorithm that first thickens the graph
and then thins it based on a score function that is
defined below. The basic steps are the following:

1. Start with an empty graph.

2. Iteratively add the predicate that increases the
score most and continue until adding a predicate
decreases the score.

3. Iteratively remove the predicate that increases the
score most and continue until removing a predi-
cate decreases the score.

4. Find the states that constitute the most likely ex-
planation and find all grounded formulae F̂ con-
sistent with those states.

5. Prune from the graph all variables that are not
part of some F ∈ F̂.

Our goal is to find the structure with the highest pos-
terior probability P (G|e) given the evidence e. We
approximated this quantity by the likelihood P (e|G),
which amounts to assuming flat priors on graph struc-
ture. This quantity can be calculated with standard
Bayesian network inference algorithms. The underly-
ing idea of this score function is that variables should
only be included in the graph if they somehow affect
the evidence, which is what we are trying to explain,
or otherwise they should be left out.

Steps 4 and 5 of our algorithm apply a post-pruning
step to the graph by finding the most likely configu-
ration of all the variables in the network, keeping the
evidence variables fixed. This configuration already
constitutes an explanation but it can easily be simpli-
fied. Instead of looking at the states of the variables
individually we can look at formulas that are instanti-
ated in the graph, and we remove all the variables that
are not part of such an instantiated formula. The re-
maining graph is the final explanation. Note that the
graphical form of this explanation can be easily trans-
lated back into formulas, making it also relatively easy
to generate a textual explanation.

As a preliminary test of this algorithm, we ap-
plied it to the office scenario introduced in an ear-
lier section. We used Punch(Bob,Tom,T1) = True,
Fall(Tom,T2) = True, and Punch(Tom,Bob,T3) =
True as evidence. The explanation returned by the
algorithm corresponds exactly to the network in Fig-
ure 1(b), with all states being true. It is now



also possible to determine the posterior probabilities
of the hidden variables (we clear their map states
first), which are Angry(Bob,Tom,T1) = 0.741 and
Angry(Tom,Bob,T3) = 0.996. The second probabil-
ity is much higher, because both the preceding and
following punch increase the likelihood of being angry.

Without the search and pruning of variables the out-
put would be much more verbose. One would have to
create a complete network of all predicates and then
calculate the most likely explanation. But this would
contain a lot of information that is not relevant in the
explanation. In addition, when our set of constants
grows very large, instantiating an entire network over
them may be prohibitively memory intensive. Thus,
our algorithm finds a succinct yet complete explana-
tion of a given scenario with reasonable memory con-
straints.

6 Summary and Future Work

In this paper we introduced CLMs which are a novel
representation for causal reasoning. To our knowl-
edge, CLMs are the first probabilistic first-order sys-
tem to model causality as the basic primitive rather
than logic or probability. This approach is analagous
to that of structural equation models which encode
causality in the form of equations and cannot be alge-
braically manipulated without changing the semantics
of the model. In the same way, our formualae cannot
be undergo arbitrary logical transformations without
a similiar violation of semantics.

We discussed several types of causal reasoning with
CLMs such as explanation, prediction and counterfac-
tuals, and defined a general version of causal reasoning
that subsumes all of these. We showed that manipu-
lation in CLMs is qualitatively different from the Do
operator applied to fixed propositional causal models;
in particular, manipulations can cause sweeping global
changes to the causal graph, and manipluation may
not commute with observations. We also presented an
algorithm that can generate causal explanations from
a given evidence set, and verified on a simple test case
that it produces expected results.

Future work includes expanding our explanation al-
gorithm to general causal reasoning, developing more
intuitive combination rules when transforming CLMs
to Bayesian networks for scoring, and learning CLM
formulae from data.
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