
Combining Stage Algorithm for Discovering Causal Models

Takashi Isozaki
Sony Computer Science Laboratories, Inc.

Tokyo, Japan
isozaki@csl.sony.co.jp

Abstract

Many constraint-based algorithms for causal
discovery have suffered from statistical er-
rors in conditional independence (CI) tests.
Those errors are often inevitable in real data
because of the limitation of statistical power
due to finiteness of data or violations of an as-
sumption called faithfulness or stability con-
dition. We propose a constraint-based al-
gorithm that can reduce avoidable CI tests
with combining an adjacency identification
stage with an orientation stage and then pro-
vide accurate and fast inference without loss
of theoretical correctness, which we call the
Combining Stage (CS) algorithm. We also, in
the algorithm, introduce unreliable direction,
which can reduce orientation errors due to lo-
cality of CI tests. Simulations are provided
to demonstrate the prominent performance
of the algorithm by comparison to often re-
ferred algorithms: PC, Three Phase Depen-
dency Analysis, Sparse Candidate, and Max-
Min Hill-Climbing algorithms.

1 INTRODUCTION

Discovering causal models from observational data has
been an important issue in many domains of sci-
ence and engineering including AI, social sciences,
medicine, and bioinformatics besides statistics. We
usually rely on statistical methods for this purpose be-
cause we cannot generally, in many variables, know de-
terministic cause-effect relationships. Directed acyclic
graphs (DAGs) are suitable for representing statistical
causal relationships between variables of interest.

Many algorithms for causal discovery have been pro-
posed, which are generally categorized to the following
three approaches. Those are constraint-based (Pearl,
2000; Spirtes et al., 2000), score-and-search (Cooper

and Herskovits, 1992; Heckerman et al., 1999), and
their hybrid (Tsamardinos et al., 2006). The
constraint-based (CB) approach is a promising one be-
cause the CB methods are easily applicable to both
discrete and continuous variable systems, relatively
fast, and can find latent causes (Spirtes et al., 2000).
In addition, we consider that identifying v-structures,
which is a characteristic of the CB methods, associates
some independence relationships with causality (e.g.,
discussed by Reichenbach (1956)). We address the CB
approach for causal discovery from these points of view
in this paper.

In the CB methods, causal structures are inferred
from constraints derived by statistical tests of inde-
pendence between variables combined with causal in-
ference rules (Pearl, 2000; Spirtes et al., 2000). The
algorithms based on the approach construct a (partial)
DAG in two consecutive stages. First is identifying an
undirected graph in which the edges represent asso-
ciations between variables. Perfectly performing this
task requires exponentially growing numbers of con-
ditional independence (CI) tests with increasing num-
bers of variables, so it is then practically intractable.
The PC algorithm (Spirtes et al., 2000) reduces the
number of tests by employing ascending order in the
number of conditioning sets while maintaining correct-
ness if no statistical errors occur. The second stage in
the approach is directing edges by finding v-structures
and inductions rules (Pearl, 2000; Spirtes et al., 2000).
However, the CB methods are generally unstable be-
cause even a small number of statistical errors causes
other errors in both stages and finally yields large er-
rors. This problem is partially attributed to poor es-
timation because of data-size-shortage in large condi-
tioning variable sets. The Recursive Autonomy Iden-
tification (RAI) algorithm reduces CI tests with such
large conditioning sets by decomposing a graph to sub-
structures (Yehezkel and Lerner, 2009).

However, there remains another issue of statistical
errors in this approach. That is what we call the



statistical unfaithfulness. The CB approach is based
on the assumptions of the causal faithfulness condi-
tion (CFC) in addition to the causal Markov condi-
tion (Spirtes et al., 2000), which relate DAG represen-
tations to conditional independencies. For relaxing the
CFC assumption, Ramsey et al. (2006) decomposed
the faithfulness condition into adjacency-faithfulness
and orientation-faithfulness, and assumed that only
the former was valid and then improved the PC algo-
rithm. However, both assumptions, unfortunately, of-
ten seem to be violated statistically given finite data,
even though the hidden true distributions are prob-
abilistically faithful, which is almost generally valid
shown by Spirtes et al. (2000) and Meek (1995b). This
is because small dependencies may not be recognized
by statistical tests due to finiteness of sample size. As
a result, too many edges are likely to be removed be-
cause, in the usual manner, edges remain only when
CI hypotheses are rejected.

Therefore, developments of algorithms that reduce un-
necessary CI tests are still needed for performing accu-
rate causal discovery. For this purpose, we propose a
CB algorithm reducing avoidable CI tests without loss
of correctness. The algorithm uses edge-direction in-
formation in the adjacency-identification stage, which
few algorithms have effectively used in the way we
mean as far as we know. Furthermore, we introduce a
concept of unreliable direction of edges for reducing the
successive errors in the inductive orientation stage by
the orientation rules given by Verma and Pearl (1992)
and Meek (1995a). The procedure and concept would
also be expected to be used or embedded in other CB
algorithms developed in the future.

This paper is organized as follows: the next section
provides some preliminaries for probabilistic graphical
models for causal structures and causal discovery al-
gorithms. A new algorithm is described in detail in
Section 3. Its practical demonstrations are provided
in Section 4, where some comparisons with prototypi-
cal algorithms are performed. We discuss related work
in Section 5 and summarize our work in Section 6.

2 PRELIMINARIES

Let V be some set of random variables and E be a set
of edges each of which connects a pair of distinct ele-
ments of V. Each edge can be either directed or undi-
rected. Each variable of V in a graph is also called
a node. Two nodes X and Y are adjacent if an edge
exists between the two. Let P be a strictly positive
joint probability distribution of random variables in
V and G = (V,E) be a directed acyclic graph (DAG)
that has no directed cycles. We denote the conditional
independence of variables X and Y given sets Z for a

distribution P with Ind (X;Y |Z) or X ⊥⊥ Y |Z. In
the case that Z = ∅ for the conditional independence,
we call that a (marginal) independence and often de-
note it concisely as Ind (X;Y ) or X ⊥⊥ Y .

A path in a graph is a sequences of edges. If a di-
rected edge starting from Y enters X, Y is called a
parent of X and X is called a child of Y . X is called
a descendant of Y and Y is called an ancestor of X if
there is a directed path from Y to X and X is called
a non-descendant of Y if X is not a descendant of Y .

Causal Markov condition is defined as follows. In a
DAG G, where directed edges represent direct effect
from the node to its children, every variable is inde-
pendent of its non-descendants in G conditional on its
parents in G. Such DAGs are also called causal DAGs.
Many causal discovery algorithms assume the converse
principle called the causal faithfulness condition
or stability condition (hereinafter called faithfulness):
a causal DAG satisfies the causal Markov condition
and all conditional independencies are entailed by the
DAG. We assume in this work DAGs have no latent
common causes and selection biases, that is, we assume
causal sufficiency systems (Spirtes et al., 2000).

A term collider is defined as a node Z into which two
edges enter, such as X → Z ← Y . Otherwise Z is
called a non-collider. If X and Y are not adjacent
in the structure X → Z ← Y , it is also called a v-
structure and Z in it is called unshielded collider, oth-
erwise, Z is called shielded collider. Conditional inde-
pendence relations connected by the Markov condition
are represented in a DAG by the following criterion
called d-separation (Pearl, 2000).

Definition 1 (d-separation). In a DAG, a path u
between nodes X and Y is blocked by a set of nodes
Z (X,Y /∈ Z) if (i) u contains a non-collider v such
that v is in Z, or (ii) u contains a collider v such that
v is not in Z and such that no descendant of v is in
Z. A set Z is said to d-separate X from Y if and
only if Z blocks every path from a node in X to a node
in Y , which is denoted as Dsep(X;Y |Z).

For a set (G, P ), called a Bayesian network (BN),
Dsep(X;Y |Z) ⇒ Ind (X;Y |Z), and in a faithful BN,
Dsep(X;Y |Z) ⇔ Ind (X;Y |Z) (Pearl, 1988). We call
the set Z that satisfies Ind (X;Y |Z) separator set un-
der the faithfulness condition.

A triplet 〈X,Z, Y 〉 in a DAG is called an unshielded
triple if both X and Y are adjacent to Z but not each
other. The following facts are used in adjacency-stage
and orientation-stage of many CB algorithms includ-
ing ours:1

1see e.g. Neapolitan (2004), pp.89 for proofs



Proposition 1 In a DAG, two nodes are adjacent if
and only if they are not d-separated by any subset of
other nodes in the DAG.

Proposition 2 For any unshielded triple 〈X,Z, Y 〉 in
a DAG, the following are equivalent:

• The triple 〈X,Z, Y 〉 has a collider Z.

• There exists a set not containing Z that d-separate
X and Y .

• No sets containing Z d-separate X and Y .

The following are often the basic procedures of the CB
algorithms: (i) Form the complete undirected graph;
(ii) for each pair of variables X and Y that are adja-
cent in the current graph, find a separator set S sat-
isfying Ind (X;Y |S). Once this is done, remove the
undirected edge between X and Y , and record S as
Sepset(X,Y ); (iii) for each unshielded triple 〈X,Z, Y 〉
in the resultant graph, orient the edges asX → Z ← Y
iff Z is not in Sepset(X,Y ); and (iv) execute the orien-
tation rules (Verma and Pearl, 1992; Meek, 1995a) as
follows until no more directions increase: (1) if X and
Z are not adjacent and X → Y −Z, then X → Y → Z
because no more v-structures are allowed; (2) if X and
Y are adjacent and there is another directed path from
X to Y , then X → Y because of prohibiting any di-
rected cycles; and (3) ifX → Z ← Y,X−W−Y, Z−W ,
and X and Y are not adjacent, then W → Z because
both new v-structures and directed cycles are not al-
lowed. We call step (ii) adjacency-stage and steps (iii)
and (iv) orientation-stage. However, the size of the
potential separator sets in search space increases ex-
ponentially as the number of variables increases for the
full search.

The PC algorithm (Spirtes and Glymour, 1991)
searches with two tricks for recovering causal struc-
tures tractability: (1) it searches the separator sets in
ascending order of the size (|S|) starting from 0 (i.e.,
S = ∅); and (2) it reduces the search space for the sep-
arator sets with the potential parents of the interested
two variables: the currently adjacent nodes of the two.
For larger conditioning sets for finding separator sets,
the higher order statistics are needed, but then the
error-probability increases for such sets. Therefore,
the former trick (1) is very effective for the CB ap-
proach, and will also be critical in our algorithm. The
latter (2), however, has still some problems: unnec-
essary CI tests are often executed, where statistical
errors can occur. In practical use, these kinds of er-
rors, in the CB algorithms such as the PC, are often
observed. However, recognizing and avoiding unneces-
sary CI tests is a hard task because we cannot know
the true causal structures in the search process.

3 COMBINING STAGE
ALGORITHM

3.1 COMBINING STAGES

We consider the kinds of errors discussed in the previ-
ous section are related to the current structural identi-
fication manner in the CB approach: the CI hypothe-
ses can be rejected but not verified by the tests, and
edges remain only when the hypothesis is rejected, oth-
erwise they are removed. This procedure can then
tend to remove more edges than those in true DAGs
because small dependencies may not be recognized by
statistical tests due to finiteness of sample size even
if the true probability distributions are faithful. We
call such phenomena of statistically difficult-to-avoid
errors statistical unfaithfulness. The errors are obvi-
ously related to both the adjacency and orientation
identification, following on from Propositions 1 and 2.
Thereby reducing avoidable unnecessary CI tests still
remains one of the most critical issues in the CB causal
discovery algorithms. We thus propose an algorithm
for this purpose that combines adjacency and orienta-
tion stages. We call the algorithm Combining Stage
(CS).

We first present some definitions and describe a con-
dition with them for avoiding as many CI tests as pos-
sible.

Definition 2 In a DAG, a blocker is defined as a
node or the empty set that blocks a path between nodes
X and Y . A minimal blocker is the node or the
empty set that can block the path and has the minimal
size of blockers of the path.

Example 1 In a DAG, for a path such that X →
Z ← S ← Y , ∅ and S are blockers and ∅ is the minimal
blocker of the path.

We notice the following fact about blockers that in
a DAG, any blocker of a path between X and Y is
not a collider on the path. This fact is immediately
proved by Definition 1 and Definition 2. In addition,
we can say more for minimal blockers as the following
property:

Property 1 In a DAG, no minimal blocker is a node
on a path between X and Y that includes colliders.

Proof. Suppose Z is the minimal blocker node on a
path between X and Y . First, Z itself is not a collider
on the path because of Definition 1 and 2. Second, if Z
is on the path that includes colliders, Z is not minimal
because a minimal blocker is the empty set according
to the definition of blockers. This is inconsistent with
the assumption of the minimality. !



The CS algorithm assumes the faithfulness and follows
the procedure of searching separator sets in ascending
order of their size the same as the PC. The CS can
thereby find the minimal blockers in CI tests process-
ing. The following Theorem that assures correctness
of the CS algorithm can thus be stated:

Theorem 1 Assume that an algorithm for construct-
ing a Bayesian network starts from a complete undi-
rected graph. In searching separator sets S for a
pair 〈X,Y 〉, to remove the edge between them if
Ind (X;Y |S) is satisfied, with ascending order of |S|
from |S| = 0, if all nodes in a candidate of separator
sets, denoted as S, are only on currently existing paths
including colliders between X and Y , S can be removed
from the candidates under the faithfulness condition.

Proof. In the searching process for separator sets, if
all of the currently existing paths between X and Y
include colliders, and exist even in the true DAG, the
empty set is the common minimal blocker because of
the Property 1. The empty set should be found in the
former CI tests in the ascending order search process.
Therefore, the candidate set S such that |S| > 0 in that
case can be ignored as a separator set for 〈X,Y 〉. If all
such paths, which include a node Z of the candidate
set S, do not exist in the true DAG, Z can also be
ignored as a node for the candidate of separator sets
because each node of separator sets must be in the path
between X and Y , and then the set that has Z cannot
be a separator set for 〈X,Y 〉. !

We call this condition for blockers described in The-
orem 1 the Minimal Blocker Condition. That is,
a candidate of a separator set can be ignored as the
separator set if any of its nodes is not satisfied with
the Minimal Blocker Condition. However, those found
separator sets are not necessarily a union of minimal
blockers: e.g., if there are paths between X and Y
such as X → S ← Z → Y and X → S → Y , minimal
blockers of each path are ∅ and S but the separator
set is {Z, S}. We use the Minimal Blocker Condition
(MBC) in the new algorithm.

Whether a CI test of X and Y has to be done de-
pends on whether all the paths between X and Y are
satisfied with the MBC, in the adjacency identification
stage with ascending order of candidate separator sets.
We then construct the CS algorithm as it works as fol-
lows. The algorithm first finds sets of Ind (X;Y |∅)
and constructs v-structures and adds them to a set
Vstr. In incremented size of candidates for separator
sets, whether the CI tests are performed is decided
using currently known v-structures and MBC. Then,
only unavoidable CI tests are performed and new v-
structures are constructed and added to Vstr. Those
procedures continue until no more separator sets exist

or stopping rules are satisfied. If any edge of the triple
〈X,Z, Y 〉 in Vstr is removed in CI tests, the triple will
also be removed from Vstr. We can expect to increase
accuracy of causal discovery because of the reason dis-
cussed in the beginning of this section. Additionally,
the CS algorithm also has the aspect of an efficient
algorithm from a theoretical point of view because
the performance efficiency of CB methods, generally
speaking, mainly depends on the performed number
of CI tests.

3.2 K-MINIMAL BLOCKER CONDITION

MBC can possess a parameter and MBC with the
determined parameter is called k-Minimal Blocker
Condition (k-MBC). The algorithm, in k-th order
statistics for CI tests, uses v-structures recognized by
up to (k-1)-th order CI tests. In practical use of the
algorithm, the v-structures recognized by higher or-
der statistics are less reliable and MBCs with such
v-structures are also less reliable. We can then de-
termine, in advance, a maximal order k of v-structures
used in MBCs. If we set such a value k, we put off con-
structing new v-structures recognized by higher order
CI tests than k until the end of the adjacency identifi-
cation stage. This parameter is expected to make the
CS more robust for practical use. Ramsey et al. (2006)
and Zhang and Spirtes (2008) decomposed faithfulness
condition into adjacency-faithfulness and orientation-
faithfulness. It can be said that the k-MBC assumes
lower order orientation-faithfulness and may render
the CS robust to some extent for weak violations of
higher order adjacency-faithfulness.

3.3 DEPENDENCY MEASURES AND
BI-DIRECTION RESOLUTIONS

The following two subsections describe procedures to
make the algorithm more robust for statistical viola-
tions of faithfulness, which we consider as necessary in
almost all CB approaches. A p-value can be obtained
from the CI tests performed on the CS algorithm, and
the null hypothesis is rejected if the p-value is less than
a significant level. We regard the variable sets in the
CI tests as conditional independent if they cannot be
rejected, the same way previous researchers did. The
p-value is used in the CS algorithm as a metric of the
degree of dependency between nodes as follows. The
smaller the p-value, the higher the (conditional) depen-
dency between the related nodes. This use of p-values
resolves this problem as follows.

There often emerge, in the CB approach, inconsistent
structures due to locality of CI tests and statistical
errors, we hence take a measure for it. For example,
if X ⊥⊥ Y |S1, X +⊥⊥ Z and Y +⊥⊥ Z given any sets,



and Z /∈ S1 are obtained, the relationships generate
X → Z ← Y , and if Z ⊥⊥ W |S2, X +⊥⊥ Z and X +⊥⊥ W
given any sets, and X /∈ S2 are obtained, they gen-
erate Z → X ← W . That means X ↔ Z, that is, it
is bi-directionally inconsistent. We resolve the incon-
sistency in the CS algorithm using p-values: among
the inconsistency sets of v-structures, we select the set
with the highest p-values, remove the others from v-
structure sets, and disorient edges in the loser groups.
This procedure is described in Algorithm 1, where we
denote Vstr as the v-structure sets.

Algorithm 1 Resolve Inconsistency
1: Input Vstr
2: Pick up inconsistency v-structure sets in Vstr
3: Calculate p-values on independency of all the sets
4: Select the highest p-values set
5: Remove the other sets from Vstr and disorient their

edges
6: return Vstr

3.4 UNRELIABLE DIRECTION

The CB approach, in addition, has another weak point,
which is due to the locality of CI tests and statistical
errors, the same as the case in the previous subsection.
That is, this approach may have another contradictory
CI test result. This may lead to other wrong orienta-
tions caused by the orientation rules, so the induced
errors should be avoided. We define, for discussing
this, unreliable direction as follows. In a DAG G, if
two v-structures (X → Z ← W and Y → Z ← W )
are obtained and a v-structure (X → Z ← Y ) cannot
be allowed, both statistically from CI tests, the two
directions (X → Z and Y → Z) are called unreliable
directions. An example of them is depicted in Fig-
ure 1. In (a), X ⊥⊥ W with 0.30 of p-value, W ⊥⊥ Y
with 0.40 of p-value but X +⊥⊥ Y with 10−5 of p-value.
This contradictory result can happen due to locality
of CI tests and is different from the issue related to
the orientation-unfaithfulness tackled by the CPC al-
gorithm.

The CS algorithm disorient those unreliable edges if
found, as depicted in Figure 1 (b), for avoiding induced
errors of direction in the successive full orientation-
stage.

Pseudocode for the whole general version of the CS al-
gorithm is listed in Algorithm 2, where ADJX denotes
the set of adjacent nodes of a node X. In practical
use, we can use k-MBCs to reduce additive errors due
to statistical power shortage.

Algorithm 2 Combining Stage Algorithm
1: Form a complete undirected graph G
2: Set n = 0
3: repeat
4: for each X ∈ V do
5: for each Y ∈ ADJX do
6: Prepare subsets S ⊆ ADJX\Y that have n

variables
7: for each subset S do
8: Set m = 0
9: for each Z ∈ S do

10: if a path between X and Y containing Z
does not contain a v-structure then

11: Set m = 1
12: break
13: end if
14: end for
15: if m = 0 then
16: continue
17: else if a subset S is found conditional on

which X and Y are independent then
18: Remove the edge X − Y from G
19: Add S to Sepset(X,Y )
20: end if
21: end for
22: end for
23: end for
24: for each unshielded triple 〈X,Z, Y 〉 in G do
25: Orient it as X → Z ← Y iff Z is not in

Sepset(X,Y )
26: Add them to Vstr(X,Z, Y )
27: end for
28: Set n = n+ 1
29: until |ADJX | ≤ n for all X ∈ V
30: Resolve Inconsistency(Vstr)
31: Find all unreliable directions and disorient those edges
32: Orient edges using the orientation rules
33: return a partially DAG G

Z

X W Y

Z

X W Y

(a) (b)

Figure 1: An example of unreliable directions: if CI
tests derive X ⊥⊥ W , Y ⊥⊥ W , X +⊥⊥ Y in addition X,
Y , and W are adjacent to Z in (a), the CS algorithm
disorient as X − Z and Y − Z depicted in (b).

4 EXPERIMENTS

We provide numerical simulations to evaluate the per-
formance of the CS algorithm, which was implemented
in C++ language. We also compare the CS algorithm
with other often referred algorithms in terms of cor-
rectness of DAG structure recovery on discrete random
variable systems, using known DAGs that are usually
used in recent previous research.



4.1 EXPERIMENTAL SETUP AND
RESULTS

There are three main approaches for DAG structure
inference: the CB, score-and-search (SS), and their
hybrid. We used the following algorithms, which
are publicly available and were often used on re-
cent researches for each approach (CB/SS/hybrid):
PC (Spirtes et al., 2000), Three Phase Dependency
Analysis (TPDA) (Cheng et al., 2002) (CB), Sparse
Candidate (SC) (Friedman et al., 1999) (SS), and
Max-Min Hll-Climbing (MMHC) (Tsamardinos et al.,
2006) (hybrid). The SC and MMHC recently showed
particularly high performances for the structure re-
covery tasks over a broad range of training sample
sizes (Tsamardinos et al., 2006; Xie and Geng, 2008).
We were aided by the Causal Explorer algorithm li-
brary (Aliferis et al., 2003) working on MatLab 7.8
platform for performing all algorithms other than the
CS. The significant level of CI tests using the G2 like-
lihood in PC and MMHC was 0.05. The threshold
of CI tests using mutual information used in TPDA
was 0.01. The score metric used in SC and MMHC
was the BDeu (Heckerman et al., 1995) and its equiv-
alent sample size was 10. For the SC algorithm, the
maximum size of candidates was set to 10. All these
settings of the metric and parameters were suggested
by the authors.

We also used the G2 tests on the CS to identify
Ind (X,Y |Z) with the significant level 0.01, which was
decided by preliminary trials. The statistic is proven
to be approximated asymptotically to a χ2 distribu-
tion with some degrees of freedom (Kullback, 1968).
Results of its approximation accuracy are wholly fixed
on accuracy of the causal discovery in the CS. We
used the CS with 0-MBCs, namely, with MBCs us-
ing v-structures derived from only marginal indepen-
dence relationships (i.e., Ind (X;Y |∅)), due to the rea-
son mentioned in the previous section. Additionally,
the CS algorithm selected nodes in ascending order of
numbers of currently adjacent nodes in line 4 of Al-
gorithm 2 and used heuristic 3 of the PC described
in Spirtes et al. (2000, p.90) for speeding up.

We use the following five Bayesian networks (BNs),
which have neither very many variables nor very many
parameters because we want to evaluate algorithms
excluding influences caused by the difference in used
statistics as far as possible: Alarm with 37 nodes,
46 edges, 509 number of parameters (nps, for short),
Carpo with 60 nodes, 74 edges, 342 nps, Hailfinder
with 56 nodes, 66 edges, 2656 nps, Insurance with
27 nodes, 52 edges, 1008 nps, and Water with 32
nodes, 66 edges, 10083 nps. Extra information can be

obtained through the Bayesian Network Repository2,
where structures and probability distributions of these
networks are also available.

We sampled training cases from the distributions of
the known networks. From each BN, 10 datasets were
randomly sampled in each size of 1000, 2000, 5000,
and 10000 because, in too short data, results may re-
flect the difference in statistics rather than goodness
of algorithms, which we consider unfair and should
be avoided as much as possible. Statistical quanti-
ties used here are the average over the 10 runs of an
algorithm on each sample size from the identical dis-
tribution of the DAG.

The PC, TPDA, and CS algorithms generate a
partially DAG (PDAG) as a Markov equivalence
class (Verma and Pearl, 1990) (which is also called
completed PDAG (Chickering, 1995)) of the recovered
DAG, while the SC and MMHC algorithms provide a
DAG. Then we transform a DAG that provided by the
SC and MMHC to a completed PDAG using Chick-
ering’s algorithm (Chickering, 1995), as Tsamardinos
et al. (2006) and Yehezkel and Lerner (2009) did.
Tsamardinos et al. (2006) suggested evaluating the
quality of recovered PDAGs using the structural Ham-
ming distance (SHD) metric, while they pointed out
that the KL divergence and the BDeu score were not
always suitable for the purpose. Following Spirtes
et al. (2000), Tsamardinos et al. (2006), and Yehezkel
and Lerner (2009), we use five types of inference er-
rors to evaluate recovered networks: extra edges (EE),
missing edges (ME), extra direction (ED), missing di-
rection (MD) and reversed direction (RD) errors. EE
(ME) error represents extra (missing) edges that ap-
pear in the recovered (true) graph but not in the true
(recovered) graph. ED (MD) error is due to edge di-
rections that appear in the recovered (true) graph but
not in the true (recovered) graph. We also use the
total directional errors (DE), DE = ED +MD + RD.
The SHD sums all five structural errors.

The simulation results are shown in Table 1. The nu-
merical values are 10 run-averaged relative ones to that
of the MMHC following the way of Tsamardinos et al.
(2006) and Yehezkel and Lerner (2009), and the bold
numbers denote the best scores in each network and
sample size as the results of two-sided t-tests with the
significant level 0.05. As found by recent researches,
the hybrid (MMHC) method performed better than
the PC and TPDA algorithms that are based on the
CB method. The CS algorithm, which is also a CB
approach, obviously shows superiority to the SC, PC,
and TPDA for all networks and all sample sizes. In ad-
dition, the experiments show that for almost all sample

2http://www.cs.huji.ac.il/site/labs/compbio/Repository/



sizes of all networks, the CS algorithm is not outdone
by the MMHC and is often superior to the MMHC. As
far as we know, few constraint-based algorithms show
such effectiveness comparable to the MMHC by using
averaged SHD for broad range of sample sizes (see also
Section 5).

In the results of the PC algorithm, SHDs are relatively
worse than the CS, even for large sample sizes such as
5000 and 10000. It shows that our strategy of reducing
CI tests via Minimal Blocker Condition and relaxing
the locality-issues are effective for the structure iden-
tification.

Table 2 reports the number of CI tests performed by
the CS and MMHC algorithms for a sample size of
10000 because the numbers were monotonically in-
creasing for both algorithms and all networks. The
CS performed relatively fewer CI tests on average and
showed more stable numbers. Table 3 shows the nor-
malized averages of running time on the both algo-
rithms for the same sample size, where averaged times
were normalized by smallest times in each algorithm
in order to absorb the difference of programming lan-
guages in the algorithms. These timing results also
show the CS ran stably. For the purpose of refer-
ence, the raw data of running time in seconds, with-
out data input time, in the CS were also shown in the
table. The data were obtained with the following run-
ning condition: 64 bit Windows 7 (OS), Intel Core i7
870, 2.93GHz (CPU), and 12.0GB (RAM). The results
showed the CS to run sufficiently fast.

4.2 DISCUSSION

The following observations are worth noting. From Ta-
ble 1, the relative SHD score of SC algorithm is often
likely to become worse relative to the CS and MMHC
as sample size increases. This tendency is more clearly
seen in Figure 2 plotted for raw data of the SHD in
Carpo and Insurance networks as examples for the SC,
CS, and MMHC, where the CS and MMHC, in con-
trast, show decreasing numbers of errors denoted as
SHD, as sample size increases relative to the SC: The
decreasing number of SHD, from sample sizes of 1000
to 10000, were, in both CS and MMHC, about 25 for
Carpo and about 13 for Insurance, while in SC being
-11 for Carpo and 4.6 for Insurance. These large differ-
ences seem to imply that there were many false struc-
tures that had similarly good scores in large search
spaces of DAG structures. In addition, it was shown
empirically by Tsamardinos et al. (2006) with com-
parison between true and estimated structures that
finding DAGs with higher BDeu scores did not always

lead to more correct DAGs3. The MMHC algorithm
initially selects parents and children sets by a CB ap-
proach (called MMPC algorithm) and then selects par-
ents with the BDeu-score search. The MMHC and
similar hybrid approaches thus also have the possibil-
ity of the same issues as are suspected to exist in the
SC because a DAG with the better BDeu score but
worse SHD score may exist even if the search space is
reduced with CB approaches.

In performing experiments for comparing algorithms
with well-known datasets such as Alarm network, we
should separate effectiveness of algorithms and statis-
tics because the BDeu can avoid over-fitting more than
classical statistics such as G2 and mutual informa-
tion. Therefore, we might have compared effects of
used statistics rather than of algorithms if we had used
small samples or DAGs with large amounts of param-
eters. We thus consider that some other parameters,
instead of sample sizes, may be needed for compar-
ative study. The ratio of numbers of the parameter
to sample sizes may be possible but it is not always
preferable because there are often cases in which many
conditional probabilities are exactly or nearly zero in
the networks (e.g., Water network). Therefore, an ef-
fective number of parameters may need to be defined
while taking into account entropy of each DAG.

5 RELATED WORK

Spirtes et al. (2000) discussed undirected paths re-
quired to contain separator sets for CI tests. Steck
and Tresp (1999) also proposed the same condition.
Our proposed constraint (i.e., MBCs) can thereby be
an extension of the condition on undirected paths.

Two recursive decomposing algorithms of the CB ap-
proaches were recently proposed: the RAI (Yehezkel
and Lerner, 2009) and the algorithm proposed by Xie
and Geng (2008). The RAI algorithm may seem sim-
ilar to the CS, at a glance, in using the orientation
rules in the process of adjacency identification. How-
ever, the RAI uses the full orientation rules in order
to divide a graph into sub-graphs, while the CS algo-
rithm uses the direction-information to omit avoidable
CI tests. In order to do this accurately, the CS can
utilize the k-MBCs with v-structures identified by rel-
atively lower order and then reliable CI tests and the
whole orientation rules are not performed to the end
of the adjacency stage. The iterated full use of the
rules, as the RAI did, increases a risk of generating
sequential errors. We consider our strategy partially
contributes to good accuracy for causal inference in a

3This point should be elucidated by both more theoreti-
cal and experimental studies with better equivalent sample
sizes.



Table 1: Averaged normalized results of the structural Hamming distance, which are normalized by dividing for
a particular network and sample size (N) by the corresponding value for the MMHC algorithm. A normalized
value smaller than one means fewer structural errors of the algorithm than the MMHC. The bold numbers denote
the best scores as the results of two-sided t-tests with significant level 0.05.

Network Algorithm N=1000 N=2000 N=5000 N=10000

CS 1.2 1.2 0.7 0.5
PC 2.5 2.9 3.5 2.5

Alarm TPDA 3.0 3.1 3.8 2.7
SC 2.5 2.3 2.8 2.3

MMHC 1.0 1.0 1.0 1.0

CS 0.9 0.9 0.8 0.8
PC 1.2 1.2 1.4 1.6

Carpo TPDA 1.3 1.3 1.5 1.8
SC 1.6 1.8 2.2 3.0

MMHC 1.0 1.0 1.0 1.0

CS 1.2 0.9 0.9 1.0
PC 3.6 3.3 3.7 3.9

Hailfinder TPDA 4.2 3.3 3.3 3.0
SC 1.5 1.4 1.8 1.7

MMHC 1.0 1.0 1.0 1.0

CS 1.0 1.1 0.9 1.0
PC 1.6 1.5 1.6 1.8

Insurance TPDA 2.1 1.7 1.7 1.9
SC 1.3 1.5 1.6 1.8

MMHC 1.0 1.0 1.0 1.0

CS 1.0 1.0 1.2 0.9
PC 3.5 3.7 4.3 4.2

Water TPDA 1.2 1.2 1.3 1.3
SC 1.3 1.5 1.8 1.8

MMHC 1.0 1.0 1.0 1.0

Table 2: Averaged number of conditional independence tests for 10000 of sample size in the CS and MMHC
algorithms.

Algorithm Alarm Carpo Hailfinder Insurance Water

CS 3.8K 5.5K 6.2K 4.9K 1.3K
MMHC 2.9K 19.5K 61.1K 5.9K 1.3K

relatively broad range of sample sizes, while the RAI
showed the comparable accuracy with the MMHC only
for 500 samples even with optimized thresholds by the
BDeu scores in CI tests using mutual information.

Another recursive method of Xie and Geng (2008) de-
pends more on the assumption of correctness of the CI
tests because an edge between X and Y is removed,
in the method, if X and Y are independent condi-
tionally on the set of all other variables. Accordingly,
the method seems effective for parametric continuous
variable systems because the number of parameters is
generally much smaller than that of discrete variables.

In fact, they showed the effectiveness in simulations on
discrete variables only for better results not for aver-
aged SHD scores or on randomized probability distri-
butions.

6 CONCLUSION

We proposed, in this paper, Combining Stage (CS)
algorithm for accurate causal discovery, which can re-
duce avoidable CI tests by using a Minimal Blocker
Condition (MBC), introduced in this work, via partial
orientation of edges. The MBC assures correctness



Table 3: Averaged normalized running time for 10000 of sample size in the CS and MMHC algorithms. These
results show the CS ran stably in time. In the CS, the raw data are also shown for reference in terms of seconds
(denoted as s), where the second values denote standard deviations.

Algorithm Alarm Carpo Hailfinder Insurance Water

CS 3.0 5.0 8.0 3.6 1.0
(2.0±0.1s) (3.3±0.3s) (5.3±0.8s) (2.4±0.1s) (0.7±0.1s)

MMHC 1.8 11.7 123.1 4.2 1.0
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Figure 2: Performance of the CS, MMHC, and SC algorithms on the (a) Carpo and (b) Insurance networks. The
absolute SHD scores are plotted against training sample size. Error bars denote the standard deviations.

of the CS under the causal faithfulness assumption.
In addition, we provide procedures to resolve general
problems in the constraint-based approaches due to lo-
cality of CI hypothesis tests and their limited statisti-
cal power: one is to do with p-values for bi-directional
inconsistencies and the other is to do with introducing
unreliable directions against inconsistencies related to
some sets of v-structures. All those procedures intro-
duced in the CS algorithm are expected to be usable
for other constraint-based algorithms developed in the
future. The algorithm practically works better, in a
comparative study using some repository datasets with
1000–10000 samples, than the current prominent algo-
rithms (PC, TPDA, and SC) and is the same or more
than the MMHC, which is one of state-of-the-art algo-
rithms. In addition, the number of CI tests was stably
reduced and fewer than the MMHC on average, and
then the CS ran fast stably. The CS is thus expected
to be applicable to large DAGs. We plan to apply the
algorithm to latent variable models with extensions
and continuous non-linear systems using kernel-based
CI testing (e.g. Zhang et al. (2011)).
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