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Abstract

Causal structure learning algorithms have fo-
cused almost exclusively on learning in “sta-
ble” environments in which the underlying causal
structure does not change. Such changes of-
ten occur, however, without warning or signal
in real-world environments. In this paper, we
present DOCL, a novel causal structure learn-
ing algorithm that processes data in a dynamic,
real-time manner and tracks changes in the gen-
erating causal structure or parameters. The algo-
rithm learns in an online fashion from sequential
or ordered data rather than “batch-mode” from
a full dataset, and so supports causal learning in
memory-limited settings. We show by simulation
that the algorithm performs comparably to batch-
mode learning when the causal structure is sta-
tionary, and significantly better in non-stationary
environments.

1 INTRODUCTION

Over the past twenty years, a wide array of causal structure
learning algorithms have been developed and successfully
applied in many different domains (Pearl, 2000; Spirtes
et al., 2000; Chickering, 2002). All of these algorithms
share a crucial feature: they all assume that the underly-
ing causal structure does not change over the course of
data collection. Standard causal learning algorithms as-
sume all data are i.i.d. (or can be transformed into i.i.d.
data); a dataset in which the causal structure changes part-
way through is clearly not i.i.d. In the real world, however,
causal structures often change: the ‘+’ key on a calculator
breaks, or a wire comes loose in one’s car, or medication
alters the effect of some disease. In all of these cases, it is
critical that we quickly detect the causal structure change
and then learn the new causal structure.

In many contexts with possible causal structure change, we
also do not have the luxury of collecting large amounts of

data and then retrospectively determining when (if ever)
the structure changed. Unlike all standard causal learning
algorithms, we cannot operate in “batch mode,” but must
instead learn the causal structure in an online manner, pro-
cessing the data as it arrives.1 A range of online learning al-
gorithms have been developed to detect and handle changes
in the learning environment, but none are capable of causal
learning, as they have principally focused on tracking the
state of a system or variable over time.

In this paper, we develop and assess the Dynamic Online
Causal Learning (DOCL) algorithm — a causal structure
learning algorithm that is robust to the possibility that the
causal structure varies over time. More precisely, the algo-
rithm assumes only that our data are sets of (locally) i.i.d.
datapoints, rather than assuming that all datapoints are i.i.d.
In addition, DOCL is an online algorithm, so is suitable for
computational devices that are incapable of storing all of
the data (e.g., a sensor in a network, particularly if it is
multi-channel). In the next section, we quickly survey re-
lated methods and show that they are individually insuffi-
cient for the task of online causal structure learning. We
then explain the DOCL algorithm in detail, and present
simulation evidence that it can successfully learn causal
structure in an online manner. Importantly, when there is
a stable causal structure generating the datapoints, the per-
formance of the DOCL algorithm is indistinguishable from
a standard batch-mode causal structure learning algorithm.
That is, there is no cost to using DOCL in “normal” causal
learning situations. We close with a discussion of future
directions for the DOCL algorithm.

2 RELATED WORK

Essentially all current causal structure learning algorithms
output causal Bayesian networks or causal Structural Equa-
tion Models (SEMs): directed acyclic graphs over ran-

1Many “batch mode” algorithms require only a covariance ma-
trix and sample size as input, and so could (in theory) be converted
to online algorithms. In practice, however, these covariance ma-
trices are almost always estimated in batch from the full dataset.



dom variables with corresponding quantitative components
(Chickering, 2002; Heckerman et al., 1999; Spirtes et al.,
2000; Pearl, 2000). For simplicity, we will use the term
“causal models” throughout to refer to both types of struc-
tures. Causal model learning algorithms divide roughly
into two distinct types: Bayesian/score-based procedures
and constraint-based ones.

Bayesian learning algorithms aim to find the causal model
M that maximizes P (M |Data). In practice, one typically
has uniform priors over the possible causal models, and
assumes that the parameters are independent (in a precise
technical sense), and so each causal model can be scored
using a decomposable measure based on P (Data|M) and
the number of parameters in M (Chickering, 2002; Heck-
erman et al., 1999). Because the number of possible causal
models is super-exponential in the number of variables,
however, it is usually impossible to perform an exhaus-
tive search of all possible causal models. Instead, one uses
a greedy procedure that starts with a seed graph, scores
nearby neighbors, moves to the highest-scoring neighbor,
and iterates until no higher-scoring causal model can be
found. If the greedy search is done properly, then it is
asymptotically reliable (Chickering, 2002). Outside of the
causal learning context, Bayesian learning algorithms—
or various approximations to them—are frequently used
for online learning, since case-by-case Bayesian updating
yields the same output as batch-mode processing (assum-
ing the data are i.i.d.). In the situations of interest here,
however, the underlying causal structure can change, and
so we do not necessarily want to have the same output as a
batch-mode algorithm.

A different approach to learning causal model structure is
to leverage the fact that every causal model—more pre-
cisely, every causal graph—predicts a pattern of (condi-
tional) independencies over the variables, though multiple
causal models can predict the same pattern. Constraint-
based algorithms (e.g., (Pearl, 2000; Spirtes et al., 2000))
determine a minimal set of (conditional) independencies in
the data, and then find the set of causal models that best
predict those (conditional) independencies. All existing
constraint-based algorithms use traditional null hypothesis
statistical tests to determine independencies from data, but
there is no requirement that they do so. Properly speaking,
constraint-based algorithms require only that some method
be available that can provide the (conditional) independen-
cies, which could be null hypothesis statistical tests, or
Bayesian statistical tests, or some other method.

The key point for the present research is that both types of
causal structure learning algorithms assume that the data
come from a single generating causal structure, and so nei-
ther type is directly usable for learning when causal struc-
ture change is possible. Both types require only the suffi-
cient statistics as input data, and so can (and do, in DOCL)
provide a part of the solution. But neither has any mecha-

nism for detecting change, responding to it, or learning the
new causal structure.

If one turns instead to online learning methods that can
track some feature in an environment, one finds that neither
of the standard types of methods — temporal-difference
learning (TDL) and change-point detection (CPD) —
tracks causal structure, and both require substantial mod-
ifications to be suitable for it.

The classic TDL algorithm, TD(0) (Sutton, 1988), provides
a dynamic estimate Et(X) of a univariate random vari-
able X using a simple update rule: Et+1(X) ← Et(X) +
α(Xt − Et(X)), where Xt is the value of X at time t.
That is, one updates the estimate by α times the error in the
current estimate. The static α parameter encodes the learn-
ing rate, and must be chosen quite carefully (or somehow
learned from the data) to optimally trade-off convergence
rate and robustness to noise (in stable environments). This
latter property is a particular concern for causal structure
learning, since causal structures frequently have indeter-
ministic causal connections. In general, TDL methods are
good at tracking slow-moving changes in the environment,
but perform suboptimally during times of either high sta-
bility or dramatic change.

Both Bayesian (Adams and MacKay, 2007) and frequentist
(Desobry et al., 2005) online CPD algorithms are effective
at detecting abrupt changes in the environment that indi-
cate breaks between periods of stability. To do so, however,
these algorithms must store substantial portions of the in-
put data; for example, the output of a Bayesian changepoint
detector (Adams and MacKay, 2007) is the probability of
a changepoint having occurred r timesteps ago, and so the
algorithm must store more than r datapoints. Furthermore,
CPD algorithms assume a model of the environment that
has only abrupt changes separated by periods of stability.
Environments that evolve slowly but continuously will have
their time-series discretized in seemingly arbitrary fashion,
or not at all.

Perhaps the most closely related work has been on the prob-
lem on inferring time-indexed graph structures (not neces-
sarily causal graphs) from time-series data (Talih and Hen-
gartner, 2005; Siracusa and Fisher III, 2009), though our
approach differs in important ways. (Talih and Hengartner,
2005) allow for the possibility of graph changes by tak-
ing an ordered data set and dividing it into a given num-
ber of connected blocks of data (which may be empty),
each with an associated undirected graph that differs by
one edge from its neighbors. In contrast with our work,
they focus on a particular type of graph structure change,
operate solely in “batch mode,” and use undirected graphs
instead of causal models. (Siracusa and Fisher III, 2009)
is more closely related, as that paper uses a Bayesian ap-
proach to find the posterior uncertainty over the possible
directed edges at different points in a time-series. Our



approach differs by using frequentist methods instead of
Bayesian ones (since we would otherwise need to maintain
a probability distribution over the superexponential number
of causal models), and by being able to operate in real-time
on an incoming data stream.

3 DYNAMIC ONLINE CAUSAL
LEARNING (DOCL) ALGORITHM

Given a set of continuous variables V , we assume that
there is, at each moment in time, a true underlying causal
model over V . We restrict the set of causal models to
recursive causal Structural Equation Models (SEMs) —
a pair 〈G,F〉, where G denotes a directed acyclic graph
over V , and F is a set of linear equations of the form
Vi =

∑
Vj∈pa(Vi)

aji · Vj + εi, where pa(Vi) denotes the
variables Vj ∈ G such that Vj → Vi, and the εi are nor-
mally distributed noise/error terms. We assume that the
data are, at any point in time, generated independently
from the true underlying causal model, though we do not
assume that this causal model is stationary through time.
Notice that a causal model can change in both structure
(i.e., adding, removing, or reorienting edges) and param-
eters (i.e., changes in aji’s or the εi distributions).

At a high level, the DOCL algorithm is separated into three,
functionally distinct components.

Figure 1: Basic DOCL Architecture

The Online Covariance Matrix Estimator (OCME) receives
each datapoint sequentially as input, and estimates a (pos-
sibly non-stationary) covariance matrix to provide the “raw
materials” for learning the causal structure. The Causal
Model Change Detector (CMCD) tracks the divergence be-
tween recent datapoints and the estimated covariance ma-
trix to detect changes in the environment, or significant er-
rors in estimation. It then uses that information to adjust the
weights on previous datapoints. The Causal Model Learner
(CML) takes the covariance matrix and learns the causal
model at that point in time. The gray arrow from CMCD to
CML indicates the use of information about changes to de-
termine when to relearn the causal model. We describe this
probabilistic rescheduler below. The dashed arrow from
CML to CMCD indicates the possibility of using the cur-
rent estimated causal model to dynamically (and intelli-

gently) influence the change detection; for example, graph-
ical features that have been present for an extended pe-
riod of time are plausibly more stable than those that have
changed frequently. That feature is currently not part of the
DOCL algorithm, but will be added in future research.

3.1 ONLINE COVARIATION MATRIX
ESTIMATION (OCME)

The OCME module performs the online updating of the
sufficient statistics for causal learning from observational
data. In particular, OCME maintains an estimated covari-
ance matrix C over the variables V , as well as the “effective
sample size” S of the current estimate, and updates C in re-
sponse to incoming datapoints. Let N = |V | and M be the
total number of datapoints observed. Because OCME does
not store any of the incoming datapoints, its memory re-
quirements are only O(N2) for the estimated covariance
matrix, in contrast with O(NM +N2) memory for batch-
mode algorithms. OCME thus has a substantial memory
advantage for the common real-world situation ofM � N .
OCME can also function as a stand-alone, single-pass co-
variance matrix estimator for very large datasets.

Let Xr be the r-th multivariate datapoint and let Xr
i be the

value of Vi for that datapoint. Because we do not assume
a stationary causal model, the datapoints must potentially
be weighted differently (e.g., weighting more recent data-
points more heavily after a change occurs). Let ar be the
weight on the r-th datapoint (where ai ∈ (0,∞)), and let
br =

∑r
k=1 ak be the sum of the weights on each dat-

apoint. The weighted average of Vi after datapoint r is
µri =

∑r
k=1

ak
br
Xk
i . These means can be computed in an

online fashion using the update equation:

µr+1
i =

br
br+1

µri +
ar+1

br+1
Xr+1
i (1)

The (weighted) covariance between Vi and Vj after
datapoint r can then be proven to equal CrVi,Vj

=∑r
k=1

ak
br

(Xr
i − µri )(Xr

j − µrj). Because OCME is an on-
line estimation method, we need to translate this into an
update rule. The resulting update equation in terms of the
current datapoint and the previous C is:

Cr+1
Xi,Xj

=
1

br+1
[brCrXi,Xj

+

brδiδj + ar+1(Xr+1
i − µr+1

i )(Xr+1
j − µr+1

j )]

where δi = µr+1
i − µri = ar+1

br+1
(Xr+1

i − µri ). If ak = c

for all k and some constant c > 0, then the estimated co-
variance matrix using this method is identical to the batch-
mode estimated covariance matrix. If ar = αbr, then
OCME acts like one is using TD(0) learning for each co-
variance with a learning rate of α.

Because different datapoints can receive different weights,
we compute the effective sample size (which should always



be less than the actual sample size) by adjusting the previ-
ous effective sample size based on the new datapoint’s rel-
ative weight. More precisely, let Sr be the effective sample
size at time r. We assume the incoming datapoint con-
tributes 1 to the effective sample size, and adjust the previ-
ous effective sample size accordingly: Sr+1 = ar

ar+1
Sr+1.

Since CMCD ensures that ar+1 ≥ ar for all r (see Eq. (2)),
we have that Sr+1 ≤ Sr + 1. Also, if ar+1 = ar for all r,
then Sr = r; that is, if the datapoint weights are constant,
then Sr is the true sample size.

3.2 CAUSAL MODEL CHANGE DETECTOR
(CMCD)

The CMCD module tracks the “fit” between the current
estimated covariance matrix and the input data to detect
likely changes in the underlying causal structure, which
then require changes in the OCME datapoint weights (i.e.,
the ak’s). Since the data is assumed to have a multivariate
Gaussian distribution, the “fit” between the datapoint Xr
and the current estimated covariance matrix Cr is given by
the Mahalanobis distance Dr (Mahalanobis, 1936):

Dr = (Xr − ~µ)(Cr)−1(Xr − ~µ)T

where ~µ is the current estimate of the means (from Eq. (1)).

A large Mahalanobis distance for any particular datapoint
could indicate simply an outlier; several large Mahalanobis
distances over multiple datapoints, however, imply that the
current estimated covariance matrix is a poor fit to the un-
derlying causal model, and so new datapoints should be
weighted more heavily. Our approach is to first calculate
the individual p-values for each datapoint, and then to use
a weighted pooling method to aggregate those p-values into
a pooled p-value.

In general, the Mahalanobis distance of a v-dimensional
datapoint from a covariance matrix estimated from a sam-
ple of size n is distributed T 2 with parameters p = v and
m = n − 1, where T 2 is Hotelling’s T -squared distribu-
tion. The p-value for the Mahalanobis distance Dr of an
individual datapoint at time r is thus:

T 2(x > Dr|p = N,m = Sr − 1)

where Sr is the effective sample size.

These p-values establish the likelihood of Xr given ~µ
and Cr, but what we really want is the likelihood of the
(weighted) data sequence X given ~µ and Cr. The distribu-
tion of a sum of weighted chi-square variables is analyti-
cally intractable, and so we cannot use the Dr values di-
rectly. Instead, we use Liptak’s method for weighted pool-
ing of the individual p-values (Liptak, 1958). Let Φ(x, y)
be the cdf of a Gaussian with mean 0 and variance y evalu-
ated at x. Then the pooled, weighted p-value is:

ρr = Φ(

r∑
i=1

aiΦ
−1(pi, 1),

√∑
a2i )

Finally, we need to determine the weight of the next point,
ar+1 given the pooled p-value ρr. We use a straightforward
scheme: given a threshold T to trigger downweighting (i.e.,
uniformly reducing the weight of all previous datapoints
by some constant factor) and a maximum downweighting
degree 1/γ, we scale the degree of downweighting linearly
from ρr = T to ρr = 0:2

ar+1 =

{
ar if ρr ≥ T
arγT

γT+ρr−T otherwise (2)

The CMCD process can be straightforwardly modified
to function as an online changepoint detection method.
Specifically, one can treat ρr < τ as a signal (for suitable
threshold τ ) that a changepoint occurred at time r. If one
wants to continue detecting changepoints, one need only
clear C and ~µ and begin the estimation and detection anew.3

3.3 CAUSAL MODEL LEARNER (CML)

The CML module actually learns the causal model from
the estimated (from weighted data) sufficient statistics pro-
vided by OCME. In the current implementation, CML
uses the PC algorithm (Spirtes et al., 2000), a standard
constraint-based causal structure learning algorithm. A
range of alternative structure learning algorithms could be
used instead, depending on the assumptions one is able to
make. Because learning causal models is computationally
expensive (Chickering, 1995), one does not want to relearn
the graphical structure after each datapoint. Instead, one
should use information from the CMCD module to deter-
mine when one “ought” to perform these searches by bal-
ancing the accuracy of the current learned causal model
against the computational cost of relearning the causal
model. More precisely, graph relearning should be most
common after an underlying change, though there should
be a non-zero chance of relearning even when the causal
structure appears to be relatively stable.

We have developed a probabilistic relearning scheduler
which utilizes the pooled p-values calculated by the CMCD
module to determine when to relearn the causal graph.
The probability of relearning the causal graph after ob-
serving datapoint r is determined by: Pr(relearn) =
Pr−1(relearn) + α(ρr − ρrPr−1(relearn)). That is, the
probability of relearning at time r is essentially a noisy-OR
gate with the previous probability of relearning, and αρr.

Clearly, this quantity is always in [0, 1] when α ∈ [0, 1].
α is a positive real number that modifies the frequency
of graph relearning: large values result in more frequent

2This potentially misses a specific kind of change, when the
only difference in distribution is a move from a high-variance dis-
tribution to a low-variance distribution. We are exploring modifi-
cations that can accommodate this change as well.

3The simulations in sections 4 and 5 use Eq. (2), not this other
possibility.



relearning and small values resulting in fewer. If both
α > 0 and ρr > 0, then necessarily Pr(relearn) ≥
Pr−1(relearn). If a relearning event is triggered at dat-
apoint r, a new causal graph is generated by the CML, and
Pr(relearn) is set to 0. In general, ρr is higher when
changepoints are detected, so Pr(relearn) will increase
more quickly during changepoints, and graph relearning
will become more frequent. During times of stability, ρr
will be comparatively small, resulting in a slower increase
of Pr(relearn) and thus less frequent graph relearning.

3.4 PROPERTIES OF DOCL

The algorithm as presented is not convergent: that is, even
if the underlying causal structure stabilizes in the limit, the
algorithm output will not necessarily stabilize. This ap-
parent failure of DOCL is a necessary one, as there is a
fundamental tension between convergence and responsive-
ness. Say that an algorithm is diligent if it cannot be forced
to miss arbitrarily large changes for arbitrarily long; that
is, a diligent algorithm will detect and react to changes of
given size within some fixed amount of time (assuming the
change is reflected in the data). Both diligence and conver-
gence are desirable methodological virtues, but they are un-
fortunately incompatible: provably, no learning algorithm
can be both diligent and convergent (XXX, 2012).

In this paper, we have presented a diligent version of
DOCL, as we have been principally interested in situations
in which responsiveness is critical. A convergent version
arises if the downweighting threshold parameter T (in Eq.
(2)) varies appropriately as a function of effective sample
size. Specifically, let DOCL* be the variant in which T (in
Eq. (2)) is instead Tr = f(Sr) for some f with (0, 1] range,
and where

∑∞
i=1 (1− f(i)) is convergent.

Theorem: DOCL* converges to the true graph (if it exists)
with probability 1 in the infinite limit.

Proof sketch:
∑∞
i=r (1− qi) can be shown to be an up-

per bound on the probability that ρi > qi will occur for
some i in [r,∞), where qi is the i-th element of the se-
quence Q of lower threshold values. Any sequence Q
s.t.

∑∞
i=1 (1− qi) < 1 will then guarantee that an infi-

nite amount of unbiased data will be accumulated in the
infinite limit. This provides probability 1 convergence for
DOCL*, since the CML module has probability 1 conver-
gence in the limit. If Q is prepended with strictly positive
threshold values, the first element of Q will still be reached
infinitely many times with probability 1 in the infinite limit,
and so DOCL* will also converge with probability 1 by us-
ing these expanded sequences.

4 SIMULATION RESULTS

We used synthetic data to evaluate the performance of
DOCL given known ground truth. All simulations used

scenarios in which either the ground truth parameters or
ground truth graph (and parameters) changed during the
course of data collection. Before the first changepoint,
there should be no significant difference between DOCL
and a standard batch-mode learner, since those datapoints
are completely i.i.d. Performance on these datapoints thus
provides information about the performance cost (if any)
of online learning using DOCL, relative to traditional al-
gorithms. After a changepoint, one is interested both in
the absolute performance of DOCL (i.e., can it track the
changes?) and in its performance relative to a standard
batch-mode algorithm (i.e., what performance gain does
it provide?). We used the PC algorithm (Spirtes et al.,
2000) as our baseline batch-mode learning algorithm; for
the graphs and sample sizes in our simulations, any stan-
dard causal model learning algorithms would perform sim-
ilarly.

In order to directly compare the performance of DOCL
and PC, we imposed a fixed “graph relearning” sched-
ule on DOCL4. In the first set of simulations, we
used datasets with 2000 datapoints, where the causal
SEM graph and parameters both changed after the first
1000 datapoints. We generated 500 datasets for each
〈#variables,MaxDegree〉 of 〈4, 3〉, 〈8, 3〉, 〈10, 3〉,
〈10, 7〉, 〈15, 4〉, 〈15, 9〉, 〈20, 5〉, and 〈20, 12〉, where each
dataset used two different, randomly generated causal
SEMs of the specified size and degree.

Figures 2(a-c) show the mean edge addition, removal, and
orientation errors (respectively) by DOCL as a function of
time, and Figures 2(d-f) show the mean of #errorsPC −
#errorsDOCL for each error type (i.e., higher num-
bers imply DOCL outperforms PC). In all graphs, each
〈variable, degree〉 pair is a distinct line. As expected,
DOCL was basically indistinguishable from PC for the first
1000 datapoints; the lines in Figures 2(d-f) for that inter-
val are all essentially zero. After the underlying causal
SEM changes, however, there are significant differences.
The PC algorithm performs quite poorly because the full
dataset is essentially a mixture from two different distri-
butions which induces a large number of spurious associa-
tions. In contrast, the DOCL algorithm finds large Maha-
lanobis distances for those datapoints, which lead to higher
weights, which lead it to learn (approximately) the new un-
derlying causal model. In practice, DOCL typically sta-
bilized on a new causal model by roughly 250 datapoints
after the changepoint.

The second set of simulations was identical to the first (500
runs each for various pairs of variable number and edge de-
gree), except that the graph was held constant throughout
and only the causal SEM parameters changed after 1000
datapoints. Figures 3(a-c) and 3(d-f) report, for these sim-

4DOCL relearned graphs and PC was rerun after datapoints
{25, 50, 100, 200, 300, 500, 750, 1000, 1025, 1050, 1100, 1200,
1300, 1500, 1750, 2000}.



(a) (b)

(c) (d)

(e) (f)

Figure 2: (a-c) DOCL Errors; (d-f) DOCL Improvement
Over Batch When Structure Changes

ulations, the same measures as Figures 2(a-c) and 2(d-f).
Again, DOCL and PC performed basically identically for
the first 1000 datapoints. Performance after the parame-
ter change did not follow quite the same pattern as before,
however. DOCL again does much better on edge addition
and orientation errors, but performed significantly worse on
edge removal errors for the first 200 points following the
change. Recall, however, that the graph does not change
after 1000 datapoints, only the parameters. And since the
parameter change leads PC to initially add edges, not re-
move them, it temporarily outperforms DOCL. That is, the
difference in performance is more because PC is “lucky”
that the graph does not change, rather than being due to a
failure by DOCL.

The third set of simulations was designed to explore in de-
tail the performance of the probabilistic relearning sched-
uler. We randomly generated a single dataset with 10,000
datapoints, where the underlying causal SEM graph and pa-
rameters changed after every 1000 datapoints. Each causal
SEM had 10 variables and maximum degree of 7. We then
ran DOCL with the probabilistic relearning schedule 100
times on this dataset. Figure 4(a) shows the (observed) ex-
pected number of “relearnings” in each 25-datapoint win-
dow. As expected, there are substantial relearning peaks af-
ter each structure shift, and the expected number of relearn-

(a) (b)

(c) (d)

(e) (f)

Figure 3: (a-c) DOCL Errors; (d-f) DOCL Improvement
Over Batch When Parameters Change

(a) (b)

(c) (d)

Figure 4: (a) DOCL Expected Relearnings for 25-Point
Window; (b-d) Errors and Optimal Performance



ings persisted at roughly 0.05 per 25 datapoints through-
out the 1000-datapoint stable period. Figures 4(b-d) pro-
vide error information: the smooth green lines indicate the
mean edge addition, removal, and orientation errors (re-
spectively) during learning, and the blocky blue lines indi-
cate the DOCL errors if graph relearning occurred after ev-
ery datapoint (i.e., optimal DOCL performance). Although
there are many fewer graph relearnings with the probabilis-
tic schedule, overall errors did not significantly increase.

5 APPLICATION TO US PRICE INDEX
VOLATILITY

We have applied DOCL to seasonally adjusted price index
data available online from the U.S. Bureau of Labor Statis-
tics. We limited the data to those commodities/services
which had data going back to at least 1967, resulting in
a data set of 6 variables: Apparel, Food, Housing, Medical,
Other, and Transportation. The data was collected monthly
from 1967 until 2011, resulting in 529 data points. Because
of significant trends in the indices over time, we used the
month-to-month differences. Figure 5(a) shows the rele-
vant data for the Apparel index.

Figure 5(b) shows the change in effective sample size,
where significant drops indicate the detection of change.
Figures 5(c) and 5(d) show the drivers of those changes: the
pooled p-value and Mahalanobis distance for each month,
respectively. Notably, DOCL appears to detect (much of)
the Great Moderation, a well-known macroeconomic phe-
nomena between 1980 and 2007 in which the U.S. financial
market underwent a slow but steady reduction in volatility.
DOCL detects a shift in the volatility of the causal rela-
tionships among these price indexes around 1980, and then
detects comparatively few such changes until shortly af-
ter 2000.5 This real-world case study also demonstrates the
importance of using pooled p-values, as DOCL does not re-
spond to the single-month spike in Mahalanobis distance in
1995, but does respond to the extended sequence of slightly
above average Mahalanobis distances around 1980.

6 DISCUSSION AND FUTURE
RESEARCH

The DOCL algorithm will clearly have difficulty if the un-
derlying causal structure changes very rapidly during data
collection, or if the datapoints are a random-order mixture
from multiple causal structures. The algorithm will find
continually high Mahalanobis distance in the CMCD mod-
ule, and so produce high learning rates in the OCME mod-
ule. Of course, it is unclear whether any causal learning al-
gorithm could be successful in a sufficiently non-stationary

5The shift detected in 1991 is likely due to the recession of the
early 1990s, and the shift in 2001 is almost certainly due to the
U.S. recession that occurred in March to November of that year.

(a)

(b)

(c)

(d)

Figure 5: (a) Sample of BLS Volatility Data; (b) Effective
Sample Size During DOCL Run; (c) Pooled p-value; (d)
Mahalanobis Distance



environment. Nonetheless, an important future research di-
rection is to improve DOCL’s performance on rapidly vary-
ing causal structures.

The DOCL algorithm also allows theoretically for the pos-
sibility that the current learned causal model can be used
to influence the ar weights. If there are certain causal
connections that have not changed over a long period of
time, or have been stable over multiple relearnings, then
one might plausibly conclude that those connections are
stable and less likely to change. Thus, much greater error
should be required to substantially change the estimates for
those connections. In practice, implementing this intuition
requires allowing for the ar weights to vary across 〈Vi, Vj〉
pairs. The mathematics of the OCME become much more
complicated when this is allowed, and much more informa-
tion must be tracked. It is currently unknown whether the
(presumably) improved tracking would compensate for the
additional computational and memory cost.

We have focused on causal models represented by SEMs,
but there is also a long history of successful causal model-
ing using causal Bayes nets defined over discrete variables
with conditional probability tables. Tracking the sufficient
statistics for causal Bayes net structure learning is substan-
tially more costly, and we are currently investigating ways
to learn the necessary information in a tractable, online
fashion. Similarly, we have focused on constraint-based
structure learning since the relevant scores in score-based
methods (such as (Chickering, 2002)) do not decompose in
a manner that is suitable for online learning. We are thus
investigating alternative scores, as well as heuristic approx-
imations to principled score-based search.

There are many real-world contexts in which batch-mode
causal structure learning is either infeasible or inappropri-
ate. The online causal structure learning algorithm that we
presented has great potential to perform well in a range
of challenging contexts, and at little cost in “traditional”
settings.
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