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Abstract

Variable selection approaches are widely used
in regression. In many applications, variable
selection is used to prioritise variables that
may have a causal influence on the response.
However, many widely-used approaches are
rooted in linear models that may limit ability
to discern causal influences. Yet in a number
of settings, nonlinear dynamical models of
underlying processes are available that define
classes of functional relationships between co-
variates and response. Here, we propose an
approach for variable selection that is rooted
in such nonlinear dynamical systems. Re-
versible jump Markov chain Monte Carlo is
used to assess putative functional relation-
ships and obtain posterior probabilities for
the inclusion of individual covariates. We il-
lustrate the approach in the context of pro-
tein biochemistry, using data simulated from
a recent mechanistic model and in an appli-
cation to protein data from cell lines. In the
former, the true causal graph is known and
is used for assessment, whilst in the latter re-
sults are compared against known biochem-
istry. We find that the proposed method-
ology is more effective at identifying causal
variates than methods based on linear mod-
els. Finally we discuss opportunities and
challenges involved in extending these ideas
further.

1 INTRODUCTION

Variable selection approaches have been widely stud-
ied in the machine learning and statistical literature.
In applications, variable selection typically serves two
related yet distinct goals: (i) to improve prediction
performance (e.g. in regression or classification); and

(ii) to select variables that are influential in terms of
the mechanisms underlying the response. Problem (i)
has been extensively studied in machine learning and
statistics over many years. However, in recent years
problem (ii) has attracted increasing attention, and in
many settings the results of variable selection are used
to prioritise further work with explicitly causal goals.
For instance, in economics, variables determined to be
influential may be the focus of further work using nat-
ural experiments, while in biology, such variables may
be selected for interventional experiments.

The distinction between variable selection problems (i)
and (ii) mirrors the general distinction between regres-
sion and causal inference, as discussed extensively by
Pearl (2009) and others. In terms of relevant variable
subsets, the difference can be put simply: In variable
selection for regression, the goal is to select variables
that aid in prediction, while in causal variable selection
the aim is to identify variables which actually drive the
response. In general, the two sets of variables may be
distinct. We are interested in problem (ii), which we
refer to simply as causal variable selection or CVS. Ac-
cordingly, in both empirical examples we show below,
we assess methodology with respect to ability to iden-
tify truly causal variables, rather than performance in
the prediction sense of regression.

Many widely-used variable selection approaches em-
ploy regression formulations based on linear models,
most often with additive Gaussian error. However,
for CVS, linear formulations remain unsatisfactory for
several reasons: (1) Variates may be highly correlated,
often due to underlying dynamics. Flexibility inher-
ent in the linear approach requires that modifications
are made to the linear model in order to exclude non-
causal but highly correlated variates (Cho and Fry-
zlewicz, 2012). (2) Symmetry of the linear equivalence
in general limits identification of underlying causal
relationships (Pearl, 2009; Peters et al., 2011). (3)
When the data generating model is nonlinear, the lin-
ear model may produce inefficient or inconsistent esti-



mation, attributing causal status to artifacts resulting
from model misspecification (Heagerty and Kurland,
2001; Lv and Liu, 2010).

Yet, in many settings, nonlinear dynamical models of
relevant data-generating processes are available. In
economics, dynamics of many economic phenomena of
interest have been formalized (e.g. dynamic stochas-
tic general equilibrium models in macroeconomics).
Equally, in biology, many processes have dynamical
descriptions rooted in biochemical or biophysical mod-
els (e.g. enzyme kinetics). Where such models are
available, it is natural to ask whether they may be
exploited to facilitate CVS, since an appropriate non-
linear formulation may have enhanced power to ex-
clude non-causal variates. Note however that due to
the added complexity of nonlinear formulations, it is
not a priori obvious that they must outperform sim-
pler models, under practical conditions of sample size
and measurement noise.

Recently, Peters et al. (2011) presented a theoretical
study concerning certain classes of structural equa-
tions (“identifiable functional model classes” or IF-
MOCs) that permit identifiability of the underlying
causal network structure. Our work shares motivation
with theirs insofar as we are interested in using non-
linear functional forms to aid causal inference. How-
ever, we focus on the inferential challenge of identify-
ing causal variables from noisy data, while Peters et
al. do not consider inference from noisy data at all.
Furthermore, both our examples involve settings that
are not covered by their theory (due to cycles in the
underlying causal graph). Thus, while our work shares
the spirit of Peters et al., and complements their work,
the contribution we make is very much distinct.

In this article, we focus on the use of nonlinear dy-
namical formulations for the purpose of CVS. Our pro-
gramme, in brief, is as follows. We consider a dynam-
ical system 9X � fpX,U ;θq with state vector X, ex-
ternal inputs or drivers U and unknown parameters θ.
One component Xi of the state vector is of particular
interest and is treated as the response. The corre-
sponding component function fi depends on a subset
of the state variables; these are the parents of node i
in an (unknown) causal graph for the dynamical sys-
tem. The goal of CVS is to estimate the identity of
these causal influences. Since the dynamical system is
not usually known in detail a priori, we consider the
practically applicable case in which fi is known only
to belong to a certain class F , with all dynamical pa-
rameters remaining unknown. We perform model se-
lection in a Bayesian framework, using reversible-jump
Markov chain Monte Carlo (RJMCMC) to explore the
functional model class F . This yields posterior inclu-
sion probabilities that are analogous to those obtained

via conventional Bayesian variable selection. We then
address two main empirical questions: (1) To what ex-
tent is CVS possible in practical settings, where data
are noisy and dynamical parameters are unknown? (2)
Does inference based on functional models offer advan-
tages over the linear model?

The causal graph for a dynamical system depends on
the time-scale on which the system is observed (Dash,
2003). Over infinitesimal time-scales, Iwasaki and Si-
mon (1994) introduced dynamic causal models (DCM),
associating causes with variables which appear as forc-
ing terms in a system of differentials, as discussed in
the previous paragraph. Causal graphs may be for-
mally defined at equilibrium by applying the equili-
brate operator to a DCM, which, informally speak-
ing, has the effect of setting differential terms to zero;
fpX,U ;θq � 0. In line with the mainstream variable
selection literature, which has not emphasised time se-
ries data, we focus here on the equilibrium setting. We
return in the Discussion to the important conceptual
issues of identifiability and faithfulness at equilibrium.

To limit scope we develop these general ideas in the
context of a specific application and associated class of
dynamical systems. We focus on biochemistry, specif-
ically regulation of protein state by phosphorylation.
Protein phosphorylation is an advantageous test-bed
in the context of CVS for dynamical systems. First,
the kinetics of phosphorylation have been extensively
studied, with dynamical formulations widely available
in the literature (see e.g. Leskovac, 2003). Second, for
some proteins and pathways, regulation has been stud-
ied in considerable causal and mechanistic detail. In
many cases, it is known that certain proteins have the
physical capacity to regulate a given target and cor-
responding mechanisms of interaction have been thor-
oughly explored in vitro. Third, there exist detailed
computational models for canonical protein signalling
pathways, which have been validated against exper-
imental data (e.g. Schoeberl et al., 2002; Xu et al.,
2010). Such models provide non-trivial simulation en-
gines for assessment of methodology.

In order to allow gold-standard validation we focus on
well-understood aspects of protein signalling. How-
ever it is important to note that while good models
exist for certain pathways, a vast amount remains un-
known concerning biological regulatory systems, in-
cluding gene regulation and signalling. Indeed, a large
part of ongoing efforts in mainstream biology seek to
discover novel regulation in such systems. Tradition-
ally, causation has been established on an edge-by-
edge basis, based on low-dimensional interventional
experiments. However, advances in data acquisition
now permit studies with large numbers of variables
(rather than a small number of pre-selected ones).



Such data offer for the first time an “unbiased” way to
screen for novel influences. An automatic approach to
causal variable selection, based only on observational
data, could therefore greatly accelerate identification
of novel regulatory influences. The associated inferen-
tial challenges are highly non-trivial and motivate the
work here as well as many other recent statistical and
machine learning efforts related to model selection.

Systems biology represents a key current applica-
tion domain for machine learning and statistical ap-
proaches. However, to date, most methods applied
to CVS-type problems have been rooted in discrete
or linear formulations (Hill, 2012; Oates and Mukher-
jee, 2012; Sachs et al., 2005). Recently Honkela et al.
(2010) and Äijö and Lähdesmaki (2009) applied non-
parametric (Gaussian process) regression to a related
biological problem (gene regulation), but within a lin-
ear model.

The remainder of this paper is organised as follows.
In Section 2 our approach is initially described in gen-
eral terms, followed by a detailed exposition and ap-
plication to protein phosphorylation. In Section 3 we
present results on data simulated from a recently de-
veloped dynamical model of mitogen-activated protein
kinase (MAPK) signalling, that has been validated
against experimental data (Xu et al., 2010). We then
show results on real proteomic data from breast can-
cer cell lines. Finally, Section 4 closes with a dis-
cussion of practical implications and opportunities for
CVS based on functional models, along with associ-
ated technical challenges.

2 METHODS

We begin in Section 2.1 by describing our approach
in general terms. Section 2.2 then introduces relevant
concepts in the application area of protein phospho-
rylation that we use to illustrate our approach. In
particular we describe a class of dynamical systems
describing phosphorylation based on ordinary differen-
tial equations (ODEs). Next, in Section 2.3 this model
class is embedded into a statistical framework for ob-
servations obtained at dynamic equilibrium. Inference
over model space is carried out in a Bayesian frame-
work. This is facilitated by RJMCMC, with Section
2.4 dedicated to a presentation of our sampling scheme
and a discussion of some key implementational details.

2.1 GENERAL FORMULATION

Let 9X � fpX,U ;θq describe the dynamics of a
state vector X � pX1, . . . , Xpq, with index set X �
t1, . . . , pu, driven by external inputs U � pU1, . . . , Uqq,
with index set U � t1, . . . , qu; system parameters are

given by θ.

Underlying the infinitesimal dynamics of X is an un-
known causal graph G. One variable Xi is of partic-
ular interest; this represents the response in a regres-
sion sense. Let πi � X denote the parents of variable
i in the causal graph G. We seek to identify πi us-
ing only steady-state observations of the state vector
X. For Xi, we have the reduced dynamical system
9Xi � fipXπi

,Uγi ;θiq, where γi � U is the subset of
drivers that influence variable Xi and for vector Z and
set A, ZA indicates selection of components of the vec-
tor whose indices are members of the set; parameters
θi are required to complete the specification of fi. Ac-
cording to physical laws or modelling hypotheses, the
class of parametric functional forms which are permis-
sible for fi is denoted by F .

We consider situations where the characteristic
timescale for the driving inputs U is much longer than
the timescale of X dynamics; in this sense Xi reaches
equilibrium with respect to Ui. We suppose that the
dynamics converge to a unique stationary point, de-
pending on the driver, given implicitly by the equi-
librium relation fpX,U ;θq � 0. We then proceed as
follows. Firstly, using knowledge of the functional class
F of the dynamical system, we construct a family of
possible equilibrium relations. Secondly, by comparing
these relations to equilibrium data D, an RJMCMC
sampler (Green, 1995) is constructed over the space of
relations. Finally, model selection proceeds by select-
ing variates j P X which appear frequently under the
sampler; these variates constitute an estimate of the
true causes πi.

2.2 PROTEIN PHOSPHORYLATION

We consider p proteins, each of which has an un-
phosphorylated form Yi and a phosphorylated form
Xi (i P X ). In this work we do not allow for the
possibility of latent variables; this assumption is valid
for both the simulated and real data examples given
below. The chemical reaction that gives product Xi

from substrate Yi is known as phosphorylation and is
catalysed by kinases E P Ei. We consider the case
in which the kinases themselves are phosphorylated
proteins such that Ei � X (if phosphorylation is not
driven by a kinase in X , we set Ei � H). The ability of
a kinase E P Ei to catalyse phosphorylation of Xi may
be tempered by inhibitors I P Ii,E � X ; the double
subscript indicates that inhibition is specific to both
substrate and kinase. Thus, the causal influences πi
on Xi comprise both the kinases and their inhibitors:
πi � Ei Y tIi,EuEPEi

. Due to specificity of phospho-
rylation reactions, the underlying causal graph G is
typically sparse, such that the number of causes πi for
variate Xi is usually low. An example is shown, using



a standard graphical representation, in Fig. 1a. In
what follows we use Yi, Xi to denote the concentra-
tions of proteins Yi, Xi respectively; Ui � Yi � Xi is
then the total amount of protein i, which is approxi-
mately invariant over the timescale of phosphorylation
dynamics.

For CVS, model selection takes place over variable sub-
sets πi. Accordingly, for our approach we require a
dynamical system for any such subset (Fig. 1b). Fol-
lowing the biochemical literature (Kholodenko, 2006;
Steijaert et al., 2010), we use ODEs of the Michaelis-
Menten type to provide a suitable class F of analytic
approximations for phosphorylation dynamics; the dy-
namics fi are given in general by

fipXπi
, Ui;θiq � (1)

�V0Xi�
¸
EPEi

VEXEpUi �Xiq

pUi �Xiq �KE

�
1�

°
IPIi,E

XI

KI

�
where here the parameter vector θi contains the max-
imum rates (V ) and Michaelis-Menten constants (K)
specific to phosphorylation of species i (dependence of
V ,K on i is notationally suppressed for clarity). The
set γi of driver variables is simply tiu. When Ei � H
we instead define fi � µi, equal to the average re-
sponse. Equilibrium relations for phosphorylation are
given implicitly by solving fipXπi , Ui;θiq � 0. Fur-
ther details of the chemical kinetic formulation and
underlying assumptions appear in Appendix A.

2.3 STATISTICAL FORMULATION

Inference proceeds based on a Bayesian formulation
of the chemical kinetic model (Fig. 1c). Below we
present the details of our formulation.

Consider independent observations Y ,X of protein
expression obtained at equilibrium. To fix a charac-
teristic scale (required for prior elicitation, see below),
all data are normalised prior to inference such that
each species attains unit mean. For a given protein
i, a model Mi for phosphorylation describes putative
kinases and associated inhibitors for protein i (note
that Mi contains more information than the subset πi,
namely the specific mechanistic roles played by each
variable in πi). Given a model Mi and associated pa-
rameters θi, the roots of Eqn. 1 completely determine
the equilibrium expression of Xi as a function of inputs
Ui. This equilibrium relationship is formulated statis-
tically using nonlinear regression, so that conditional
on Mi and θi we have

logpXiq � (2)

log

� ¸
EPEi

pVE{V0qXEYi

Yi �KE

�
1�

°
IPIi,E

XI

KI

�
�
� ε

where ε � Np0, σ2q and the parameter vector θi is
augmented with σ. The logarithm of both predictor
and response is taken in order to improve the normality
assumption on the error ε.

In the Bayesian setting, prior probability distributions
are required for parameters θi and models Mi. For
the parameters θ � pV ,K, σq, physical and statis-
tical considerations require that Vj ,Kj , σ ¡ 0. Fol-
lowing Xu et al. (2010) we postulate that all biologi-
cal processes must occur on an observable timescale,
motivating, in the shape, scale parametrisation, the
gamma priors Vj � Γp2, 1{2q, Kj � Γp2, 1{2q, each of
unit mean and variance 1{2. The noise parameter σ is
inverse-gamma distributed a priori as σ � Γ�1p6, 1q,
with prior mean 1{5 chosen to correspond to the mag-
nitude of measurement noise in current proteomic
technologies (Hennessey et al., 2010), and variance
1{100.

When expert opinion is available, rich subjective
model priors may be elicited (see e.g., for graphical
models, Mukherjee and Speed, 2008). In this work we
employed a multiplicity correction prior, depending on
a (possibly empty) prior model M0

i (Scott and Berger,
2010). For simplicity in the exposition, each variable
Xj is constrained to appear in at most one of the sets
EM , IME (for clarity here and in the following section
our notation emphasises dependence on the model Mi

whilst suppressing dependence on the response protein
i). Let πM denote the variables included in model
M and let π0 denote the variables included in M0.
To avoid explicit computation of the normalising con-
stant, which is not directly required by our methodol-
ogy, the model prior is specified indirectly using prior
odds ppM 1q{ppMq. These are uniquely determined by,
and calculated from, iterative application of the fol-
lowing three criteria:

1. ppMq � 0 if M0 is not nested in M . (M0 is said to

be nested in M if, for each E P EM0

we have E P EM
and IM0

E � IME .)

2. ppM 1q{ppMq � p|X |�|πM |q�1 if M 1 differs to M by
the addition of a single (uninhibited) kinase. (EM 1

�
EM Y tEu, E R EM , IM 1

E � H and IM 1

E1 � IME1 for all
E1 P EM .) There are |X | � |πM | such models M 1, so
that the prior distribution is uniform over such models.

3. ppM 1q{ppMq � pp|X | � |πM |q � |EM |q�1 if M 1 dif-
fers to M in the addition of a single kinase inhibitor.
(EM 1

� EM , E P EM 1

, IM 1

E � IME Y tIu, I R IME and

IM 1

E1 � IME1 for all E1 P EM , E1 � E.) Again, there are
p|X | � |πM |q � |EM | such models M 1, with the prior
distribution uniform over such models.
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Figure 1: Overview of approach. (a) An example of a phosphorylation network. (b) Our approach couples
automatic generation of dynamical models with variable selection to infer causes πi of phosphorylation for species
i. (c) A statistical formulation (graphical model) for equilibrium phosphorylation of species i is characterised by
specifying kinases (E P Ei) and inhibitors (I P Ii,E) of kinases. Bounding boxes are used to indicate multiplicity
of variables, shaded nodes are observed with noise.

2.4 REVERSIBLE JUMP MCMC

The dimensionality of the parameter vector θM de-
pends on the model M ; dimpθM q � 1 � dimpV M q �
dimpKM q where the latter quantities are functions of
the numbers of kinases and inhibitors according to M .
Since we seek models with high posterior probability,
and noting that most models will provide insufficient
explanatory power, we implement RJMCMC (Green,
1995) to reduce the effective size of model space. Fol-
lowing Green and Hastie (2009) we enumerate all pos-
sible models as tM pkqukPK and define the across-model
state space

S �
¤
kPK

ptku �Θkq, k �
¡

EPEMpkq

ptEu � IMpkq

E q (3)

where parameters θM
pkq

for model M pkq belong to
Θk and � denotes the Cartesian product. The re-
versible jump sampler constructs an ergodic Markov
chain on S which has, as its stationary distribution,
the posterior probability distribution pps|Dq, s P S.
In particular the marginal ppk|Dq over the model
index k P K corresponds exactly to the posterior
model probabilities ppM pkq|Dq. Construction of an
efficient RJMCMC sampler requires an intuition for
the across model state space. We adopt a deliber-
ately transparent Metropolis-within-Gibbs approach
(Roberts and Rosenthal, 2006), updating one coor-
dinate of S at a time using a Metropolis-Hastings
accept/reject probability of the form αps, s1q �
minp1, Aps, s1qppD|s1q{ppD|sqq, where Aps, s1q is spec-
ified below. This calls for updates of two different
kinds:

1. Update the parameter values θM . For conve-
nience we used symmetric random walk proposal dis-

tributions which do not require density evaluation
during a Metropolis-Hastings accept/reject step (i.e.
Aps, s1q � 1). All parameters were updated simul-
taneously, with rate constants, Michaelis-Menten pa-
rameters and noise parameter proposed according to
logpV 1

i q � NplogpViq, λ
2
1q, logpK 1

iq � NplogpKiq, λ
2
2q,

logpσ1q � Nplogpσq, λ23q respectively. Specific values
for λ are discussed below.

2. Update the model index k P K. This may be ac-
complished in one of the following four ways:

(a) Add or remove a kinase E R π0. Move 2(a) be-
gins by choosing to add or remove a kinase with equal
probability, then selecting a candidate for the addition
(or removal) uniformly from all candidates. If no can-
didate is available (e.g. there are no kinases left to
remove) then no move is performed. To add an addi-
tional kinase (EM 1

� EM Y tEu, E R EM , IM 1

E � H) a
new rate constant VE and Michaelis-Menten parame-
ter KE are generated from the prior, whilst remaining
parameters remain unchanged. Reversibility implies
that removal of a kinase (EM 1

� EMztEu, E P EM )
corresponds to deletion of the removed kinase’s pa-
rameters whilst the remaining parameters are left un-
changed. We satisfy the dimension matching require-
ment by insisting new kinases initially have no in-
hibitors; conversely only kinases without inhibitors
may be removed. (Informally, dimension matching
requires that the number of parameters in the cur-
rent model, plus the rank of the proposal distribution,
must equal the number of parameters in the proposed
model, plus the rank of the reverse proposal. This
ensures all transformations are diffeomorphisms and
thus reversible; see Green and Hastie (2009) for fur-
ther details.) For addition of a kinase Aps, s1q � |tE P

EM 1

: IM 1

E � H, E R EM0

u|�1 whereas for removal



Aps, s1q � |tE P EM : IME � H, E R EM0

u|.

(b) Add or remove a kinase inhibitor I R π0. Addition
of an inhibitor (IM 1

E � IME Y tIu, I R IME ) proceeds
analogously, selecting uniformly from available can-
didates and sampling a Michaelis-Menten parameter
KI from the prior, leaving the other parameters un-
changed. Addition and removal (IM 1

E � IME ztIu, I P

IME ) have respectively Aps, s1q �
���

EPEM1 IM 1

E zπ0
���1

,

Aps, s1q �
���

EPEM IME zπ0
��.

(c) Swap one kinase for another E1 Ø E2, E1 P
πMzπ0, E2 R π

M . In this instance the new kinase E2

is assigned the same inhibitors and parameters as the
departing kinase (such a move is trivially reversible).
The uniform proposal distribution was used, so that
Aps, s1q � 1.

(d) Swap one inhibitor for another I1 Ø I2, I1 P
πMzπ0, I2 R πM . The new inhibitor inherits all pa-
rameter values associated with the previous inhibitor.
Again, the uniform proposal distribution was used so
that Aps, s1q � 1.

Moves 2(a) and 2(b) ensure irreducibility of the RJM-
CMC scheme over the space K of models. Irre-
ducibility over the across-model space S follows al-
most immediately, so that ergodicity of the chain is
assured. However, a theoretical guarantee of ergod-
icity does not guarantee practical convergence of the
chain; in particular the mixing time will depend heav-
ily on both the parameter proposal scales λ and the
Gibbs schedule. Through experimentation we found
that, for our datasets, the proposal scale parameters
λ � p0.1, 0.1, 0.1q delivered acceptable mixing. At the
Gibbs level, the deterministic schedule 1 Ñ 2paq Ñ
1 Ñ 2pbq Ñ 1 Ñ 2pcq Ñ 1 Ñ 2pdq Ñ 1 . . . offered
efficient mixing and was used for all computations in
this paper. For applications, 30,000 iterations of the
Gibbs sampler were performed, with 5,000 discarded
as burn-in. Convergence was assessed using repeated
runs from dispersed initial conditions.

3 RESULTS

In this section we empirically assess our methodology
and compare its performance with variable selection
based on the linear model. In Section 3.1 we show re-
sults using a recently published dynamical model of a
biological system due to Xu et al. (2010), where the
underlying causal graph G is known exactly. In Sec-
tion 3.2 we apply our approach to a real proteomic
dataset, which has an unknown and likely more com-
plex noise structure. Note that for both examples,
in line with our goals, we assess methods exclusively
in terms of ability to identify truly causal variables.
Gold-standard assessment is possible due to the fact
that, in the first example, causal relationships are

known by design, whereas in the second example, they
are known from extensive biochemical and biophysical
experiments. The second example is particularly chal-
lenging since Michaelis-Menten functionals most likely
represent a crude approximation to the true data-
generating system. In both cases, for fair comparison
between different methods, no informative model pri-
ors were used (i.e. we set M0 � H).

3.1 SIMULATION STUDY

Data were generated from a computational model of
the MAPK signaling pathway due to Xu et al. (2010),
specified by a system of 25 nonlinear ODEs (Fig. 2a).
The simulation gives covariates that are highly corre-
lated, as would be expected in practice, whilst provid-
ing a known causal graph G for evaluation purposes.
We note that, as is often the case in biological systems,
the causal graph G is not acyclic (Fig. 2a, dashed
edges). Some further details regarding the computa-
tional model are described in Appendix B. We intro-
duced independent Gaussian measurement noise, ad-
ditive on the log scale, of magnitude σ � 0.1, similar
to current proteomic technologies (Hennessey et al.,
2010).

We benchmarked our approach against the
linear-additive-Gaussian formulation logpXiq �
Np1β0 � DMβM , σ

2Iq with design matrix
DM � r. . . logpXjq . . . sjPπM ; the logarithm of a
vector is taken component-wise. All variables were
mean-variance standardised prior to inference. We
consider two standard approaches to inference for
the linear model, namely (1) the LASSO with
penalty parameter set according to cross valida-
tion (“Lin. Lasso”), and (2) a conjugate Bayesian
formulation (“Lin. Bayes”), based on the g-prior
βM � Np0, nσ2pD1

MDM q
�1q, with a flat prior over

the intercept ppβ0q91 and reference prior over the
noise ppσq91{σ (Zellner, 1986). For the Bayesian
approach we took a model prior ppMq to be uniform
over in-degree d � dimpβM q with the restriction
d ¤ 3. Model averaging was then used to obtain
posterior inclusion probabilities. For each of the linear
approaches (1) and (2) we also considered adjusted
variants (“Lin. Lasso Adj.” and “Lin. Bayes Adj.”)
where log-phospho-ratios logpXi{Yiq constitute the
response; this can be motivated as a simple first order
correction for variation in total protein levels.

For each phosphorylated or active species i P X in the
computational model, we sought to infer the causal
variates πi. For a fair comparison with the linear ap-
proaches that do not ascribe functional roles to vari-
ables, we did not distinguish between kinases and in-
hibitors during assessment. The resulting receiver op-
erating characteristic (ROC) curves are shown in Fig.
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Figure 2: Simulation study. (a) Computational model of the MAPK signalling pathway (Xu et al., 2010). Circles
represent proteins, rectangles represent interventions (drug treatments) used to perturb the system. For proteins,
one strike-through represents inactivity, two strikes represent degradation. Dotted lines correspond to feedback
mechanisms. (b) Average receiver operating characteristic (ROC) curves (sample size n � 24, noise σ � 0.1)
using data generated from model (a). (c) Area under ROC curve (AUR) for each of the sample size (n) and noise
(σ) regimes shown (boxplots over 5 datasets for each n, σ regime). [Legend: “Mich.-Ment”: variable selection
using equilibrium relations derived from Michaelis-Menten kinetics as described in text; “Lin. Bayes”: Bayesian
variable selection using linear model; “Lin. Lasso”: variable selection using LASSO and linear model; “Lin.
Bayes Adj.” and “Lin. Lasso Adj.”: as previous but corrected for total protein levels as described in text.]

2b. For Bayesian analyses, ROC curves were gener-
ated by thresholding posterior edge probabilities at a
level L which was then varied. Similarly LASSO co-
efficients were thresholded to produce a ROC curve.
(Note that since the data are standardised, a larger co-
efficient represents a stronger indication that a covari-
ate is implicated in the response.) Finally, ROC curves
were combined by threshold averaging (Fawcett, 2006).
Overall performance was quantified using area under
the ROC curve (AUR), aggregated over all i P X . Re-
sults are shown over 5 datasets D for each of various
combinations of sample size n and noise level σ (Fig.
2c). In all regimes our approach outperformed linear
approaches; the latter did not perform well even in this
low dimensional example. We note also that even in
the least challenging regime (n � 40, σ � 0), none of
the approaches were able to perfectly recover the en-
tire causal graph G. The adjusted regressions, which
model the log-phospho-ratio as the response, did not
outperform the standard linear regressions.

3.2 CANCER PROTEOMIC DATA

Data were obtained using reverse-phase protein arrays
(Hennessey et al., 2010) applied to a panel of breast
cancer cell lines (Neve et al., 2006). Data D comprised
equilibrium observations for p � 38 phosphorylated
proteins, in addition to their unphosphoryated coun-
terparts (Fig. 3a; data courtesy the lab of Gordon
Mills, Department of Systems Biology, The University

of Texas M. D. Anderson Cancer Center, Houston,
TX 77030, USA). Total protein levels were used as
a proxy for unphosphorylated protein concentrations
Yi. Cell lines were aggregated by subtype into basal
(n � 22) and luminal (n � 21), with each member
cell line comprising one sample. Fig. 3b displays the
result of inference for the causes πS6 for phosphoryla-
tion of the protein S6 on amino acid residues Serine
235,236. We excluded measurements of S6 phosphory-
lation on residues Serine 240,244 since this correlates
closely with phosphorylation on Serine 235,236, and
therefore particularly challenges linear approaches. It
is known in the biological literature that p70 S6 kinase
(p70S6K) acts as the kinase for S6. However, only our
approach ranks p70S6K highly (bold in Fig. 3b; rank-
ing shown in Fig. 3c) and only for the basal subtype
(Fig. 3c). In addition, it is noticeable that there is
little agreement between the apparently similar linear
formulations.

4 DISCUSSION

Motivated by the availability of classes of dynamical
models in many settings and recent insights into causal
inference using nonlinear models (Peters et al., 2011),
we sought to explore causal variable selection rooted in
nonlinear dynamical systems. We focused on the set-
ting of steady-state data, investigating whether nonlin-
ear functional classes, derived from equilibrium analy-
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Rank of the kinase p70S6K:
Basal Luminal

Mich.-Ment. 1/36 24/36
Lin. Bayes 15/36 36/36

Lin. Bayes Adj. 8/36 36/36
Lin. Lasso 20/36 NA

Lin. Lasso Adj. 19/36 NA
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Figure 3: Cancer protein data. (a) We investigated inference for the causal activators (kinases) of S6 using data
obtained from cancer cell lines. (b) Comparison of methodologies: Each point in the scatter plots represents one
phosphorylated protein, with points corresponding to the known causal influence p70S6K highlighted in bold.
Here we display weights (posterior probabilities or absolute regression coefficients) attached to each protein. (c)
Rank of p70S6K, the known activator (kinase), under different methodologies. For the luminal subtype, LASSO
approaches selected the null model.

sis of dynamical models, could enhance the ability to
infer causal influences compared to linear models.

We focused on an illustrative example from biology,
namely protein phosphorylation. Phosphorylation is a
key biochemical process where the availability of rela-
tively sophisticated “gold-standard” models, extent of
existing mechanistic insight and availability of relevant
data combine to facilitate assessment of approaches for
CVS. Our results, on simulated and real data, demon-
strated that causal relationships in protein phospho-
rylation are estimated much more successfully under
our approach than by conventional linear formulations.
Note that the correct model hypothesis is violated
in the real data example, since both our dynamical
system (Michaelis-Menten kinetics) and noise model
(Gaussian) are only crude approximations to the phys-
ical system. However, in this particular example the
identity of the true causal regulator in indeed known
from careful biophysical studies. It is therefore en-
couraging that we could correctly identify the causal
regulator, despite model mis-specification.

It is important to note that, for the biochemical mod-
els we considered, all structural information regarding
dynamics was identifiable from steady state observa-
tions. Of course, this does not hold in general and
many systems do not enjoy this favourable property.
However, a wide range of biological settings can be
modelled using dynamical descriptions similar to the
Michaelis-Menten functionals used here. Therefore,
our work should generalise to a number of biological
and chemical settings, including, among others, gene

regulation. Thus, extensions of our work could offer
the potential for substantive gains in a broad appli-
cation domain (molecular and systems biology) where
the machine learning approaches of variable selection
and structural inference are currently widely used.

Attention was restricted to the equilibrium setting. In
the general case, the equilibrium probability distribu-
tion can be unfaithful to the equilibrium graph so that
the do-calculus (Pearl, 2009) may not apply. Dash
(2003) formulated a criterion, known as equilibration-
manipulation commutability (EMC), which charac-
terises causal faithfulness at equilibrium. Put simply,
for causal reasoning based on the equilibrium graph
to be valid, the equilibrate and the do operators must
commute. Our formulation of protein phosphorylation
trivially satisfies the EMC criterion, since graph topol-
ogy is invariant under the equilibrate operator. How-
ever, to fully generalise the ideas presented here would
require investigation of these issues.

The linear approaches we used failed to perform well
on simulated data and to identify known causal influ-
ences in real data. Further, we saw that apparently
similar linear formulations can return very different
recommendations for which predictors ought to be in-
cluded in the model; one possible explanation for such
disagreement may be model misspecification. In ad-
dition to superior performance in CVS, our formula-
tion benefits from increased interpretability, ascribing
mechanistic roles to variables and relating parameters
to scientifically interpretable properties.



Peters et al. (2011) recently filled an important the-
oretical gap, demonstrating that within an identifi-
able functional model class (IFMOC) it is possible to
consistently estimate causal relationships. This is an
important step in thinking about causal inference us-
ing nonlinear models and emphasises the limitations
that arise from symmetry inherent in the the linear-
additive-Gaussian model. However, in order to for-
mally show that a given functional class constitutes an
IFMOC, the theory at present requires strong assump-
tions, including noise-free observation, that do not
hold in the systems we considered here. We demon-
strated that basing the likelihood on a relevant non-
linear dynamical system can lead to improved perfor-
mance in CVS, under practical conditions of sample
size and noise, even when observations are made at
equilibrium only. In this sense, our contribution com-
plements the theoretical results of Peters et al. (2011).
We did not investigate whether our formulation also
led to improved predictive performance (in the re-
gression sense). It would be interesting to investigate
whether improved CVS performance also confers im-
proved predictive ability.

CVS is naturally facilitated by interventional experi-
ments. Adequate modelling of the effects of interven-
tion is important to ameliorate statistical confounding
(Pearl, 2009). In testing, not presented here, we ex-
tended our methodology to incorporate imperfect cer-
tain intervention, where the interventional targets are
assumed known, but the interventions may not com-
pletely block causal influences of their targets (see
Eaton and Murphy, 2007, for a general discussion of
interventions in graphical models). In the context of
protein phosphorylation, kinases and their inhibitors
can be intervened upon using agents (such as mon-
oclonal antibodies or small molecule inhibitors). We
modelled these effects by rescaling the effective con-
centration of interventional targets, in the presence of
the treatment, as Xj ÞÑ αjXj where 0 ¤ αj ¤ 1 is an
unknown parameter capturing interventional efficacy
of the agent. Using this extended methodology we
observed that interventional experiments were more
informative than the global perturbation experiments
considered here, leading to improved AUR scores.

Variable selection based on nonlinear models is compu-
tationally challenging. We considered low-to-moderate
dimensional settings (p � 12, 38), for which the RJM-
CMC proved to be very effective. Many of the com-
putations here are trivially parallelisable, and it may
therefore be possible to extend our work to the high-
dimensional setting, using tools of the kind discussed
by Lee et al. (2010). In general, nonlinear approaches
are clearly more burdensome than their linear coun-
terparts, where highly efficient approaches, including

those based on LASSO and related penalised likelihood
schemes, allow rapid estimation even in high dimen-
sions. We therefore view the methods presented here
as complementary to variable selection based on linear
models, allowing more refined exploration of causal in-
fluences in settings where some insight into underlying
dynamics is available.

A PHOSPHORYLATION KINETICS

This short appendix describes assumptions needed to
arrive at the chemical model for protein phosphory-
lation described above. For simplicity we did not ex-
plicitly distinguish between phosphorylation on differ-
ent residues. The molecular mechanism of kinase in-
hibition entertained was competitive inhibition, where
substrate (S) and inhibitor (I) compete for the same
binding site on the enzyme (E), expressed chemically
as EI é E é ES. Furthermore, when multiple in-
hibitors (IA, IB) are present they were assumed to
act exclusively, competing for the same binding site
on the enzyme EIA é E é EIB . Dephosphoryla-
tion was assumed to occur at a rate proportional to
the amount of phosphorylated protein. The method-
ology which we presented can be generalised to other
molecular mechanisms; in particular additional mech-
anisms such as noncompetitive, uncompetitive, hyper-
bolic and parabolic inhibition (Leskovac, 2003) could
be readily integrated into our framework.

B COMPUTATIONAL MODEL

The computational model of Xu et al. (2010) contains
25 different species, of which p � 12 are active (shown
in green in Fig. 2a). The model allows for treatments,
exogenous to the statistical model, to be simulated,
effectively resulting in global perturbations of the sys-
tem (rather than interventions). Data were gener-
ated under combinatorial treatment with Cilostamide,
PKAA and EPACA (blue in Fig. 2a; we direct the
interested reader to the reference for full details of the
model and treatments), with r samples taken at equi-
librium under each treatment regime, giving a total
of n � 8r independent samples. For each sample, ini-
tial total protein levels were drawn independently from
the uniform distribution Ui � U r0, 1s, mimicking, to
some extent, natural variation due to transcriptional
regulation.
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