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Abstract

The constraints arising from DAG mod-
els with latent variables can be naturally
represented by means of acyclic directed
mixed graphs (ADMGs). Such graphs
contain directed (→) and bidirected (↔)
arrows, and contain no directed cycles.
DAGs with latent variables imply in-
dependence constraints in the distribu-
tion resulting from a ‘fixing’ operation,
in which a joint distribution is divided
by a conditional. This operation gen-
eralizes marginalizing and conditioning.
Some of these constraints correspond to
identifiable ‘dormant’ independence con-
straints, with the well known ‘Verma
constraint’ as one example. Recently,
models defined by a set of the constraints
arising after fixing from a DAG with la-
tents, were characterized via a recursive
factorization and a nested Markov prop-
erty. In addition, a parameterization
was given in the discrete case. In this
paper we use this parameterization to
describe a parameter fitting algorithm,
and a search and score structure learn-
ing algorithm for these nested Markov
models. We apply our algorithms to a
variety of datasets.

1 Introduction

Many data-generating process correspond to dis-
tributions that factorize according to a directed
acyclic graph (DAG). Such models also have an

intuitive causal interpretation: an arrow from a
variable X to a variable Y in a DAG model can
be interpreted, in a way that can be made precise,
to mean that X is a “direct cause” of Y .

In many contexts we do not observe all of the vari-
ables in the data-generating process. This cre-
ates major challenges for structure learning and
for identifying causal intervention distributions.
While existing machinery based on DAGs with la-
tent variables can be applied to such settings, this
creates a number of problems. First, there will in
general be an infinite number of DAG models such
that a particular margin of these models may rep-
resent the observed distribution; this is still true
if we require the graph to be faithful. Second,
prior knowledge about latent variables is often
scarce, which implies any modeling assumptions
made by explicitly representing latents leaves one
open to model misspecification bias. An alter-
native approach, is to consider graphical mod-
els represented by graphs containing directed and
bidirected edges, called Acyclic Directed Mixed
Graphs (ADMGs). In a companion paper we de-
fine a ‘nested’ Markov property for ADMGs that
encodes independence constraints under a ‘fixing’
operation that divides the joint distribution by a
conditional density. Given a DAG G with latent
variables there is an ADMG G∗ naturally associ-
ated with G via the operation of ‘latent projec-
tion’ [19]; the vertices of G∗ are solely the subset
of vertices in G that are observed. We show that
the observed distribution resulting from the DAG
with latent variables G obeys the nested Markov
property associated with the corresponding latent
projection G∗.
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Figure 1: (a) A latent variable DAG not entailing
any d-separation statements on x1, x2, x3, x4. (b)
An ADMG G with missing edges representing a
saturated nested Markov model.

Previous work [4] has given a discrete parameter-
ization and ML fitting algorithms, as well as a
characterization of model equivalence for mixed
graph models representing conditional indepen-
dences [1]. It is well-known, however, that mod-
els representing DAG marginals can contain non-
parametric constraints which cannot be repre-
sented as conditional independence constraints.
For instance, in any density P Markov relative
to a DAG with latents represented by the graph
shown in Fig. 1 (a), it is known (see [19, 13]) that

∂

∂x1

�

x2

P (x4 | x1, x2, x3)P (x2 | x1) = 0 (1)

This constraint can be viewed as stating that X4

is independent of X1 in the distribution obtained
from P (x1, x2, x3, x4) after dividing by a condi-
tional P (x3|x2, x1) [12]. Also note that the ex-
pression (1) is an instance of the g-formula of [13].
If the graph shown in Fig. 1 (a) is causal, then
this constraint can be interpreted as an (iden-
tifiable) dormant independence constraint [15],
which states that X4 is independent of X1 given
do(x3), where do(.) denotes an intervention [7].

Since the DAG in Fig. 1 (a) implies no conditional
independences on the 4 observable variables, the
set of marginal distributions on x1, x2, x3, x4 ob-
tained from densities over x1, x2, x3, x4, h1, h2

Markov relative to this DAG is a saturated model
when viewed as a model of conditional indepen-
dence. Thus, any structure learning algorithm
which only relies on conditional independence
constraints will return a (maximally uninforma-
tive) unoriented complete graph when given data
sampled from one of such marginal distributions.

Nevertheless, it is possible to use constraints such

as (1), which we call post-truncation indepen-
dences or reweighted independences to distinguish
between models, with appropriate assumptions.
In [16], such constraints were used to test for
the presence of certain direct causal effects (rep-
resented by directed arrows in graphical causal
models). A recent paper [11] has given a nested
factorization for mixed graph models which im-
plies, along with the standard conditional inde-
pendences in mixed graphs, post-truncation inde-
pendences of the type shown in (1). Furthermore,
a parameterization for discrete models based on
this factorization was given. Another recent pa-
per [17] has taken advantage of this parameteri-
zation to give a general algorithm for efficiently
computing causal effects. In this paper, we take
advantage of this parameterization to give a max-
imum likelihood parameter fitting algorithm for
mixed graph models of post-truncation indepen-
dence. Furthermore, we use this algorithm to con-
struct a search and score algorithm based on BIC
[14] for learning mixed graph structure while tak-
ing advantage of post-truncation independences.

The paper is organized as follows. In section 2, we
introduce the graphical, and probabilistic prelim-
inaries necessary for the remainder of the paper.
In section 3, we introduce nested Markov models.
In section 4, we give a parameterization of discrete
nested Markov models. In section 5, we describe
the parameter fitting algorithm. In section 6, we
describe the search and score algorithm. Section
7 contains our experiments. Section 8 gives our
conjecture for the characterization of equivalence
classes of mixed graphs over four nodes, and gives
experimental evidence in favor of our conjecture.
Section 9 contains the discussion and concluding
remarks.

2 Preliminaries

A directed mixed graph G(V,E) is a graph with a
set of vertices V and a set of edges E which may
contain directed (→) and bidirected (↔) edges. A
directed cycle is a path of the form x → · · · → y

along with an edge y → x. An acyclic directed
mixed graph (ADMG) is a mixed graph contain-
ing no directed cycles.



2.1 Conditional ADMGs

A conditional acyclic directed mixed graph
(CADMG) G(V,W,E) is an ADMG with a vertex
set V ∪W , where V ∩W = ∅, subject to the restric-
tion that for all w ∈ W , paG(w) = ∅ = spG(w).

Whereas an ADMG with vertex set V represents
a joint density p(xV ), a conditional ADMG is a
graph with two disjoint sets of vertices, V and W

that is used to represent the Markov structure of a
‘kernel’ qV (xV |xW ). Following [6, p.46], we define
a kernel to be a non-negative function qV (xV |xW )
satisfying:

�

xV ∈XV

qV (xV | xW ) = 1 for all xW ∈ XW .

(2)
We use the term ‘kernel’ and write qV (·|·) (rather
than p(·|·)) to emphasize that these functions,
though they satisfy (2) and thus most proper-
ties of conditional densities, will not, in general,
be formed via the usual operation of condition-
ing on the event XW = xW . To conform with
standard notation for densities, we define for ev-
ery A ⊆ V , qV (xA|xW ) ≡

�
V \A qV (xV |xW ), and

qV (xV \A|xW∪A) ≡ qV (xV |xW )
qV (xA|xW ) .

For a CADMG G(V,W,E) we consider collec-
tions of random variables (Xv)v∈V taking values
in probability spaces (Xv)v∈V conditional on vari-
ables (Xw)w∈W with state spaces (Xw)w∈W . In
all the cases we consider the probability spaces
are either real finite-dimensional vector spaces
or finite discrete sets. For A ⊆ V ∪ W we let
XA ≡ ×u∈A(Xu), and XA ≡ (Xv)v∈A. We use
the usual shorthand notation: v denotes a vertex
and a random variable Xv, likewise A denotes a
vertex set and XA. It is because we will always
condition on the variables in W that we do not
permit edges between vertices in W .

An ADMG G(V,E) may be seen as a CADMG
in which W = ∅. In this manner, though we will
state subsequent definitions for CADMGs, they
will also apply to ADMGs.

The induced subgraph of a CADMG G(V,W,E)
given by set A, denoted GA consists of G(V ∩
A,W ∩ A,EA), where EA is the set of edges in
G with both endpoints in A. Note that in form-
ing GA , the status of the vertices in A with regard

to whether they are in V or W is preserved.

2.2 Districts

A set C is connected in G if every pair of vertices
in C are connected by a path with every vertex
on the path contained in C. A connected set C in
an ADMG G is inclusion maximal if no superset
of C is connected.

For a given CADMG G(V,W,E), the induced bidi-
rected graph (G)↔ is the CADMG formed by re-
moving all directed edges from G. Similarly, (G)→
is formed by removing all bidirected edges. A set
connected in (G)↔ is called bidirected connected.

For a given vertex x ∈ V in G, the district
(c-component) of x, denoted by disG(x) is the
connected component of (G)↔. Districts in an
ADMG G(V,E) form a partition of V . In a DAG
G(V,E) the set of districts is the set of all single
element node sets of V . In a CADMG, all dis-
tricts are subsets of V , the nodes of W are not
included by definition. For an induced subgraph
GA, we write disA(x) as a shorthand for disGA(x).

2.3 The fixing operation and fixable

vertices

We now introduce a ‘fixing’ operation on an
ADMG or CADMG that has the effect of trans-
forming a random vertex into a fixed vertex,
thereby changing the graph. However, in general
this operation may only be applied to a subset of
the vertices in the graph, which we term the set
of (potentially) fixable vertices.

Definition 1 Given a CADMG G(V,W ) the set
of fixable vertices,

F(G) ≡ {v | v ∈ V, disG(v) ∩ deG(v) = {v}} .

In words, a vertex v is fixable in G if there is no
vertex v

∗ that is both a descendant of v and in
the same district as v in G.

Definition 2 Given a CADMG G(V,W,E), and
a kernel qV (XV | XW ), for every r ∈ F(G) we
associate a fixing transformation φr on the pair
(G, qV (XV | XW )) defined as follows:

φr(G) ≡ G∗(V \ {r},W ∪ {r}, Er),



where Er is the subset of edges in E that do not
have arrowheads into r, and

φr(qV (xV | xW );G) ≡ qV (xV | xW )

qV (xr | xmbG(r,anG(disG(r))))
.

(3)

We use ◦ to indicate composition of oper-
ations in the natural way, so that: φr ◦
φs(G) ≡ φr(φs(G)) and φr ◦ φs(qV (XV |XW );G) ≡
φr (φs (qV (XV |XW );G) ;φs(G)).

2.4 Reachable and Intrinsic Sets

In order to define our factorization, we will need
to define special classes of vertex sets in ADMGs.

Definition 3 A CADMG G(V,W ) is reachable
from an ADMG G∗(V ∪W ) if there is an ordering
of the vertices in W = �w1, . . . , wk�, such that for
j = 1, . . . , k,

w1 ∈ F(G∗) and for j = 2, . . . , k,

wj ∈ F(φwj−1 ◦ · · · ◦ φw1(G∗)).

In words, a subgraph is reachable if, under some
ordering, each of the vertices in W may be
fixed, first in G∗, and then in φw1(G∗), then in
φw2(φw1(G∗)), and so on. If a CADMG G(V,W )
is reachable from G∗(V ∪W ), we say that the set
V is reachable in G∗. Note that a reachable set
R in G may be obtained by fixing vertices using
more than one valid sequence. We will denote any
valid composition of fixing operations that fixes a
set A by φA if applied to the graph, and by φXA if
applied to a kernel. Note that with a slight abuse
of notation (though justified as we will later see)
we suppress the precise fixing sequence chosen.

Definition 4 A set C is intrinsic in G if it is a
district in a reachable subgraph of G. The set of
intrinsic sets in an ADMG G is denoted by I(G).

Note that in any DAG G(V,E), I(G) = {{x}|x ∈
V }, while in any bidirected graph G, I(G) is equal
to the set of all connected sets in G.

3 Nested Markov Models

We define a factorization on probability distribu-
tions represented by ADMGs via intrinsic sets.

Definition 5 (nested factorization) Let
G(V,E) be an ADMG. A distribution p(XV ) obeys
the nested factorization according to G(V,E) if for
every reachable subset A ⊆ V , φXV \A(p(xV );G) =�

D∈D(φA(G)) fD(xD|xpaG(D)\D).

A distribution p(xV ) that obeys the nested fac-
torization with respect to G is said to be in the
nested Markov model of G.

Theorem 6 If p(xV ) is in the nested Markov
model of G, then for any reachable set A in
G, any valid fixing sequence on V \ A gives
the same CADMG over A, and the same kernel
qA(xA|xV \A) obtained from p(xV ).

Due to this theorem, our decision to suppress the
precise fixing sequence from the fixing operation
is justified.

It is known that nested Markov factorization im-
plies the global Markov property for ADMGs.

Theorem 7 If a distribution p(XV ) is in the
nested Markov model for G(V,E) then p(XV )
obeys the global Markov property for G(V,E).

The proof appears in [11]. This result implies
nested Markov models capture all conditional in-
dependence statements normally associated with
mixed graphs. In addition, nested Markov models
capture additional independence constraints that
manifest after truncation operations. For exam-
ple, all distributions contained in the model that
factorizes according to the graph shown in Fig.
1 (a), obey the constraint that X1 is independent
of X4 after “truncating out” (that is, dividing by)
P (x3 | x2,1).

4 Parameterization of Binary Nested
Markov Models

We now give a parameterization of nested Markov
models. The approach generalizes in a straight-
forward way to finite discrete state spaces.

4.1 Heads and Tails of Intrinsic Sets

Definition 8 For an intrinsic set C ∈ I(G) of
a CADMG G, define the recursive head (rh) as:
rh(C) ≡ {x|x ∈ C; chGC (x) = ∅}.



Definition 9 The tail associated with a recursive
head H of an intrinsic set C in a CADMG G is
given by: tail(H) ≡ (C \H) ∪ paG(C).

4.2 Binary Parameterization

Multivariate binary distributions which obey the
nested factorization with respect to an CADMG
G may be parameterized by the following param-
eters:

Definition 10 The binary parameters associated
with a CADMG G are a set of functions: QG ≡�
qC(XH = 0|xtail(H))|H = rh(C), C ∈ I(G)

�
.

Intuitively, a parameter qC(XH = 0|xtail(H)) is
the probability that the variable set XH assumes
values 0 in a kernel obtained from p(xV ) by fixing
XV \C , and conditioning on Xtail(H). As a short-
hand, we will denote the parameter qC(XH =
0|xtail(H)) as θH(xtail(H)).

Definition 11 Let ν : V ∪ W �→ {0, 1} be an
assignment of values to the variables indexed by
V ∪W . Define ν(T ) to be the values assigned to
variables indexed by a subset T ⊆ V ∪ W . Let
ν
−1(0) = {v | v ∈ V, ν(v) = 0}.

A distribution P (XV | XW ) is said to be parame-
terized by the set QG, for CADMG G if:

p(XV =ν(V ) | XW =ν(W )) =
�

B : ν−1(0)∩V⊆B⊆V

(−1)|B\ν−1(0)| ×

�

H∈�B�G

θH(Xtail(H) = ν(tail(H))),

where the empty product is defined to be 1, and
�B�G is a partition of nodes in B given in [17].

Note that this parameterization maps θH param-
eters to probabilities in a CADMG via an inverse
Möbius transform. Note also that this parame-
terization generalizes both the standard Markov
parameterization of DAGs in terms of parameters
of the form p(xi = 0|pa(xi)), and the parameteri-
zation of bidirected graph models given in [3].

4.3 Example

Consider an ADMG G shown in Fig. 1 (b). The
parameters associated with a binary model repre-

sented by this graph are:

θ1,4(x2, x3), θ1(x2, x3), θ2,3, θ2, θ3, θ4(x2), θ3,4(x2)

Each of these parameters are functions which map
binary values to probabilities, which implies this
binary model contains 15 parameters, in other
words it is saturated. This is the case even though
G is not a complete graph. A similar situation
arises in mixed graph models of conditional in-
dependence. In such models a model represented
by a graph with missing edges may be saturated
if nodes which are not direct neighbors are con-
nected by an inducing path [18]. In particular, the
mixed graph shown in Fig. 1 represents a satu-
rated model of conditional independence because
there is an inducing path between X1 and X4.
The reason this graph does not represent a satu-
rated nested Markov model is because truncations
allow us to test independence of some pairs of non-
adjacent nodes, even if they are connected by an
inducing path. However, there are some inducing
paths which are “dense” enough such that trun-
cations cannot be used to test independence be-
tween node pairs connected by such a path. Such
a dense inducing path exists in the graph in Fig.
1 (b) between X1 and X4.

As an illustration of our parameterization, for the
graph in Fig. 1 (b), we have the following:

p(x1 = 0, x3 = 0, x4 = 0, x2 = 1) =

θ1,4(x2 = 1, x3 = 0) ∗ θ3 − θ1,4(x2 = 1, x3 = 0) ∗ θ2,3
p(x1 = 0, x3 = 0, x2 = 1, x4 = 1) =

θ1(x2 = 1, x3 = 0) ∗ θ3 − θ1(x2 = 1, x3 = 0) ∗ θ2,3
−θ1,4(x2 = 1, x3 = 0) ∗ θ3 + θ1,4(x2 = 1, x3 = 0) ∗ θ2,3

5 Parameter Fitting for Binary
Nested Markov Models

We now describe a parameter fitting algorithm
based on the parameterization in definition 11,
which relates the parameters of an nested Markov
model and standard multinomial probabilities via
the Möbius inversion formula. We first describe
this mapping in more detail.

For a given CADMG G, define PG be the set of
all multinomial probability vectors in the simplex
∆2|V |−1 which obey the nested factorization ac-
cording to G, let QG be the set of all vectors of



parameters which define coherent nested Markov
models.

The mapping ρG : QG �→ PG in definition 11 can
be viewed as a composition µG ◦ τG of two map-
pings. Here τG maps QG to the set of all terms
of the form

�
H∈�B�G θH(Xtail(H) = ν(tail(H)))

composed of parameters in QG . We denote this
set by TG . The second mapping µG maps TG to
PG via an inverse Möbius transform. In [4] these
mappings were defined via element-wise matrix
operations, with τG defined via a matrix P con-
taining 0 and 1 entries, and µG defined via a ma-
trix M containing 0, 1,−1 entries. There may be
more efficient representations of these mappings.
In particular µG may be evaluated via the fast
Möbius transform [5]. Such an efficient mapping
was given in [17].

Note that ρG is smooth with respect to each pa-
rameter. This implies we can solve many op-
timization problems for functions expressed in
terms of ρG using standard iterative methods.
The difficulty is that the fitting algorithm must
be defined in such a way that each step that starts
in the parameter space QG stays in QG . We use
the approach taken in [4], where a single step of
the fitting algorithm updates the estimates for all
and only parameters which refer to a particular
vertex v ∈ V . For a particular vector q ∈ QG , let
q(v) be the set of parameters whose heads contain
v. Let QG(v) be the subset of QG containing only
such vectors. Then the restriction of ρG to QG(v)
is a linear function since any such parameter oc-
curs at most once in in a term in TG . This im-
plies that ρG can be expressed as Av ∗QG(v)−bv

for some matrix Av and vector bv. To remain
within QG it suffices to maintain the constraint
that Avq(v) ≥ bv.

5.1 Maximum Likelihood Parameter

Fitting

We are now ready to describe our parameter fit-
ting algorithm. Our scheme closely follows that in
[4], albeit with a different parameterization. The
algorithm iteratively updates parameters q(v) for
every vertex v in turn, and at each step maxi-
mizes the log likelihood via gradient ascent. For
the purposes of this paper, we assume strictly pos-

Q-FIT(G,q, L(ρG))
INPUT:G an ADMG, q a set of parameters defin-
ing a model which obeys the nested factorization
wrt G, L(ρG) a concave function defined in terms
of ρG .
OUTPUT: q̂, a local maximum in the surface de-
fined on QG via L(ρG).

Cycle through each vertex v in G, and do

1 Construct the constraint matrices
Av,bv.

2 Fit q(v) to obtain new estimate q∗ max-
imizing L(ρG) subject to Avq(v) ≥ bv.

3 If q∗ sufficiently close to q, return q
∗.

4 Otherwise, set q to q
∗.

Figure 2: A parameter fitting algorithm for nested
Markov models.

itive counts in our data. The case of zero counts
gives rise to certain statistical complications, and
will be handled in subsequent work.

For a particular vertex v, the function we
are optimizing has the form logLG(q(v)) =�

i
ni log ρG(q(v)) where ρG is restricted to QG(v)

and is thus a linear function in q(v).

Our fitting algorithm is given in Fig. 2. Our
choice of L is the log likelihood function which is
strictly concave in q(v) by above, while our initial
guess for q are the parameters which define a fully
independent model. The optimization problem in
line 2 can be solved by standard gradient ascent
methods.

6 Structure Learning in Nested
Markov Models

A fitting algorithm which maximizes likelihood al-
lows us to do structure learning in nested Markov
models, using standard search and score methods
which use likelihood-based scoring criteria such as
BIC [14].

The algorithm is a standard greedy local search
augmented with a tabu meta-heuristic. We found
a meta-heuristic necessary for our search proce-
dure because a complete theory of equivalence of



models with respect to post-truncation indepen-
dences is not yet available. Because we do not
yet understand equivalence in this setting, we are
unable to define efficient local steps which always
move across equivalence classes as in the GES al-
gorithm for DAGs [2]. Without such steps, in
order to achieve reasonable local minima in the
score surface, the algorithm must be able to move
across score plateaus.

For the purposes of our experiments, we used
the BIC scoring function, although our approach
does not require this, and any competing scoring
method could have been used. We chose BIC due
to its desirable asymptotic properties.

We interpret the output of our search procedure
to be the “best” mixed graph model under the
assumption that every post-truncation indepen-
dence observed in the data has a structural ex-
planation. This assumption is a natural gen-
eralization of the faithfulness [18], or stability
[7] assumption from the conditional independence
setting to the post-truncation independence set-
ting. We do not pursue the precise statement of
this assumption in this paper, since doing so en-
tails defining a strong global Markov property for
nested Markov models (the post-truncation ana-
logue of d-separation in DAGs and m-separation
in mixed graphs). This property is sufficiently
intricate that its definition and properties are de-
veloped in a companion paper.

6.1 Implementation

We implemented fitting and search algorithms us-
ing the R language [8]. Our implementation was
based on an older implementation of fitting and
search for mixed graph models of conditional in-
dependence [4].

7 Experiments

To illustrate our search and score method, we used
simulated data.

7.1 Simulated Data from DAG Marginal

Models With Post-Truncation

Constraints

To demonstrate that our algorithm can suc-
cessfully learn “interesting” graphs distinct from
known DAG and MAG equivalence classes, we
have used search and score on simulated data ob-
tained from DAG models with latent variables
shown in Fig. 4. Both of these models are known
to contain post-truncation independences. The
observable nodes X1, X2, X3, X4 in the graph
shown in Fig. 4 (a) correspond to binary random
variables, while the latent node U corresponds to
a discrete random variable with 16 possible val-
ues. Similarly, the observable nodes X1, X2, X3,
X4, X5 in the graph shown in Fig. 4 (b) corre-
spond to binary random variables, while the la-
tent nodes U1, U2 correspond to discrete random
variables with 8 possible values.

The model shown in the graph in Fig. 4 (a) con-
tains two independence constraints over observ-
able variables. The first is an ordinary condi-
tional independence constraint (X1 ⊥⊥ X3|X2).
The second is a post-truncation independence
which states that X1 ⊥⊥ X4 after truncating out
P (x3 | x2). The model shown in the graph
in Fig. 4 (b) contains three independence con-
straints over observable variables. The first two
are ordinary independence constraints which state
that (X3 ⊥⊥ X1|X2) and (X4 ⊥⊥ X1, X2|X3).
The last is a post-truncation independence which
states that X4, X5 ⊥⊥ X1 after truncating out
P (x3 | x2). Note that X4 and X5 can both be
made conditionally independent of X1, but not
by using the same conditioning set.

7.2 Results

We chose parameters of the DAG models shown
in Fig. 4 in such a way as to ensure “approxi-
mately faithful” models. We then generated sam-
ples from our models and retained the values of
only X1, X2, X3, X4 in the first model, and of only
X1, X2, X3, X4, X5 in the second model. We eval-
uated the performance of our structure learning
algorithm on datasets ranging from 500 to 5000
samples (in 500 sample increments). For each
dataset size, we generated 1000 datasets randomly
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Figure 3: (a) Probability of learning the true 4 node model vs sample size. (b) Probability of learning
the true 5 node model vs sample size.

from the true models.

Figures 3 (a) and (b) show our results. The prob-
ability of learning the true model grows linearly
with sample size, with 672 4 node models out of
1000 correctly recovered, and 765 5 node models
out of 1000 correctly recovered, from 5000 sample
datasets. By “correctly recovered” we mean that
our search procedure returned one of the graphs
shown in Fig. 7 in datasets obtained from a DAG
model in Fig. 4 (a), and one of the graphs in the
appropriate equivalence class in datasets obtained
from a DAG model in Fig. 4 (b). Although there
is currently no complete theory of observational
equivalence of nested Markov models, as there is
for Markov factorizing models, we do provide ev-
idence for the characterization of all equivalence
classes of 4 node models in the next section.

8 Equivalence Conjecture for Mixed
Graphs of Four Nodes

When describing the search and score algorithm
for nested Markov models, we mentioned that no
complete theory of equivalence of models with re-
spect to post-truncation independence currently
exists. Characterization of equivalence does exist
for DAGs [19], and MAGs [1]. In this section, we
present an investigation of the issue of equivalence
with respect to post-truncation independence for
the special case of mixed graphs of four nodes.

It is known that there are exactly 543 four node

DAGs (sequence A003024 in OEIS). This implies
that there are 543 ∗ 26 = 34752 ADMGs with
four nodes. These ADMGs are arranged into
185 equivalence classes representing DAG mod-
els of conditional independence, and 63 equiva-
lence classes representing models of independence
which can be represented by a mixed graph, but
not a DAG, for a total of 248 equivalence classes.
If we consider nested Markov models, which in
addition to conditional independences imply post-
truncation independences, we expect the num-
ber of equivalence classes to expand, since two
mixed graphs may agree on all conditional inde-
pendences, but disagree on post-truncation inde-
pendences. For instance, this is the case for the
ADMG shown in Fig. 5 (a) and a complete DAG.

We conjecture that for a given ADMG G, if
the model of conditional independence [9] and
a nested Markov model agree on the parameter
count, then they define the same model [10]. This
conjecture would imply that it is sufficient to char-
acterize equivalence in ADMGs where the model
in [9] and the nested Markov model give differ-
ent parameter counts. There are exactly 228 such
ADMGs.

We conjecture that these 228 ADMGs are ar-
ranged in 84 equivalence classes. These 84 classes
fall in a small number of graph patterns with mul-
tiple classes having the same pattern but different
vertex labeling. Specifically, of the 84 classes, 24
are of type (a), shown in Fig. 5 (a), 12 are of



type (b), shown in Fig. 5 (b), 24 contain graphs
with the patterns shown in Fig. 6, and 24 contain
graphs with the patterns shown in Fig. 7.

The model contained in one of 24 singleton equiv-
alence classes shown in Fig. 5 (a) has a single
post-truncation independence which states (up to
node relabeling) that X4 ⊥⊥ X2|X3 in the distri-
bution obtained from P (x1, x2, x3, x4) after trun-
cating out P (x3 | x2, x1).

The model contained in one of 12 singleton equiv-
alence classes shown in Fig. 5 (b) has a single
post-truncation independence which states (up to
node relabeling) that X4 ⊥⊥ X3|X2 in the distri-
bution obtained from P (x1, x2, x3, x4) after trun-
cating out P (x2 | x1). The advantage of ex-
ploiting post-truncation independence is clear in
the cases shown in Fig. 5. If the best scoring
model lies in these classes, then we can recover
the model structure exactly just from observing
a single post-truncation independence, whereas
if we restricted ourselves to conditional indepen-
dence we would be unable to distinguish models
in these classes from saturated models.

The model contained in one of 24 equivalence
classes shown in Fig. 6 (which contains 5
ADMGs) has a single post-truncation indepen-
dence which states (up to node relabeling) that
X4 ⊥⊥ X1 in the distribution obtained from
P (x1, x2, x3, x4) after truncating out P (x3 |
x2, x1). In the case of models shown in Fig.
6, even though the equivalence class contains 5
graphs, these graphs agree on many interesting
(from a causal point of view) structural features.
In particular, in all elements of a particular class
the following edges are present (up to node rela-
beling): X3 → X4, X2 → X3, X2 ↔ X4. As be-
fore, these models are indistinguishable from the
saturated model with respect to standard condi-
tional independence constraints.

The model contained in one of 24 equivalence
classes shown in Fig. 7 (which contains 3 AD-
MGs) has one conditional independence which
states (up to node relabeling) that X3 ⊥⊥ X1|X2,
and one post-truncation independence which
states (up to node relabeling) that X4 ⊥⊥ X1

in the distribution obtained from P (x1, x2, x3, x4)
after truncating out P (x3 | x2). Similarly, mod-

els shown in Fig. 6 are members of equivalence
classes contains 3 graphs, yet these graphs agree
on many interesting structural features. As be-
fore, in all elements of a particular class the fol-
lowing edges are present (up to node relabeling):
X3 → X4, X2 → X3, X2 ↔ X4. These models
are indistinguishable from the (DAG) model as-
serting a single conditional independence X3 ⊥⊥
X1|X2, with respect to standard conditional in-
dependence constraints.

To confirm our conjecture, we have verified that
log-likelihood values of nested Markov models ob-
tained by Q-FIT from datasets generated from a
four node saturated model are always the same
within our conjectured classes.

Finally, we note that if our conjecture is correct,
post-truncation independences occur in about
25% (84/(248 + 84)) of four node mixed graph
equivalence classes. This suggests that, far from
being “rare and exotic,” these constraints may be
fairly common in latent variable models. This
is particularly encouraging since post-truncation
constraints seem to be quite informative for causal
discovery.

9 Discussion

We described a new class of graphical mod-
els called nested Markov models, which can be
viewed as the “closure” of DAG marginal models
which preserves all equality constraints. These
constraints include standard conditional indepen-
dence constraints, and less well-understood con-
straints which manifest after a truncation oper-
ation, which corresponds to dividing by a condi-
tional distribution. We have given a nested fac-
torization of these models which generalizes the
standard Markov factorization of DAG models,
and the factorization of bidirected graph models
[3]. We have given a parameterization for discrete
models, and used this parameterization to give
a parameter fitting and structure learning algo-
rithm for nested Markov models. Together with
results in [17], our parameter fitting scheme gives
an MLE for any identifiable causal effect in dis-
crete nested Markov models.

We have applied our structure learning algorithm
to simulated data. We have shown that our al-
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Figure 4: DAG models used in our simulation ex-
periments.

gorithm can correctly distinguish models based
on post-truncation independences, which no other
currently known discovery algorithm is capable
of doing. Finally, we used our fitting procedure
to justify a conjecture which characterizes model
equivalence with respect to post-truncation inde-
pendence in four node mixed graph models.

The advantage of our approach is twofold. First,
by representing latent variables implicitly, we are
able to reason over a potentially infinite set of
DAG models which can give rise to a particu-
lar pattern of constraints. Second, our machin-
ery explicitly incorporates post-truncation inde-
pendence, which is a kind of equality constraint
which generalizes conditional independence, and
which can be used to distinguish models which
are not distinguishable with respect to standard
conditional independence. We have shown cases
where discovering a single post-truncation inde-
pendence is sufficient to recover the full structure
of an ADMG without any ambiguity, though the
corresponding model has no standard conditional
independence constraints.

Both our nested factorization and the post-
truncation independences this factorization im-
plies have an intuitive causal interpretation. The
factorization can be thought of as decomposing
the joint distribution into tractable pieces corre-
sponding to joint direct effects on bidirected con-
nected sets, while the post-truncation indepen-
dence correspond to (identifiable) dormant inde-
pendence constraints [15], which can be viewed as
either an absence of some direct effect, or a de-
composition of a joint direct effect into multiple
smaller joint direct effects.

x1 x2 x3 x4

(a)

x1 x2 x3 x4

(b)

Figure 5: (a) An equivalence class pattern con-
taining 24 equivalence classes which in turn con-
tain 1 graph each. (b) An equivalence class pat-
tern containing 12 equivalence classes which in
turn contain 1 graph each.

x1 x2 x3 x4

(i)

x1 x2 x3 x4

(ii)

x1 x2 x3 x4

(iii)

x1 x2 x3 x4

(iv)

x1 x2 x3 x4

(v)

Figure 6: (i)-(v) Five graph patterns together rep-
resenting 24 equivalence classes, each class con-
taining 5 graphs, one from each pattern.

x1 x2 x3 x4

(i)

x1 x2 x3 x4

(ii)

x1 x2 x3 x4

(iii)

Figure 7: (i)-(iii) Three graph patterns together
representing 24 equivalence classes, each class
containing 3 graphs, one from each pattern.
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