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Summary. Typical oncology practice often includes not only an initial, frontline treatment,

but also subsequent treatments given if the initial treatment fails. The physician chooses a

treatment at each stage based on the patient’s baseline covariates and history of previous

treatments and outcomes. Such sequentially adaptive medical decision-making processes are

known as dynamic treatment regimes, treatment policies, or multi-stage adaptive treatment

strategies. Conventional analyses in terms of frontline treatments that ignore subsequent

treatments may be misleading, because they actually are an evaluation of more than front-

line treatment effects on outcome. We are motivated by data from a randomized trial of four

combination chemotherapies given as frontline treatments to patients with acute leukemia.

Most patients in the trial also received a second-line treatment, chosen adaptively and sub-

jectively rather than by randomization, either because the initial treatment was ineffective or

the patient’s cancer later recurred. We evaluate effects on overall survival time of the 16 two-



stage strategies that actually were used. Our methods include a likelihood-based regression

approach in which the transition times of all possible multi-stage outcome paths are modeled,

and estimating equations with inverse probability of treatment weighting to correct for bias.

While the two approaches give different numerical estimates of mean survival time, they lead

to the same substantive conclusions when comparing the two-stage regimes.
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1 Introduction

Confirmatory evaluation of a new cancer treatment often is based on a randomized clinical

trial with overall survival (OS) time as the primary endpoint. Compared to intermediate

outcomes that may be used because they are observed sooner, such as disease-free survival

(DFS) time or tumor response, OS time is widely considered to be the “gold standard”

for treatment evaluation because prolonging survival is the ultimate goal of cancer therapy.

A fundamental problem with this paradigm is that, in typical oncology practice, a patient

receives not only an initial, frontline treatment, but also one or more subsequent treatments,

chosen adaptively by the physician based on the patient’s history of treatments and outcomes.

Each patient’s OS time may depend on the entire sequence of treatments and the adaptive

manner in which they were chosen, rather than only the frontline treatment. Consequently, a

conventional statistical analysis of frontline treatment effects on OS that ignores subsequent

treatments actually is an evaluation of more than just the frontline treatments.

This type of sequentially adaptive medical decision-making process is known as a dynamic

treatment regime (DTR), treatment policy, or multi-stage treatment strategy. There is a

substantial statistical literature on methods for analyizing observational data having this
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structure (Robins, 1986; Robins and Rotnitzky, 1992; Murphy, van der Laan and Robins,

2001; Lunceford, Davidian and Tsiatis, 2002; Murphy, 2003; Wahed and Tsiatis, 2004, 2006).

There also is a growing literature on methods for designing clinical trials to evaluate DTRs

(Lavori and Dawson, 2000, 2004; Thall, Millikan and Sung, 2000; Thall, Sung and Estey,

2002; Murphy, 2005; Zhao, Kosorok and Zeng, 2009).

The problem that motivates this paper, and that will play a central role in determining

our models and analytical methods, arises from the therapeutic decisions that oncologists

make when a patient’s frontline treatment has failed. In such cases, it is common clinical

practice to administer a second line, “salvage” treatment that is different from the patient’s

frontline treatment. The dataset that we will analyze arose from a randomized trial of four

combination chemotherapies given as frontline treatments to patients with poor prognosis

acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS). Chemotherapy

(chemo) of AML/MDS proceeds in stages. A “remission induction” chemo combination is

given first, with the aim to achieve a complete remission (CR), defined as the patient having

< 5% blast cells, a platelet count > 105/mm3 and white blood cell (WBC) count > 103/mm3,

based on a bone marrow biopsy. If the induction chemo does not achieve a CR, or a CR is

achieved but the patient suffers a relapse, then a salvage chemo usually is given in a second

attempt to achieve a CR. The AML/MDS trial used a 2×2 factorial design with chemo

combinations fludarabine + cytosine arabinoside + idarubicin (FAI), FAI + all-trans retinoic

acid (ATRA), FAI + granulocyte colony stimulating factor (G-CSF) and FAI + ATRA +

G-CSF. The primary aim was to assess the effects of adding ATRA, G-CSF, or both to FAI

on the probability of success, defined as the patient being alive and in CR at six months.

Analyses of this dataset have been reported previously (Estey, Thall, Pierce at el., 1999),

using conventional methods including logistic regression, Kaplan-Meier estimates, and Cox
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model regression, assuming that the only relevant treatments were the frontline therapies.

Consideration of both frontline and salvage therapies leads to a far more complex picture

of the interplay between treatments and outcomes. The possible pathways that a patient’s

actual course of therapy may have taken in the trial are illustrated in Figure 1, which shows

that a patient may die (i) during induction therapy, (ii) following salvage therapy given if

the disease is resistant to induction, (iii) while in CR, or (iv) following disease progression

after CR. The reasons for these different types of death are complex. For example, a patient

might die while in CR due to cumulative damage to the patient’s immune system and internal

organs from either the chemo or the leukemia.

Our primary goal is to evaluate the effects of (induction, salvage) strategies on OS. To

do this, we will keep track of all transition times between states (Figure 1). We characterize

treatment regimes by the triple d = (A,B1, B2), where A denotes induction therapy, B1

denotes salvage therapy for patients whose disease was resistant to induction, and B2 denotes

salvage therapy for patients with disease progression following a CR achieved with induction.

For regime (A,B1, B2), each patient received A only, (A,B1), or (A,B2). We will discuss this

point further in Section 2. We focus on regimes rather than individual treatments because

the optimal regime dopt = (A,B1, B2)opt may not correspond to what would be obtained

by optimizing A, B1, and B2 separately at each stage of therapy. A common example in

AML/MDS is that an aggressive frontline treatment may maximize Pr(CR), but it also may

cause so much damage to the patient’s immune system that a rapid relapse is likely and

any salvage therapy B2 given after relapse is unlikely to achieve a second CR. For example,

suppose two induction regimens, A(1) and A(2), both provide 12 month mean OS if CR is

achieved, Pr(CR | A(1)) = 0.60 and Pr(CR |A(2)) = 0.40, and both have induction death

probabilities 0.10. While this suggests that A(1) is greatly superior to A(2), if A(1) is more
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immunosuppressive so that any salvage regimen B1 given following resistance to A(1) has 2

month mean OS compared to 12 months with salvage following resistance to A(2), then the

overall mean OS is 0.60×12 + 0.30×2 = 7.8 months for (A(1), B1, B2) and 0.40×12 + 0.50×12

= 10.8 months for (A(2), B1, B2). For treating solid tumors, a particular frontline chemo A

may be suboptimal as frontline chemo to eradicate the tumor, but have a high probability

of debulking the tumor so that it is surgically resectable. Thus, the strategy (A, surgery)

may be optimal to maximize OS. Such synergies may have profound implications for clinical

practice, since a physician giving Aopt determined by considering only frontline treatments

may unknowingly be setting patients on pathways that include only inferior regimes.

In the AML/MDS trial, patients were randomized among the four induction combinations

to choose A, whereas the salvage treatments B1 and B2 were chosen subjectively by the

attending physicians on a patient-by-patient basis. Consequently, considering the multi-

course structure of the patients’ actual therapy, the data are observational because salvage

treatments were not chosen by randomization. This motivates our use of inverse probability

of treatment weighted (IPTW) estimation (Robins, Hernan, and Brumback, 2000), which

accounts for the variation in receiving a specific treatment by weighting each observation by

the inverse of the propensity (estimated probability) of receiving that treatment.

In Section 2 we describe the data structure and establish notation for the outcomes,

treatment regimes and likelihoods. Families of parametric models for the transition times

are given in Section 3. Analyses of the AML/MDS data aimed at estimating the effects

of treatment regimes on OS are given in Section 4, including both a model-based approach

and the use of estimating equations. The results are contrasted with those of conventional

analyses that ignore salvage therapy. We close with a brief discussion in Section 5.

5



Figure 1: Possible pathways of successive states, transition times and salvage therapy follow-

ing induction treatment in acute leukemia patients.
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2 Data Structure and Likelihoods

To provide a framework for analyzing the treatment regimes actually used in the AML/MDS

trial, we first establish notation for the transition times and their likelihoods. As shown

by Figure 1, at the start of therapy the three possible events {death without the patient’s

disease being declared resistant or achieving CR}, {disease resistant to induction treatment}

and CR are competing risks, since at most one can occur. We denote the respective times

to these events from the start of induction by TD, TR and TC . To keep track of which event

occurred, denoting a ∧ b = minimum{a, b}, we define Z1 = 0 if TD < TR ∧ TC , Z1 = 1 if

TR < TD ∧ TC , and Z1 = 2 if TC < TD ∧ TR. The transition time from the patient’s disease

being declared resistant to death is denoted by TRD, which is defined only if Z1 = 1. For

patients whose induction therapy achieved a CR, subsequent progressive disease and death

in CR are competing risks, the transition times to these events are denoted by TCP and TCD,

and we define the indicator Z2 = I(TCP < TCD) to record which of these two events occurred

after CR. The transition time from disease progression to death is T PD, which is defined only

if Z2 = 1. Similarly, TCP , TCD and Z2 are defined only if Z1 = 2. The distinction between a

variable being well-defined and being potentially observable is important. For example, the

potentially observable variable TR is not defined if Z1=0.

Aside from discontinuation of therapy due to a reason other than death, including ad-

ministrative right censoring or drop-out, each patient’s observed sequence of transition times

consisted of exactly one of the four vectors (TD), (TR, TRD), (TC , TCP , T PD), or (TC , TCD),

with Z1 the only outcome variable observed for all patients. The seven transition times, Z2,

and these four vectors may be thought of as counterfactual outcomes (Holland, 1986), in the

sense that together they describe all possible outcome paths but each patient had only one
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outcome. Each patient’s OS time may be expressed formally as follows:

T =






TD if Z1 = 0

TR + TRD if Z1 = 1

TC + TCP + T PD if Z1 = 2 and Z2 = 1

TC + TCD if Z1 = 2 and Z2 = 0 .

(1)

Table 1 summarizes the counts and median transition times for the seven possible events

illustrated in Figure 1 for the leukemia data. These include the three induction therapy out-

comes (indexed by Z1) for each treatment arm, and the four possible subsequent outcomes.

Because there were many different salvage treatments, we classified salvage as either con-

taining high dose ara-C (HDAC) or not. The small discrepancy between the treatment arm

sample sizes in Table 1 and those reported by Estey et al. (1999, Table 1) are due to exclusion

of five ineligible patients and correction of two patients’ treatment assignments. Although

Table 1 does not account for covariates, it shows the generally poor outcomes in that only 48%

of patients achieved a CR while 33% died during induction therapy, with this type of death

very likely to occur in less than two months. The times to achieve CR or for the patient’s

disease to be declared resistant to induction were similarly short, with all patients’ initial

outcomes almost certainly known within 112 days from the start of therapy. For induction

therapy outcomes, an apparent difference was that, in the two arms that included G-CSF,

both Pr(Death) and Pr(CR) were higher and Pr(Resistant Disease) was lower compared to

the two non-G-CSF arms. For the salvage therapy outcomes, while there did not appear to

be any difference between HDAC and other treatments in terms of the probabilities of death

following either resistant disease or progression after CR, both residual survival times in these

cases were much longer for patients who received a non-HDAC regimen as salvage. However,

these conclusions ignore the combined effect of (frontline, salvage) on OS, which cannot be
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Table 1: Summary of outcomes following induction and salvage therapy, overall and by
frontline treatment. The sample median of each transition time is given in days, with lower
and upper 95% confidence interval limits subscripted on the left and right.

Initial Outcomes Following Induction Therapy
Death Resistant Disease CR Total

Group N (%) TD N (%) TR N (%) TC N
All Patients 69 (33) 222432 39 (19) 515970 102 (48) 303234 210

FAI 17 (31) 212752 17 (31) 416397 20 (37) 293144 54

FAI+ATRA 15 (28) 182244 13 (24) 555976 26 (48) 293144 54

FAI+G 20 (38) 223245 4 (8) 2777112 28 (54) 293640 52

FAI+G+ATRA 17 (34) 142130 5 (10) 485170 28 (56) 283238 50

Outcomes Following CR or Resistant Disease

Death After Res Death in CR Prog After CR Death After Prog
N (%) TRD N (%) TCD N (%) TCP N (%) T PD

All Patients 37 (95) 6279148 9 (9) 46293345 93 (91) 190256329 83 (93) 106128175

HDAC 25 (93) 2765117 – – – – 47 (89) 6298253

Other Trt 12 (100) 82130252 – – – – 36 (90) 122158191
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determined either from the summaries in Table 1 or from conventional analyses based only

on patient baseline covariates and frontline therapy.

As shown by Figure 1, all patients received induction, and a second decision to choose a

salvage treatment was made if either Z1 = 1, for salvage B1 following resistant disease, or

Z1 = 2 and Z2 = 1, for salvage B2 following progressive disease after CR. Under strategy

(A,B1, B2), a patient cannot receive both B1 and B2 since achieving CR and having disease

resistant to induction are disjoint events, and patients who die during induction receive

neither B1 nor B2. Thus, each strategy is inherently outcome-adaptive. Denote the set

of possible induction treatments by A = {a1, · · · , ak}, the possible salvage treatments for

patients with resistant disease by B1 = {b1,1, · · · , b1,l1}, and the possible salvage treatments

for patients with disease progression after CR by B2 = {b2,1, · · · , b2,l2}. In typical practice,

the oncologist chooses each patient’s induction regimen based on diagnostic information,

such as the cytogenetic abnormality characterizing the leukemia, WBC count, platelet count,

age, and performance status. In contrast, the AML/MDS dataset arose from a randomized

trial of four induction treatments {a1, a2, a3, a4} in the 2×2 factorial design described earlier,

with Pr(A = aj) = 1
4 for each j = 1, 2, 3, 4. The salvage treatments were not assigned

by randomization, but rather were chosen subjectively by each patient’s attending physician.

Denoting the interim data for a patient with resistant disease byHR and the data for a patient

with progressive disease after CR by HC,P , the salvage treatment decisions are functions

B1 : HR → B1 and B2 : HC,P → B2. Salvage treatment in the first case is given at time

TR, and in the second case at time TC + TCP . One may formulate d more generally as a

two-stage regime (A,B) in which B is a function from the set of all possible interim data

{HR∪HC,P} that would require salvage therapy B = B1∪B2. We consider it more informative

to distinguish between the two types of salvage treatment, B1 and B2, because they are given
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following qualitatively different patient histories. A treatment in B1 is an attempt to save a

patient whose induction therapy failed, whereas a treatment in B2 is an attempt to re-induce

CR after it was achieved initially but the patient’s disease later progressed.

Each of the following distributions varies with patient covariates, X = (X1, · · · , Xq). To

reduce notation, we suppress this dependence when no meaning is lost. For initial outcome

j = D, R, or C, denote by hj(t|A) the instantaneous risk of j at time t. To accommodate

right-censoring, we denote the time from start of induction to last follow up by T 0, the time

to initial outcome j or right-censoring by U j = T j ∧ T 0, and δj = I(U j = T j). Note that

at most one of UD, UR or UC may be observed for each patient. We also assume, from

here onwards, that censoring is conditionally independent of the transition times given prior

transition times and other covariates including prior treatment (for example, the probability

of being censored after resistance is independent of time from resistance to death given X

and TR). In this case, the likelihood contribution for the initial outcome is

L1 = Πj=D,R,C{f
j(T 0

| A)}I(Z1=j)δj
{F

j
(T 0

| A)}1−δj , (2)

where f j(t|A) = hj(t|A) exp
�
−
� t

0 h
j(s|A)ds

�
, and F

j
(t | A) = exp

�
−
� t

0 h
j(s|A)ds

�
. For

patients with resistant disease, where Z1 =1 and TR is observed, denote URD = TRD ∧ (T 0−

TR) and δRD = I(TRD = URD). Thus,

URD =





TRD if TR + TRD < T 0

T 0 − TR if TR < T 0 < TR + TRD.

Denote the instantaneous risk of death at time t following resistance (Z1 = 1), given the time

to resistance TR, by hRD|R(t | TR, A,B1) for patients receiving A as induction, becoming

resistant to A, and receiving B1 as salvage. The likelihood contribution of such patients is

L2,R = {fRD|R(URD
| TR, A,B1)}

δRD
{F

RD|R
(URD

| TR, A,B1)}
1−δRD

, (3)
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where

fRD|R(t| TR, A,B1) = hRD|R(t| TR, A,B1) F
RD|R

(t| TR, A,B1), (4)

and

F
RD|R

(t| TR, A,B1) = exp

�
−

� t

0

hRD|R(s| TR, A,B1)ds

�
. (5)

Similarly, for patients achieving CR, so that Z1 = 2 and TC is observed, define UCD

= TCD ∧ (T 0 − TC), δCD = I(TCD = UCD), if there is no progression in disease (death or

censoring occurs after remission), and UCP = TCP ∧(T 0−TC), and δCP = I(TCP = UCP ), if

death does not occur before disease progression or censoring. Denote the instantaneous risk of

death following remission for patients receiving induction treatment A at time t before disease

progression by hCD|C(t | TC , A). Similarly, define hCP |C(t | TC , A) as the instantaneous risk

of progression prior to death following remission at time t, given TC and A. For patients who

suffer progressive disease after CR, so that Z = (2,1), define T PD,0 = T PD∧{T 0−(TC+TCP )}

and δPD = I(TCD = UCD). Denote the conditional instantaneous risk of death following

progression at time t for patients who achieve CR at time TC with frontline A, then suffer

progressive disease at time TC+TCP and are given salvage B2 by hPD|CP (t | TC , TCP , A,B2).

The contribution to the likelihood from a patient who achieves remission is therefore

L2,C =
�
{fCD|C(UCD

| TC , A)}δ
CD

�I(Z2=0)

×

�
{fCP |C(UCP

| TC , A)}δ
CP

�I(Z2=1)

× {F
CD|C

(UCD
| TC , A)F

CP |C
(UCP

| TC , A)}1−δCD−δCP

×

�
{fPD|CP (T PD,0

| TC , TCP , A,B2)}
δPD

× {F
PD|CP

(T PD,0
| TC , TCP , A,B2)}

1−δPD
�I(Z2=1)

, (6)

where each pair f j(· | ·) and F
j
(· | ·) are defined based on hj(· | ·) similarly to the definitions
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given in the Equations (4) and (5).

Combining expressions (2), (3), and (6), the overall likelihood is

L = L1 × {L2,R}
I{Z1=1}

× {L2,C}
I{Z1=2}. (7)

3 Parametric Models

For each of the seven transition times, TD, TR, TRD, TC , TCD, TCP , and T PD, we used para-

metric regression models to account for effects of the baseline covariates and the treatment

or treatments received prior to the noted event. For example, to model TD when Z1 = 0,

the time to death during induction therapy, we fit members of the class of accelerated failure

time (AFT) regression models given by

lnTD
i = Xiβ

D + σD�i, for i = 1, . . . , n.

To obtain a good fit to the data we assumed, in turn, that �i followed an extreme value,

standard extreme value (with fixed scale), logistic, or normal distribution. These give, respec-

tively, Weibull, exponential, log-logistic, or log-normal distributions for TD. The log of any

transition time observed prior to the transition time variable being modeled was included in

X along with the baseline covariates. Specifically, the model for [TRD | TR] included log(TR),

for [TCP | TC ] included log(TC), for [TCD | TC ] included log(TC), and for [T PD | TC , TCP ]

included log(TC) and log(TCP ) as covariates. For each of the seven transition times, we com-

pared the fits of the four AFT regression models in terms of their Bayes information criterion

(BIC, Schwarz, 1978) values, and we used this to choose a best model. We compared the

different treatment strategies by combining the fitted regression models to estimate mean OS

time for the distribution of [T |A,B1, B2].
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4 Evaluating Treatment Policies

The departure of our analyses from conventional evaluation of the effects of the induction

treatments on OS or progression-free survival time begins with recognition of the facts that

patients whose disease was resistant to induction, Z1 = 1, or whose disease progressed after

CR, Z = (2, 1), received salvage therapy. Our primary goal is to estimate and compare the

effects of the strategies (A,B1, B2) on OS time while also accounting for baseline covariate

effects. We will address this in two ways, one model-based and the other utilizing IPTW esti-

mating equations. Let θ(A,B1, B2) denote the summary parameter for the regime (A,B1, B2).

For example, θ(A,B1, B2) could be P (T > t∗|A,B1, B2), the survival probability beyond a

particular time t∗ that is clinically meaningful, or E(T |A,B1, B2), the mean OS time under

regime (A,B1, B2). In our analyses, we use the latter. Mean OS can be expressed in terms

of the parameters of counterfactual survival times, as follows:

θ(A,B1, B2) =

� �
Pr(Z1 = 0|A,X)θD(A,X) + Pr(Z1 = 1|A,X)

�
θR(A,X)

+

�
θRD(A,B1, X,X(R))dµ(X(R))

�

+ Pr(Z1 = 2|A,X)

�
θC(A,X) +

� �
Pr(Z2 = 0|Z1 = 2, A,X,X(C))

×θCD(A,X,X(C)) + Pr(Z2 = 1|Z1 = 2, A,X,X(C))
�
θCP (A,X,X(C))

+

�
θPD(A,B2, X,X(C), X(P ))dµ(X(P ))

��
dµ(X(C))

� �
dµ(X), (8)

where X represents the baseline covariates, X(R) denotes post baseline covariates observed

at or before treatment resistance, including log(TR), X(C) denotes post baseline covari-

ates observed at or before observing CR, including log(TC), and X(P ) denotes the post-

remission covariates observed at or before disease progression, including log(T P ). For j ∈

{D,R,RD,C,CP,CD, PD}, θj(·) is the conditional expectation of T j given the arguments
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and other necessary conditions for the existence of T j. For example, θPD(A,B2, X,X(C), X(P )) =

E[T PD|Z = (2, 1), A,B2, X,X(C), X(P )]. The measures µ(X) and µ(X(j)) are defined by the

probability distribution of the covariates, and we estimate these using the empirical measures.

Equation (8) is an application of Robins’ g-formula (Robins et al., 2000) for estimating the

effects of time-varying treatment regimes.

Once the component models are fit, we substitute them into the expressions above to

obtain the estimates for θ(A,B1, B2). In contrast with the likelihood-based equation (8), the

IPTW estimates for strategy-specific overall mean survival is

�n
i=1 WAB1B2iTi�n
i=1 WAB1B2i

, (9)

where

WAB1B2i =
Ii(A)δi

K̂(Ti)

�
I(Z1i = 0) + I(Z1i = 1)Ii(B1)/P̂ r(B1|Z1i = 1, A,Xi, X

(R)
i )+

I(Z1i = 2, Z2i = 0) + I(Z1i = 2, Z2i = 1)Ii(B2)/P̂ r(B2|Zi = (2, 1), A,Xi, X
(C)
i , X(P )

i )
�
. (10)

In equation (10), K̂(·) is a consistent estimator of the censoring time survival distribution,

δi is the indicator of whether death was observed for the ith patient, Ii(E) is an indicator

function taking the value 1 if ith patient receives treatment E and the value 0 otherwise,

and I(Ei) takes value 1 if the event Ei is true, and 0 otherwise. Under certain assumptions,

such as consistency (observed data equals the counterfactual data under consistent treatment

assignment) and the sequential randomization assumption, which states that the probability

of receiving treatment at a specific stage is independent of unobserved failure times given the

covariates observed prior to treatment assignment, the above estimator has been shown to

be consistent (Robins and Rotnitzky, 1992).

Secondary aims are to assess the effects of salvage treatments on the patient’s remaining
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survival time, after resistant or progressive disease is observed, as a function of past history.

Specifically, we will evaluate and compare the effects of B1 on TRD given A and TR, and the

effects of B2 on T PD given A, TC and TCP .

5 Analyses of the Leukemia Data

It is well-known that age and type of cytogenetic abnormality (cyto) are highly reliable

predictors of the probability of CR and OS time in AML/MDS. In particular, cyto (-5,-

7), characterized by missing portions of the 5th and 7th chromosomes, and older age both

are strongly associated with a lower probability of CR and shorter OS. Because this trial’s

entry criteria required patients to have at least one unfavorable prognostic characteristic,

the distributions of age and cyto were different from those seen in the population of newly

diagnosed AML/MDS patients. E.g., only 4 patients had the comparatively favorable cyto

inv-16, an inversion of the 16th chromosome, or t(8,21), a translocation between chromosomes

8 and 21. Consequently, to take advantage of cyto as a prognostic variable in our regression

analyses, we grouped cyto into three categories: poor = {(-5,-7)}, intermediate = {diploid,

-Y, or insufficient metaphases to classify} or good = {+8, 11q, inv-16, t(8,21), other}. We

used covariates for two different purposes: (i) to model the transition times (e.g. time to

death, time between complete remission and death, etc.) in the likelihood-based method,

and (ii) to model the probability of receiving each salvage treatment in the IPTW method

(using logistic regression). To realize the first objective, we fit AFT models for each of the

seven failure times (TD, TR, TC , TRD, TCD, TCP , and T PD), assuming various parametric

hazard models (exponential, Weibull, log-logistic, and lognormal), as described in Section 3.

For some of these event times the data were quite variable, and included a small number of
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outliers that were extremely large compared to the other sample values. Consequently, to

ensure stability of the model fits, six of the seven component models were fit by restricting

the time to the particular event to a fixed upper limit, with the limits set by first examining

the observed distribution of each event time. Specifically, the variables TD, TC , TRD, TCD,

TCP , and T PD were restricted to 100, 110, 1408, 692, 1326, and 2274 days, respectively. The

Bayesian information criterion (BIC) for the 28 model combinations are shown in Table 2.

For each time component, the best model was chosen to be that minimizing the BIC among

the four AFT distributions noted above. The best models were exponential for TRD and

TCD, Weibull for TD, log-logistic for TC and TCP , and lognormal for TR and T PD (Table 2),

regardless of whether the outliers were included or excluded in the model fitting. We present

details of the model fits without outliers.

5.1 Death During Induction Therapy

Unfortunately, many AML patients undergoing chemo to induce CR die during this process,

before either CR is achieved or it can be determined that the patient’s disease is resistant

to the induction chemo. While such deaths may be attributed to either the leukemia or

the chemo, so called “regimen-related death,” due to the fact that both the disease and the

treatment cause low WBC counts and other adverse events it often is very difficult to identify

a sole cause of death. The patients in this study were especially susceptible to induction death

due to their poor prognosis at trial entry, with overall rate of death during induction chemo

33% (69/210), varying from 28% to 38% across the four induction regimens (p-value = 0.70,

generalized Fisher exact test). In the fitted model for the three induction event times (Table

3), no baseline covariate was significantly associated with TD. There did not appear to be
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Table 2: Bayesian information criterion (BIC) for each of four different models fit to each

transition time in the leukemia dataset. For each transition time, the minimum BIC is

underlined.

Time to Exponential Weibull Log-logistic Log-normal

death (TD) 204.9 197.4 199.3 205.5

resistance (TR) 108.7 65.9 63.1 60.8

CR (TC) 247.5 131.3 91.5 92.6

death from resistance (TRD) 157.5 161.4 166.5 171.8

death from CR (TCD) 28.0 31.9 29.4 29.2

disease progression from CR (TCP ) 271.2 259.3 248.4 251.8

death from disease progression (T PD) 288.9 297.0 284.9 282.7
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Table 3: Maximum likelihood estimates from AFT model for time to death, resistance, and
complete remission during induction stage. Each parameter estimate is given with 95%
confidence interval limits subscripted on the left and right.

Time to
Death Resistance CR

Distribution Weibull Log-normal Log-logistic
Intercept 2.803.794.80 3.674.365.05 3.103.383.65
Frontline Therapy
FAI −0.150.290.73 −0.230.130.50 −0.130.050.22
FAI+ATRA −0.400.080.56 −0.220.170.57 −0.21 − 0.050.11
FAI+G −0.290.230.60 −0.420.090.59 −0.110.050.22
FAI+G+ATRA ref - -

Age (per year) −0.02 − 0.0050.01 −0.016 − 0.0070.002 −0.00150.00230.006
Cytogenetic Group*
0 vs. 2 −0.57 − 0.130.30 −0.22 − 0.110.43 −0.22 − 0.080.05
1 vs. 2 −0.57 − 0.170.24 −0.130.040.21

σ 0.540.650.79 0.300.380.47 0.150.170.20

*0 = (“DIP,-Y”,“IM”), 1=“-5,-7”, 2=(“+8”, “11Q”, “INV16”, “T(8,21)”, “MISC”).

any significant difference between the induction treatment effects on TD, although ATRA

may have had a slightly deleterious effect in that, among the 69 patients who died during

induction, the patients in the two ATRA arms died a few days sooner, on average.

5.2 Resistance and death following resistance

Resistance to induction treatment occurred in 39 (18.6%) patients, relatively more frequently

among patients receiving FAI and FAI+ATRA (31% and 24% respectively) compared to those

who received FAI+G or FAI+ATRA+G (7.8% and 10% respectively). The times to treatment

resistance were similar across the four induction treatments, but with greater variability in

the FAI +G arm (Table 3).

Among the 39 patients who were resistant to frontline treatment, 27 were given HDAC
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as salvage treatment. Two patients in this cohort were censored prior to observing death.

Using likelihood ratio tests, factors that were associated with time from induction treatment

resistance to death were age, log(TR), frontline therapy, HDAC as salvage (B1) and their

interaction (Table 4). Patients with older age, shorter TR, frontline therapy FAI+G+ATRA,

or salvage with HDAC died more quickly following their disease being declared resistant.

Among patients given non-HDAC salvage, TRD was significantly greater if they received

FAI+ATRA or FAI+G compared to those who received FAI+G+ATRA as the induction

treatment. Also, for patients receiving FAI+G as induction and HDAC as salvage following

treatment resistance, TRD was significantly larger than those who received FAI+G but no

HDAC or FAI+G+ATRA either with or without HDAC salvage.

5.3 Complete remission, progression and death after remission and

progression

About half (48.6%) of the 210 patients achieved CR, with CR rates of 37, 48, 53, and 56% in

the FAI, FAI+ATRA, FAI+G and FAI+G+ATRA arms, respectively. Time to achieve CR

did not differ significantly with frontline therapy (Table 3). Of the 102 patients who achieved

CR, 93 (91%) had disease progression before death or being lost to follow-up. Among these,

53 (57%) received HDAC as salvage treatment. Since there were only 9 patients who died

in CR, an intercept-only exponential AFT model was used for modeling TCD. On the other

hand, to model time between CR and progression (TCP ), a log-logistic model gave the best

fit based on BIC values. Results for this fitted model are provided in Table 4.

Cytogenetics and TC were associated with TCP . The longer it took to achieve CR,

the shorter the period of time the patient remained in CR, a well-known phenomenon in

chemotherapy for AML/MDS (Shen and Thall, 1998; Estey, Shen and Thall, 2000). Recall
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Table 4: Maximum likelihood estimates from AFT models for residual time to death following
disease being declared resistant to induction (TRD), time to disease progression following
complete remission (TCP ), and time to death from progression (T PD). Each parameter
estimate is given with 95% confidence interval limits subscripted on the left and right.

Time
TRD TCP T PD

Distribution Exponential Log-logistic Lognormal
Intercept −6.31 − 1.323.68 6.498.119.73 −0.721.253.23
Frontline therapy
FAI vs. FAI+G+ATRA −0.570.641.85 −0.420.170.76 −0.86 − 0.210.45
FAI+ATRA vs. FAI+G+ATRA 0.551.833.10 −0.280.290.86 −0.090.501.09
FAI+G vs. FAI+G+ATRA 0.872.834.80 0.030.621.21 −0.300.270.84

Cytogenetic Group*
0 vs. 2 −0.770.291.36 −0.340.030.41 −0.56 − 0.050.45
1 vs. 2 −0.460.491.44 −0.95 − 0.52−0.10 −0.90 − 0.320.26

Age (per year) −0.05 − 0.010.03 −0.006 − 0.0040.014 −0.04 − 0.03−0.01

log(Time to resistance) 0.111.202.30 – –
log(Time to CR) – −1.29 − 0.83−0.37 –
log(Time to disease progression) – – 0.550.851.16
Salvage therapy
HDAC ( vs. others) −4.07 − 1.610.85 −0.94 − 0.340.27 −0.84 − 0.390.06

Interaction between induction and salvage therapy
FAI×HDAC (vs others) −2.310.282.88 −0.13 − 0.801.73
[FAI+ATRA]×HDAC (vs others) −0.991.664.31 −0.220.641.51
[FAI+G]×HDAC (vs others) 1.024.257.48 0.371.202.03

Scale 0.340.400.49 0.850.991.15

*0 = (“DIP,-Y”,“IM”), 1=“-5,-7”, 2=(“+8”, “11Q”, “INV16”, “T(8,21)”, “MISC”).
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that cytogenetic abnormalities were classified as good (“+8”, “11Q”, “INV16”, “T(8,21)”,

“MISC”), intermediate (diploid, -Y or inevaluable), or poor (-5/-7). Patients with a “good”

cytogenetic abnormality were more likely to stay in CR longer than those in the intermediate

or poor categories.

Residual time to death from disease progression after achieving CR was associated with

age at entry, time to disease progression following CR, and slightly with HDAC salvage. Older

patients were likely to have shorter residual life once disease progressed, compared to younger

patients. Longer time to disease progression was associated with longer time between disease

progression and death.

5.4 Strategy effects

Mean OS time estimates under each of the 16 different strategies in the leukemia data were

calculated using both the likelihood-based method and the IPTW method, from formulas

(8) and (9), respectively. Confidence intervals for these estimates were calculated using a

non-parametric bootstrap method based on 500 with-replacement samples. The results are

presented in Table 5.4. The likelihood-based bootstrap confidence intervals are illustrated in

Figure 2 using the data with outliers removed, and in Figure 3 using the entire dataset.

It is clear from Table 5 that the two methods give very different estimates for mean OS

time, with the likelihood-based estimator larger than the corresponding IPTW estimator for

all strategies. The conference intervals for the likelihood-based estimators were wider for

10 strategies and narrower for 6 strategies. These differences are not entirely surprising,

since the two methods are very different. The likelihood-based method defines OS time in

terms of the seven transition times via (1), it uses regression models to account for effects of

patient covariates and previous transition times, in addition to treatments, on each transition
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time, and it marginalizes over the covariate distributions to obtain θ(A,B1, B2). Thus, the

likelihood-based method estimates many covariate effects, which may be considered nuisance

parameters. In contrast, the IPTW estimator ignores this structure and uses the covariates

very differently, to estimate the strategy probability weights. Additionally, modeling each

time-to-event variable separately reduces the effective sample size for each model fit and thus

increases the overall variability of the strategy mean estimates, whereas the IPTW estimates

are calculated from the overall sample, where time to death is the main source of random

variation.

The substantive conclusions regarding the comparative effects of the 16 strategies are es-

sentially the same for the two methods, however. Under both methods, the mean survival time

estimates were smallest for the four strategies with FAI as frontline regardless of salvage, with

the exception that under the likelihood-based analysis the strategy (FAI+G+ATRA, HDAC,

HDAC) was slightly inferior to the strategies (FAI, OTHER, HDAC) and (FAI, OTHER,

OTHER), and the confidence intervals were smallest for these inferior strategies. As shown

by Figures 2 and 3 for the likelihood-based approach, the mean overall survival estimates

were largest for the four strategies with FAI+ATRA as frontline. With the likelihood-based

approach, Figures 2 and 3 together show that the substantive conclusions were insensitive to

whether the outliers were included or not, although using all of the data gave much smaller

bootstrap confidence intervals for the means associated with the four strategies (FAI+G,

B1, B2). Most importantly, all approaches showed that, among the four best strategies,

(FAI+ATRA, B1, HDAC) was superior to (FAI+ATRA, B1, Other) regardless of B1. These

results suggest that (i) FAI+ATRA was the best remission induction therapy, (ii) if the pa-

tient’s disease was resistant to FAI+ATRA as induction therapy then it was irrelevant whether

the salvage therapy contained HDAC, and (iii) if the patient achieved CR with FAI+ATRA
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and later relapsed then salvage with HDAC was superior These conclusions, while not confir-

matory, are in sharp contrast with those given by Estey et al. (1999) based on conventional

Cox regression model analyses and hypothesis testing, which were that none of the three

adjuvant combinations FAI+ATRA, FAI+G, or FAI+ATRA+G were significantly different

from FAI alone with respect to either survival or event-free survival time, considering only

the frontline therapies.

An exhaustive formal comparison of the 16 strategies based on our analyses would require

120 pairwise tests, an unavoidable multiple comparisons problem that arises when evaluating

multi-stage strategies. The trial was not designed to identify multi-stage strategies, and no

clinical study can be powered to reliably conduct so many pairwise tests. With regard to

estimation of strategy-specific mean survival times, however, although the 90% confidence

intervals in Table 5 have a large degree of overlap, in terms of the estimated means it is striking

that the two strategies (FAI+ATRA, HDAC, HDAC) and (FAI+ATRA, OTHER, HDAC)

appear to be superior, with (FAI+ATRA, HDAC, OTHER) and (FAI+ATRA, OTHER,

OTHER) ranked third and fourth, based on both of the two very different analytic approaches

that we have taken here.

6 Discussion

We have re-analyzed a dataset from a four-arm clinical trial designed to assess the effects of

adding ATRA, G, or both to FAI for treatment of newly diagnosed AML or high risk MDS.

The purpose of our analysis has been to account for the multi-stage, adaptive nature of the

therapy actually received by the patients, which in particular included salvage therapies given

if either the patient’s disease was resistant to initial remission induction therapy or the patient
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Table 5: Strategy-specific estimates of mean overall survival time, in days, based on the
IPTW and Likelihood-based methods. Each estimate is given with 90% confidence interval
limits subscripted on the left and right.

Strategy Estimators
Likelihood-Based Likelihood-Based

(A , B1 , B2) IPTW Excluding Outliers Including Outliers
(FAI , HDAC , HDAC) 149189229 220281375 242335494
(FAI , HDAC , OTHER ) 129258397 207289432 241357541
(FAI , OTHER , HDAC) 162214283 261346441 281400571
(FAI , OTHER , OTHER) 147275422 248354504 280422613
(FAI + ATRA , HDAC , HDAC) 334524751 408594864 4897371093
(FAI + ATRA , HDAC , OTHER ) 263460707 376507710 4696551009
(FAI + ATRA , OTHER , HDAC) 342529749 436623922 5037721193
(FAI + ATRA , OTHER , OTHER) 269465713 399536763 4786901095
(FAI +G , HDAC , HDAC) 251337445 3094061151 353493757
(FAI +G , HDAC , OTHER ) 217307408 3454571217 404577850
(FAI +G , OTHER , HDAC ) 253338445 3064001151 355486755
(FAI +G , OTHER , OTHER) 218309410 3454511210 402569847
(FAI +G+ ATRA , HDAC , HDAC ) 169328514 246343528 282413661
(FAI +G+ ATRA , HDAC , OTHER) 215294367 285396563 356517824
(FAI +G+ ATRA , OTHER , HDAC ) 187351546 281381569 320451700
(FAI +G+ ATRA , OTHER , OTHER) 236318392 324434614 395554863
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Figure 2: Overall mean survival estimates and 90% non-parametric bootstrap confidence
intervals for estimators under the likelihood method, excluding outliers. Strategies such as
(FAI,HDAC,HDAC) stand for “Give FAI as induction, but if the patient’s disease is resis-
tant to therapy, or if relapse occurs after achieving complete remission, then give HDAC as
salvage.” For each strategy, the effective sample size n is the total number of patients in the
study whose treatment regime was consistent with the strategy.
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Figure 3: Overall mean survival estimates and 90% non-parametric bootstrap confidence
intervals for estimators under the likelihood method based on all observations in the dataset
including putative outliers. Strategies such as (FAI,HDAC,HDAC) stand for “Give FAI as
induction, but if the patient’s disease is resistant to therapy, or if relapse occurs after achieving
complete remission, then give HDAC as salvage.” For each strategy, the effective sample size
n is the total number of patients in the study whose treatment regime was consistent with
the strategy.
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relapsed after achieving a CR. This motivated evaluation of 16 possible two-stage strategies

for choosing induction and salvage therapies. We employed two very different methods of

analysis. The first was based on a detailed likelihood that accounted for all possible out-

come paths, the transition times between successive states, and effects of covariates on each

transition time. The second method employed IPTW-based estimating equations, and was

much simpler, using covariates only to estimate the probabilities of the different strategies.

While the two methods gave numerically different estimates of OS time, they agreed with

regard to the worst and best strategies. Perhaps the most important conclusion was that

these analyses both identified two strategies that appeared to be superior, a conclusion not

seen earlier when only frontline treatments were evaluated. The trial was motivated by the

idea that retinoids, such as ATRA, might improve outcome for AML/MDS patients when

given with chemotherapy, since it was well established at the time this trial was initiated that

ATRA has substantive anti-disease activity in treating acute promyelocytic leukemia (Estey,

et al., 1997). Based on our re-analyses of this dataset, it seems that this idea for treatment of

AML/MDS may have been correct. While our results cannot be considered confirmatory, it

seems that analyses of the types presented here, had they been carried out in 1999, might have

altered subsequent decisions of what combinations to study next, as well as showing the value

of considering two-stage strategies. An open question that now seems important is whether

the addition of ATRA to currently used frontline and salvage chemotherapy combinations for

AML/MDS may improve OS time. More generally, our analyses of this dataset strongly sug-

gest that a great deal of valuable information may be lost when using conventional methods

based on initial treatment alone to analyze clinical trials.
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Appendix: Proof of the g-formula in Equation (8)

First note that the overall survival time T is a mixture of component transition times:

T = I(Z1 = 0)TD

+ I(Z1 = 1){TR + TRD
}

+ I(Z1 = 2)[I(Z2 = 0){TC + TCD
}+ I(Z2 = 1){TC + TCP + T PD

}]

= I(Z1 = 0)TD (11)

+ I(Z1 = 1){TR + TRD
} (12)

+ I(Z1 = 2)[TC + I(Z2 = 0)TCD + I(Z2 = 1){TCP + T PD
}] (13)

Suppose first that there are no covariates. Then to find the mean of T under a given

treatment strategy (A,B1, B2), one would take the expectation of the components on the right

hand side of the above equation under treatment assignment consistent with this strategy.
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Therefore,

θ(A,B1, B2) = E[T |(A,B1, B2)]

= P (Z1 = 0|A)E[TD
|A,Z1 = 0]

+ P (Z1 = 1|A){E[TR
|A,Z1 = 1] + E[TRD

|A,B1, Z1 = 1]}

+ P (Z1 = 2|A)
�
E[TC

|A,Z1 = 2] + P (Z2 = 0|Z1 = 2, A)E[TCD
|A,Z1 = 2, Z2 = 0]

+ P (Z2 = 1|Z1 = 2, A)
�
E[TCP

|A,Z1 = 2, Z2 = 1]

+ E[T PD
|A,B2, Z1 = 2, Z2 = 1]

��
. (14)

Now, using covariates to model the conditional probabilities and expectations on the right

hand side of the above equation, and integrating over the respective covariate distributions,

we obtain the g-formula in Equation (8).
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