An Improved Admissible Heuristic for Learning Optimal Bayesian Networks

Changhe Yuan'3 and Brandon Malone?

3

!Queens College/City University of New York, 2Helsinki Institute for Information Technology,
3and Mississippi State University
changhe.yuan@gc.cuny.edu, bmmalone@gmail.com

Abstract

Recently two search algorithms, A* and breadth-
first branch and bound (BFBnB), were developed
based on a simple admissible heuristic for learn-
ing Bayesian network structures that optimize a
scoring function. The heuristic represents a re-
laxation of the learning problem such that each
variable chooses optimal parents independently.
As a result, the heuristic may contain many di-
rected cycles and result in a loose bound. This
paper introduces an improved admissible heuris-
tic that tries to avoid directed cycles within small
groups of variables. A sparse representation is
also introduced to store only the unique optimal
parent choices. Empirical results show that the
new techniques significantly improved the effi-
ciency and scalability of A* and BFBnB on most
of datasets tested in this paper.

1 Introduction

Bayesian networks are often used to represent relation-
ships among variables in a domain. When the network
structure is unknown, we can learn the structure directly
from a given dataset. Several exact algorithms for learn-
ing optimal Bayesian networks have been developed based
on dynamic programming (Koivisto and Sood 2004; Ott,
Imoto, and Miyano 2004; Silander and Myllymaki 2006;
Singh and Moore 2005; Parviainen and Koivisto 2009;
Malone, Yuan, and Hansen 2011), branch and bound (de
Campos and Ji 2011), and linear and integer program-
ming (Cussens 2011; Jaakkola et al. 2010).

Recently, Yuan et al. (2011) proposed a shortest-path find-
ing formulation for the Bayesian network structure learning
problem, in which the shortest path found in an implicit
search graph called order graph corresponds to an optimal
network structure. An A* search algorithm was developed
to solve the search problem. Malone et al. (2011) adopted

the same formulation, but realized that the search can be
performed in a layered, breadth-first order. External mem-
ory and delayed duplicate detection are used to ensure com-
pletion regardless of the amount of available RAM. This al-
gorithm, named breadth-first branch and bound (BFBnB),
was shown to have similar runtimes as A* but scale to many
more variables.

A simple admissible heuristic was used in the A* and BF-
BnB algorithms (Yuan, Malone, and Wu 2011; Malone et
al. 2011) to guide the search. Its main idea is to relax the
acyclicity constraint of Bayesian networks such that each
variable can freely choose optimal parents from all the
other variables. The heuristic provides an optimistic esti-
mation on how good a solution can be and, hence, is admis-
sible. However, the simple relaxation behind the heuristic
may introduce many directed cycles and result in a loose
bound.

This paper introduces a much improved admissible heuris-
tic named k-cycle conflict heuristic based on the addi-
tive pattern database technique (Felner, Korf, and Hanan
2004). The main idea is to avoid directed cycles within
small groups of variables, called patterns, and compute
heuristic values by concatenating patterns. Also, a set of
exponential-size parent graphs were created by the A* and
BFBnB algorithms to retrieve optimal parent choices dur-
ing the search. We introduce a sparse representation for
storing only unique optimal parent sets which can improve
both time and space efficiency of the search. Empirical re-
sults show that the new techniques significantly improved
the efficiency and scalability of A* and BFBnB on most of
the benchmark datasets we tested.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of Bayesian network structure
learning and the shortest-path finding formulation of the
problem. Section 3 introduces the improved heuristic. Sec-
tion 4 introduces the sparse representation of optimal par-
ent choices and discusses how to adapt A* and BFBnB al-
gorithms to use the new techniques. Section 5 reports the
empirical results on a set of benchmark datasets. Finally,
Section 6 concludes the paper with some remarks.

2 Background

This section reviews the basics of score-based methods for
learning Bayesian network structures.

2.1 Learning Bayesian network structures

A Bayesian network is a directed acyclic graph (DAG) in
which the vertices correspond to a set of random variables
V = {Xi,...,X,}, and the arcs and lack of them rep-
resent dependence and conditional independence relations
between the variables. The relations are further quantified
using a set of conditional probability distributions. We con-
sider the problem of learning a network structure from a
dataset D = {Dq,..., Dy}, where D; is an instantiation
of all the variables in V. A scoring function can be used
to measure the goodness of fit of a network structure to
D. For example, the minimum description length (MDL)
scoring function (Rissanen 1978) uses one term to reward
structures with low entropy and another to penalize com-
plex structures. The task is to find an optimal structure that
minimizes the MDL score. MDL is decomposable (Heck-
erman 1998), i.e., the score for a structure is simply the
sum of the scores for each variable. All algorithms we de-
scribe here assume the scoring function is decomposable.
The remainder of the paper assumes the use of MDL score,
but our method is equally applicable to other decomposable
scoring functions, such as AIC, BIC or BDe.

2.2 The shortest-path finding formulation

Yuan et al. (2011) formulated the above structure learning
problem as a shortest-path finding problem. Figure 1 shows
the implicit search graph for four variables. The top-most
node with the empty set is the start search node, and the
bottom-most node with the complete set is the goal node.
An arc from U to U U {X} in the graph represents gen-
erating a successor node by adding a new variable { X } to
the existing variables U; the cost of the arc is equal to the
cost of selecting the optimal parent set for X out of U, and
is computed by considering all subsets of U, i.e.,

BestScore(X,U) min__score(X|PAx).
xCU

Y

With the search graph thus specified, each path from the
start node to the goal is an ordering of the variables in the
order of their appearance. That is why the search graph is
also called an order graph. Because each variable only se-
lects optimal parents from the preceding variables, putting
together all the optimal parent choices of a particular order-
ing generates a valid Bayesian network that is optimal for
that specific ordering. The shortest path among all possible
paths corresponds to a global optimal Bayesian network.

During the search of the order graph, we need to compute
the cost for each arc being visited. We use another data

T 0

1
bt

Figure 1: An order graph of four variables

structure called parent graph for retrieving the costs. The
parent graph for variable X consists of all subsets of V '\
{X}. Figure 2 shows the parent graph for X;. Figure 2(a)
shows a parent graph containing the raw scores for using
each subset as the parent set of X, while Figure 2(b) shows
the optimal scores after propagating the best scores from
top to bottom in the graph. For the arc from U to UU{X},
we find its score by looking up the parent graph of variable
X to find the node that contains U.

Various search methods as well as dynamic programming
have been applied to solve the shortest-path finding prob-
lem (Malone, Yuan, and Hansen 2011; Malone et al. 2011;
Yuan, Malone, and Wu 2011). In (Yuan, Malone, and Wu
2011), an A* search algorithm was proposed based on the
following admissible heuristic function.

Definition 1. Ler U be a node in the order graph, its
heuristic value is

h(U)= Y BestScore(X,V\{X}). ()
XevV\U

The A* algorithm is shown to be much more efficient than
existing dynamic programming algorithms. However, A*
requires all the search information, including parent and or-
der graphs, to be stored in RAM during the search, which
makes the algorithm easily run out of memory for large
datasets. Malone et al. (2011) developed a breadth-first
branch and bound (BFBnB) algorithm to search the order
graph in a layered, breadth-first order. By carefully coor-
dinating the parent and order graphs, most of the search
information can be stored on disk and are only processed
incrementally after being read back to RAM when neces-
sary. The BFBnB algorithm was shown to be as efficient
as the A* algorithm but was able to scale to much larger
datasets. Theoretically, the scalability of the BFBnB algo-
rithm is only limited by the amount of disk space available.

68

e
6-a 58
585

€

@

»

©

Figure 2: A sample parent graph for variable X . (a) The raw scores for all the parent sets. The first line in each node gives
the parent set, and the second line gives the score of using all of that set as the parents for X;. (b) The optimal scores for
each candidate parent set. The second line in each node gives the optimal score using some subset of the variables in the
first line as parents for X . (c) The unique optimal parent sets and their scores. The pruned parent sets are shown in gray.
A parent set is pruned if any of its predecessors has an equal or better score.

3 An Improved Admissible Heuristic

The heuristic function defined in Equation 1 is based
on a classic approach to designing admissible heuristics.
Pearl (1984) pointed out that the optimal solution to a re-
laxed problem can be used as an admissible bound for the
original problem. For structure learning, the original prob-
lem is to learn a Bayesian network that is an acyclic di-
rected graph (DAG). Equation 1 relaxes the problem by
completely ignoring the acyclicity constraint, so all di-
rected graphs are allowed. This paper aims to improve the
heuristic by enforcing partial acyclicity. We will first moti-
vate our approach using a small example. We then describe
the specifics of the new heuristic.

3.1 A motivating example

According to Equation 1, the heuristic estimate of the start
node in the order graph allows each variable to choose
optimal parents from all the other variables. Suppose the
optimal parents for X1, Xo, X3, Xy are {Xo, X35, X4},
{X1, X4}, {Xao}, {X2, X3} respectively. These parent
choices are shown as the directed graph in Figure 3. Since
the acyclicity constraint is ignored, directed cycles are in-
troduced, e.g., between X; and X2. However, we know the
final solution cannot have cycles; three scenarios are possi-
ble between X; and Xs: (1) X5 is a parent of X; (so X3
cannot be a parent of X5), (2) X; is a parent of X, or (3)
neither of the above is true. The third case is dominated by
the other two cases because of the following theorem.

Theorem 1. Let U and V be two candidate parent

sets for X, and U C 'V, then BestScore(X,V) <
BestScore(X, U).

This theorem has appeared in many earlier papers,
e.g. (Teyssier and Koller 2005; de Campos and Ji 2010),
and simply means that an equal or better score can be ob-

Figure 3: A directed graph representing the heuristic esti-
mate for the start search node.

tained if a larger set of parent candidates is available to
choose from. The third case cannot provide a better value
than the other two cases because one of the variables must
have fewer parents to choose from. Between the first two
cases it is unclear which one is better, so we take the min-
imum of them. Consider the first case first: We have to
delete the arc X; — X5 to rule out X; as a parent of
X5. Then we have to let X, to rechoose optimal parents
from { X3, X4}, that is, we must check all the parent sets
not including X ; the deletion of the arc alone cannot pro-
duce the new bound. The total bound of X and X5 is com-
puted by summing together the original bound of X; and
the new bound of X5». We call this total bound b, . The sec-
ond case is handled similarly; we call that total bound b5.
Because the joint heuristic for X; and X5 must be opti-
mistic, we compute it as the minimum of b; and by. Ef-
fectively we have considered all possible ways to break the
cycle and obtained a new but improved heuristic value. The
new heuristic is clearly admissible, as we still allow cycles
among other variables.

Often, the simple heuristic introduces multiple cycles. The
graph in Figure 3 also has a cycle between X» and Xj.
This cycle shares X» with the earlier cycle; we say they

overlap. Overlapping cycles cannot be broken indepen-
dently. For example, suppose we break the cycle between
X1 and X, by setting the parents of X5 to be { X3}. This
effectively breaks the cycle between Xo and X, as well,
but introduces a new cycle between X, and X3. As de-
scribed in more detail shortly, we divide the variables into
non-overlapping groups and focus only on avoiding cycles
within each group. So if X5 and X3 are in different groups,
they are allowed to form a cycle.

3.2 The k-cycle conflict heuristic

The idea above can be generalized to compute the joint
heuristics for all groups of variables with a size up to k
by avoiding cycles within each group. We call the resulting
technique the k-cycle conflict heuristic. Note that Equa-
tion 1 is a special case of this new heuristic, as it sim-
ply contains heuristics for the individual variables (k=1).
The new heuristic is an application of the additive pattern
database technique (Felner, Korf, and Hanan 2004). We
first have to explain what pattern database (Culberson and
Schaeffer 1998) is. Pattern database is an approach to com-
puting an admissible heuristic for a problem by solving a
relaxed problem. As an example, the 15 sliding tile puzzle
can be relaxed to only contain the tiles 1-8 by removing the
other tiles. Because of the relaxation, multiple states of the
original problem are mapped to one state in the abstract
state space of the relaxed problem. Each abstract state is
called a pattern, and the exact costs for solving all the ab-
stract states are stored in a pattern database; each cost can
be retrieved as an admissible heuristic for any consistent
state in the original state space. Furthermore, we can re-
lax the problem in different ways and obtain multiple pat-
tern databases. If the solutions to a set of relaxed problems
are independent, the problems are said to have no inter-
actions between them. Again consider 15-puzzle, we can
also relax it to only contain the tiles 9-15. This relaxation
can be solved independently from the previous one, as they
do not share puzzle movements. The costs of their pattern
databases can be added together to obtain an admissible
heuristic, hence the name additive pattern databases.

In the learning problem, a pattern is defined as a set of vari-
ables, and its cost is the joint heuristic of the variables in-
volved. The costs of two patterns sharing no variables can
be added together to obtain an admissible heuristic because
of the decomposability of the scoring function.

We do not need to explicitly break cycles to compute the
k-cycle conflict heuristic. The following theorem offers a
straightforward approach to computing the heuristic.

Theorem 2. The cost of the pattern U is equal to the short-
est distance from the node V \ U to the goal node in the
order graph.

The theorem can be proven by noting that avoiding cycles
between the variables in U is equivalent to finding an opti-

mal ordering of the variables with the best joint score, and
the different paths from V'\ U to the goal correspond to the
different orderings of the variables, among which the short-
est path thus corresponds to the optimal ordering. Again
consider the example in Figure 3. The joint heuristic for the
pattern { X, X5} is equal to the shortest distance from the
node { X3, X4} to the goal in Figure 1. Therefore, the new
heuristic can be computed by finding the shortest distances
from all the nodes in the last k layers of the order graph to
the goal. We will describe a backward search algorithm for
computing the heuristic in Section 4.2.

Furthermore, the difference between the cost of the pattern
U and the simple heuristic of V' \ U indicates the amount
of improvement brought by avoiding cycles within the pat-
tern. The differential cost can thus be used as a quality mea-
sure for ordering the patterns and for choosing patterns that
are more likely to result in a tighter heuristic. Also, we can
discard any pattern that does not introduce additional im-
provement over any of its subset patterns. The pruning can
significantly reduce the size of a pattern database and im-
prove the efficiency of accessing the database.

3.3 Computing the heuristic for a search node

Once the k-cycle conflict heuristic is computed, we can use
it to calculate the heuristic value for any node during the
search. For a node U, we need to partition V \ U into a set
of non-overlapping patterns, and sum their costs together as
the heuristic value. There are potentially many ways to do
the partition; ideally we want to find the one with the high-
est total cost, which represents the most accurate heuristic
value. The problem of finding the optimal partition can be
formulated as maximum weighted matching problem (Fel-
ner, Korf, and Hanan 2004). For k = 2, we can define a
graph in which each vertex represents a variable, and each
edge between two variables representing the pattern con-
taining the same variables with an edge weight equal to the
cost of the pattern. The goal is to select a set of edges from
the graph so that no two edges share a vertex and the total
weight of the edges is maximized. The matching problem
can be solved in O(n?) time (Papadimitriou and Steiglitz
1982), where n is the number of vertices.

For k > 2, we have to add hyperedges to the matching
graph for connecting up to % vertices to represent larger
patterns. The goal becomes to select a set of edges and hy-
peredges to maximize the total weight. However, the three-
dimensional or higher-order maximum weighted matching
problem is NP-hard (Garey and Johnson 1979). That means
we have to solve an NP-hard problem when calculating the
heuristic value for a search node.

To alleviate the potential inefficiency, we elect to use a
greedy method to compute the heuristic value. The method
sequentially chooses patterns based on their quality. Con-
sider the node U; the unsearched variables are V' \ U. We

first choose the pattern with the highest differential cost
from all patterns that are subsets of V' \ U. We repeat this
process by choosing the next pattern for the remaining un-
searched variables until all the variables are covered. The
total cost of the chosen patterns is used as the heuristic
value for the node U.

3.4 Dynamic and static pattern databases

The version of the k-cycle conflict heuristic introduced
above is an example of the dynamically partitioned pattern
database (Felner, Korf, and Hanan 2004), as the patterns
are dynamically selected during the search algorithm. We
refer to it as dynamic pattern database for short. A poten-
tial drawback of dynamic pattern databases is that, even
using the greedy method, computing a heuristic values is
still more expensive than the simple heuristic in Equation 1.
Consequently, the running time can be longer even though
the tighter heuristic results in more pruning and fewer ex-
panded nodes.

We can resort to another version of the k-cycle con-
flict heuristic based on the statically partitioned pattern
database technique (Felner, Korf, and Hanan 2004). The
idea is to statically divide all the variables into several
groups, and create a separate pattern database for each
group. Consider a problem with variables {Xy, ..., Xs}.
We simply divide the variables into two equal-sized
groups, {X1,..., X4} and {X5,..., Xs}. For each group,
say { X1, ..., X4}, we create a pattern database that contains
the costs of all subsets of {X1,..., X4} and store them as
a hash table. We refer to this heuristic as the static pattern
database for short.

It is much simpler to use static pattern databases to com-
pute a heuristic value. Consider the node { X7, X4, Xs};
the unsearched variables are {Xs, X3, X5, X6, X7}. We
divide these variables into two patterns { X5, X3} and
{X5, X6, X7} according to the static grouping. We then
simply look up the costs of these two patterns in the pat-
tern databases and sum them together as as the heuristic
value for the node. Better yet, every search step only pro-
cesses one variable and affects one pattern, so computing
the heuristic value can be done incrementally.

4 The Search Algorithms

Both computing the k-cycle conflict heuristic and solving
the shortest-path finding problem requires us to search the
order graph. The searches further require the parent graphs
to be calculated in advance or during the search. In this sec-
tion, we first introduce a sparse representation of the par-
ent graphs. We then discuss how to search the order graph
backward to compute the k-cycle conflict heuristic, and for-
ward to solve the shortest path-finding problem by adapting
the A* and BFBnB algorithms.

{(Xo, X3} {X3} {Xo} {}
5 6 8 10

parentsx,
scoresx,

Table 1: Sorted scores and parent sets for X after pruning
parent sets which are not possibly optimal.

parentsx, | {Xo2, X3} {Xs} {X2} {}
X5 1 0 1 0
X, 1 1 00
Xy 0 0 0 0

Table 2: The parentsx (X;) bit vectors for X;. A “1” in
line X; indicates that the corresponding parent set includes
variable X;, while a “0” indicates otherwise. Note that, af-
ter pruning, none of the optimal parent sets include X}.

4.1 Sparse representation of parent graphs

The parent graph for each variable X exhaustively enu-
merates the optimal scores for all subsets of V \ {X}.
Naively, this approach requires storing n2"~! scores and
parent sets. Due to Theorem 1, however, the number of
unique optimal parent sets is often far smaller. For example,
Figure 2(b) shows that each score may be shared by several
nodes in a parent graph. The parent graph representation
will allocate space for this repetitive information, resulting
in waste of space.

Instead of storing the complete parent graphs, we propose
a sparse representation which sorts all the unique parent
scores for each variable X in a list, and also maintain a
parallel list that stores the associated optimal parent sets.
We call these sorted lists scoresx and parentsx . Table 1
shows the sorted lists for the parent graph in Figure 2(b).
In essence, this allows us to store and efficiently process
only scores in Figure 2(c). We do not have to create the full
parent graphs before realizing some scores can be pruned
(post-pruning). For example, we can use the following the-
orem (Tian 2000) to prune some scores before even com-
puting them (pre-pruning).

Theorem 3. In an optimal Bayesian network based on

the MDL scoring function, each variable has at most

log(lngN) parents, where N is the number of data points.

Because of the pruning of duplicate scores, the sparse rep-
resentation requires much less memory than storing all the
possible parent sets and scores. As long as ||scores(X)|| <
C(n — 1, %), it also requires less memory than the BFBnB
algorithm for X . In practice, ||scoresx]|| is almost always
smaller than C(n — 1, 5) by several orders of magnitude.
So this approach offers (usually substantial) memory sav-
ings compared to previous best approaches. In addition, the
sparse representation is also much more efficient to create
because of the pre-pruning.

The key operation in parent graphs is querying the opti-

parentsx, | {X2, X3} {X3} {Xa2} {}
validx, 1 1 1 1
~ X3 0 0 1 1
valid}elw 0 0 1 1

Table 3: The result of performing the bitwise operation to
exclude all parent sets which include X3. A “1” in the
validx, bit vector means that the parent set does not in-
clude X3 and can be used for selecting the optimal parents.
The first set bit indicates the best possible score and parent
set.

parentsx, | {Xq2, X3} {Xs} {X2} {}
validx, 0 0 1 1
~ X5 0 1 0 1
valid’}flw 0 0 0 1

Table 4: The result of performing the bitwise operation to
exclude all parent sets which include either X3 or Xa. A
“1” in the valid{" bit vector means that the parent set
includes neither X9 nor X3. The initial validy, bit vec-
tor had already excluded X3, so finding valid’y"" only re-
quired excluding X5.

mal parents for variable X out of a candidate set U. With
the sparse representation, we can simply scan the list of X
starting from the beginning. As soon as we find the first
parent set that is a subset of U, we find the optimal par-
ent set and its score. However, scanning the lists can be
inefficient if not done properly. Since we have to do the
scanning for each arc, the inefficiency will have a large
impact on the whole search algorithm. We therefore pro-
pose the following incremental approach. Initially, we al-
low each variable X to use all the other variables as can-
didate parents, so the first element in the sorted score list
must be optimal. For example, the first score in Table 1
must be BestScore(Xy,{Xs, X3, X4}). Suppose we re-
move X, from consideration as a candidate parent; we scan
the list by continuing from where we last stopped and find
a parent set which does not include X5, which must be
BestScore(X1,{Xs, X4}) ({ X3} in this example). If we
further remove X5, we continue scanning the list until find-
ing a parent set which includes neither X5 nor X3 to find
BestScore(X1,{X4}) ({}itis).

To further improve the efficiency, we propose the follow-
ing efficient scanning technique. For each variable X, we
first initialize an incumbent bit vector of length || scoresx ||
called validx to be all 1s. This indicates that all the par-
ent scores in scoresx are usable; the first score in the
list will be the optimal score. Then, we create n — 1 bit
vectors also of length ||scoresx]||, one for each variable
in V '\ {X}. The bit vector for variable Y is denoted as
parentsx (YY) and contains 1s for all the parent sets that
contain Y and Os for others. Table 2 shows the bit vectors
for Table 1. Then, to exclude variable Y as a candidate par-

ent, we perform the bit operation validy™™ + validx & ~
parentsx (Y). The validi™ bit vector now contains 1s
for all the parent sets that are subsets of V \ {Y'}. The
first set bit corresponds to BestScore(X,V \ {Y}). Ta-
ble 3 shows an example of excluding X3 from the set of
possible parents for X, and the first set bit in the new
bit vector corresponds to BestScore(X1,V \ {X3}). If
we further exclude X, the bit vector resulting from the
last step becomes the incumbent bit vector, and a sim-
ilar bit operation is applied: valid¥" < validx& ~
parentsx, (X2). The first set bit of the result corresponds
to BestScore(X1,V \ {X2, X3}). Table 4 demonstrates
this operation. Also, it is important to note that we exclude
one variable at a time. For example, if, after excluding X3,
we wanted to exclude X, rather than X5, we could take
valid™ < validx & ~ parentsx (X4).

4.2 Creating the k-cycle conflict heuristic

We have two versions of the k-cycle conflict heuristic: dy-
namic and static pattern databases. To compute the dy-
namic pattern database, we use the breadth-first search to
do a backward search for k layers in the order graph. The
search starts from the goal node and expands the order
graph backward layer by layer. A reverse arc from UU{ X }
to U has a cost equal to BestScore(X,U). The reverse g
cost to U is updated whenever a new path with a lower
cost is found. Breadth-first search ensures that node U will
obtain its optimal reverse g cost once the whole layer is
processed. Its corresponding pattern V \ U is pruned if the
differential score is equal to that of any subset pattern. Oth-
erwise, it is added to the pattern database together with both
its pattern cost and differential cost.

The static pattern databases are calculated differently. For
a static grouping V' = |J, Vi, we need to compute a pat-
tern database for each group Vj;, which is basically a full
order graph containing all subsets of V;. We will also use
a backward breadth first search to create the graph layer by
layer starting from the node V;. However, the cost for any
reverse arc from U U {X } to U in this order graph will be
BestScore(X, (U, V;) UU).

4.3 Solving the shortest-path finding problem

After the pattern database heuristics are computed, we
solve the shortest-path finding problem using a forward
search in the order graph. We adapt both the A* (Yuan,
Malone, and Wu 2011) and BFBnB (Malone, Yuan, and
Hansen 2011) algorithms to utilize the new heuristic and
the sparse parent graphs.

Originally, the A* algorithm first creates the full parent
graphs and then expands the order graph in a best-first or-
der starting from the top. For the improved version, we first
create the unique score lists and the k-cycle conflict heuris-
tic. During the search, the only difference appears in gener-

M Full Largest Layer M Sparse
(E+11

mmm
+ 4+
ook
&G0

.E+07
.E+06

mmm
+ 4+
ooo
whrOM

Unique Parent Sets

e e el el i

(E+02
{E+01
.E+00

Dataset; Variable Count; Data Points

Figure 4: The number of parent sets stored in the full
parent graphs (“Full”), the largest layer of the parent
graphs (“Largest Layer”), and the sparse representation
(“Sparse”).

ating the successors of a node. For each successor UU{ X }
of node U, we calculate its heuristic value according to
the methods described in Sections 3.3 and 3.4. Looking up
the cost BestScore(X,U) for the arc U — U U {X} is
achieved by using the sparse parent graphs.

The BFBnB algorithm is affected in a similar way. Orig-
inally it works by coordinating the expansion of the order
graph and parent graphs layer by layer. In the improved ver-
sion, the unique score lists and the heuristic are calculated
first. The search part of the algorithm only needs to expand
the order graph, during which generating successors works
similarly as in the improved A* algorithm.

S Empirical Results

We tested our new techniques on the A* and BFBnB al-
gorithms by comparing to their original versions!. The ex-
periments were performed on a PC with 3.07 GHz Intel i7
processor, 16 GB of RAM, 500 GB of hard disk space, and
running Ubuntu 10.10. We used benchmark datasets from
the UCI machine learning repository (Frank and Asuncion
2010) to test the algorithms. For all the datasets, records
with missing values were removed. All variables were dis-
cretized into two states around their means.

5.1 Memory savings of sparse parent graphs

We first evaluated the memory savings made possible by
using the sparse representation in comparison to the full
parent graphs. In particular, we compared the maximum
number of scores that have to be stored for all variables at
once by each algorithm. A typical dynamic programming

'A software package named URLearning (“you are learning”)
implementing the A* and BFBnB algorithms can be downloaded
athttp://url.cs.qgc.cuny.edu/software.html.

algorithm stores scores for all possible parent sets of all
variables. BFBnB and memory-efficient dynamic program-
ming (Malone, Yuan, and Hansen 2011) (assuming imple-
mentation optimizations) store all possible parent sets only
in one layer of the parent graphs for all variables, so the size
of the largest layer of all parent graphs is an indication of
its space requirement. The sparse representation only stores
the unique optimal parent sets for all variables at all layers.

Figure 4 shows the memory savings by the sparse rep-
resentation. The number of unique scores stored by the
sparse representation is typically several orders of magni-
tude smaller than the number of parent sets stored by the
full representation. These results agree quite well with pre-
viously published results (de Campos and Ji 2010).

Due to Theorem 3, increasing the number of data records
increases the maximum number of candidate parents.
Therefore, the number of unique candidate parent sets in-
creases as the number of records increases; however, many
of the new parent sets are pruned. The number of variables
also affects the number of candidate parent sets. Conse-
quently, the number of unique scores increases as a func-
tion of the number of records and the number of variables.
The amount of pruning is data-dependent, though, and is
not easily predictable. In practice, we find the number of
records to affect the number of unique scores more than
the number of variables. Other scoring functions, such as
BDe, exhibit similar behavior.

The results also suggest that the savings increase as the
number of variables increases in the datasets. This implies
that, while more variables necessarily increases the number
of possible parent sets exponentially, the number of unique
optimal parent sets increases much more slowly. Intuitively,
even though we add more parents, only a small number of
them are “good” parents for any particular variable.

5.2 Heuristics vs sparse representation

Both the new heuristic and the sparse representation can
be used to improve the A* and BFBnB algorithms. It is
beneficial to have an understanding on how much improve-
ment each technique contributes. Also, the new heuristic
has two versions: static and dynamic pattern databases;
each of them can be parameterized in different ways. We
applied various parameterizations of the new techniques to
the algorithms on the datasets Autos and Flag. For the dy-
namic pattern database, we varied k from 2 to 4. For the
static pattern databases, we tried groupings 9-9-8 and 13-
13 for the Autos dataset and groupings 10-10-9 and 15-14
for the Flag dataset. The results are shown in Table 5.

The sparse representation helped both A* and BFBnB al-
gorithms to achieve much better efficiency and scalability.
A* ran out of memory on both of the datasets when using
full parent graphs, but was able to solve both Autos (with

Pattern Database BFBnB, Full BFBnB, Sparse A*, Sparse
Dataset Type Size | Time (s) Nodes | Time (s) Nodes | Time (s) Nodes
Autos Simple 26 2,690 62,721,601 461 62,721,601 674 35,329,016
Autos Dynamic, k=2 41 2,722 52,719,774 449 52,719,793 148 6,286,142
Autos Dynamic, k=3 116 2,720 49,271,793 468 49,271,809 76 2829877
Autos Dynamic, k=4 582 2926 48,057,187 699 48,057,205 67 2,160,515
Autos Static, 9-9-8 1,280 2,782 57,002,704 495 57,002,715 228 9,763,518
Autos Static, 13-13 16,384 2,747 48,814,324 211 48,814,334 125 4,762,276
Flag Simple 29 oT oT oT oT OM oM
Flag Dynamic, k=2 45 oT oT 1,222 132,431,610 824 19,359,296
Flag Dynamic, k=3 149 oT oT 788 79,332,390 207 5,355,085
Flag Dynamic, k=4 858 oT oT 1,624 84,054,443 350 7,377,817
Flag Static, 10-10-9 2,560 oT oT 2,600 249,638,318 OM OM
Flag Static, 15-14 49,152 oT oT 720 88,305,173 136 4412232

Table 5: A comparison of the enhanced A* and BFBnB algorithms with various combinations of parent graph representa-
tions (full vs. sparse) and the heuristics (simple heuristic, dynamic pattern database with k£ = 2, 3, and 4, and static pattern
databases with groupings 9-9-8 and 13-13 for the Autos dataset and groupings 10-10-9 and 15-14 for the Flag dataset).
“Size” means the number of patterns stored; “Sparse” means the sparse parent graphs; “Full” means the full parent graphs;
“Time” means the running time (in seconds), and “Nodes” means the number of nodes expanded by the algorithms; “OT”
means the algorithm fail to finish within a 1-hour time limit set for this experiment; and “OM” means the algorithm used
up all the RAM (16G). “A*, Full” is not included because it ran out of memory in all cases.

any heuristic) and Flag (with some of the best heuristics)
when using sparse parent graphs. Similarly, BFBnB ran out
of time on the Flag dataset within the one hour time limit
when using full parent graphs, but was able to solve the
dataset using the sparse representation (except when using
the simple heuristic); on Autos, the sparse representation
helped improve the time efficiency of BFBnB by up to an
order of magnitude. One last note here is the numbers of ex-
panded nodes by BFBnB are slightly different when using
the two representations; it is only because of the random-
ness in the local search method used to compute the initial
upper bound solution for BFBnB.

Both the static and dynamic pattern databases helped A*
and BFBnB algorithms to improve efficiency and scalabil-
ity. A* with both the simple heuristic and the static pattern
database with grouping 10-10-9 ran out of memory on the
Flag dataset. The other pattern database heuristics enabled
A* to finish successfully. The dynamic pattern database
with £ = 2 helped to reduce the number of expanded nodes
significantly for both algorithms on the datasets. Setting
k = 3 helped even more. However, further increasing % to 4
often resulted in increased running time, and sometimes an
increased number of expanded nodes as well. We believe
that a larger k& always results in a better heuristic; the oc-
casional increase in expanded nodes is because the greedy
strategy we used to choose patterns did not fully utilize the
larger pattern database. The longer running time is reason-
able though because it is less efficient to compute a heuris-
tic value in larger pattern databases, and the inefficiency
gradually overtook the benefit brought by the better heuris-
tic. Therefore, k = 3 seems to be the best parametrization

for the dynamic pattern database in general. For the static
pattern databases, we were able to test much larger groups
as we do not need to enumerate all groups up to a certain
size. The results suggest that larger groupings tend to result
in tighter heuristic.

The sizes of the static pattern databases are typically much
larger than the dynamic pattern databases. However, they
are still negligible in comparison to the number of ex-
panded search nodes in all cases. It is thus cost effective
to try to compute larger but affordable-size static pattern
databases to achieve better search efficiency. The results
show that the best static pattern databases typically helped
A* and BFBnB to achieve better efficiency than the best dy-
namic pattern database, even when the number of expanded
nodes is larger. The reason is calculating the heuristic val-
ues is more efficient when using static pattern databases.

5.3 Results on other datasets

Since static pattern databases seem to work better than dy-
namic pattern databases in most cases, we tested A* and
BFBnB using static pattern database and sparse representa-
tion on all the datasets against the original algorithms. We
used the simple static grouping of [§] — |5] for all the
datasets, where n is the number of variables. The results
are shown in Table 6.

For the BFBnB algorithm, the improved version was
around 5 times faster than the original version and some-
times even orders of magnitude faster (e.g. Flag). The re-
duction in the number of expanded nodes is not as dra-

Dataset Results
Name n N BFBnB BFBnB (SP) A* A* (SP)
Hepatitis 20 126 | Time (s) 9 1 6 0
Nodes 610,974 129,889 411,150 8,565
Parkinsons 23 195 | Time (s) 100 19 100 15
Nodes 8,388,607 4,646,877 8,388,607 1,152,576
Sensor Readings 25 5456 | Time (s) 632 3,121 OM 731
Nodes 33,554431 33,554 430 OM 3,286,650
Autos 26 159 | Time (s) 1,170 211 OM 111
Nodes 53,236,395 48,814,295 OM 4762276
Horse Colic 28 300 | Time (s) 4221 678 oM oM
Nodes 268 435455 74,204,000 oM oM
Steel Plates Faults 28 1,941 | Time (s) 7913 4,544 OM OM
Nodes 268435455 264,887,347 oM oM
Flag 29 194 | Time (s) 12,902 421 oM 147
Nodes 354,388,170 88,305,173 OM 4412232
WDBC 31 569 | Time (s) 93,382 26,196 OM OM
Nodes 1,353,762,809 273,746,036 OM OM

Table 6: A comparison on the number of nodes expanded and running time (in seconds) of the A* and BFBnB algorithms
enhanced by both static pattern database with grouping [5] — [5], where n is the number of variables, and sparse repre-
sentation of parent scores (denoted by “SP”) against the original versions of these algorithms. “n” is the total number of

variables, and “N” is the number of data points.

matic, however. The main reason is that the original BF-
BnB algorithm interleaves expanding the order graph and
the full parent graphs during the search, while the improved
version first calculates the sparse representation of parent
scores, and then performs the search. It is much more ef-
ficient to compute the sparse representation than comput-
ing the full parent graphs. However, on the dataset Sen-
sor Readings, the improved BFBnB algorithm runs slower
than the original version. There are two potential explana-
tions. First, this particular dataset has a large number of
data points, which makes the sparse representation not truly
sparse. Second, the new heuristic seems to be not much
tighter than the simple heuristic on this dataset, because the
numbers of expanded nodes are very similar in both cases.

The benefits of the new techniques are more obvious when
applied to A*. For the datasets on which the original al-
gorithm was able to finish, the improved algorithm was up
to one order of magnitude faster; the number of expanded
nodes is also significantly reduced. In addition, it was able
to solve three larger datasets: Sensor Readings, Autos, and
Flag. The running time on each of those datasets is pretty
short, which indicates that once the memory consumption
of the parent graphs was reduced, the A* algorithm was
able to use more memory for the order graph and solved
the search problems rather easily.

6 Concluding Remarks

The shortest-path finding formulation of the learning prob-
lem presented in (Yuan, Malone, and Wu 2011) makes

two orthogonal directions of research natural. One is the
development of search algorithms for learning optimal
Bayesian networks, represented by the A* and BFBnB
algorithms developed in (Yuan, Malone, and Wu 2011;
Malone et al. 2011). One contribution of this paper is the
sparse representation of the parent graphs which only store
the unique optimal parent sets and scores. The method im-
proves the time and space efficiency of the parent graph
part of the search and thus falls in the first direction.

The second direction, which we believe is equally impor-
tant, is the development of search heuristics. Another con-
tribution of this paper is a new admissible heuristic called
the k-cycle conflict heuristic developed based on the addi-
tive pattern databases. We tested the A* and BFBnB algo-
rithms enhanced by the new heuristic and the sparse rep-
resentation on a set of UCI machine learning datasets. The
results show that both of the new techniques contributed to
significant improvement in the efficiency and scalability of
the algorithms. We therefore believe the new methods rep-
resent another significant step forward in exact Bayesian
network structure learning.

As future work, we plan to investigate better approaches to
obtaining the groupings for the static pattern databases. It
could be based on prior knowledge, or some initial estima-
tion of the correlation between the variables. Such group-
ings are expected to work better than the simple grouping
we tested in this paper.

Acknowledgements This work was supported by NSF
grants 1IS-0953723 and EPS-0903787.

References

Culberson, J. C., and Schaeffer,J. 1998. Pattern databases.
Computational Intelligence 14(3):318-334.

Cussens, J. 2011. Bayesian network learning with cutting
planes. In Proceedings of the Proceedings of the Twenty-
Seventh Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-11), 153—-160. Corvallis, Ore-
gon: AUAI Press.

de Campos, C. P, and Ji, Q. 2010. Properties of bayesian
dirichlet scores to learn bayesian network structures. In
Twenty-Fourth AAAI Conference on Aritificial Intelligence
(AAAI-10),431-436.

de Campos, C. P.,and Ji, Q. 2011. Efficient structure learn-
ing of bayesian networks using constraints. 12:663—689.

Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research (JAIR) 22:279-318.

Frank, A., and Asuncion, A. 2010. UCI machine learning
repository.

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.

Heckerman, D. 1998. A tutorial on learning with Bayesian
networks. In Holmes, D., and Jain, L., eds., Innovations
in Bayesian Networks, volume 156 of Studies in Computa-
tional Intelligence. Springer Berlin / Heidelberg. 33-82.

Jaakkola, T.; Sontag, D.; Globerson, A.; and Meila, M.
2010. Learning Bayesian network structure using LP relax-
ations. In Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS).

Koivisto, M., and Sood, K. 2004. Exact Bayesian struc-
ture discovery in Bayesian networks. Journal of Machine
Learning Research 549-573.

Malone, B.; Yuan, C.; Hansen, E.; and Bridges, S. 2011.
Improving the scalability of optimal Bayesian network
learning with external-memory frontier breadth-first branch
and bound search. In Proceedings of the Proceedings of the
Twenty-Seventh Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-11),479-488. Corval-
lis, Oregon: AUAI Press.

Malone, B.; Yuan, C.; and Hansen, E. A. 2011.
Memory-efficient dynamic programming for learning op-
timal Bayesian networks. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence (AAAI-11), 1057—
1062.

Ott, S.; Imoto, S.; and Miyano, S. 2004. Finding optimal

models for small gene networks. In Pac. Symp. Biocomput,
557-567.

Papadimitriou, C. H., and Steiglitz, K. 1982. Combina-
torial Optimization: Algorithms and Complexity. Prentice-
Hall.

Parviainen, P., and Koivisto, M. 2009. Exact structure
discovery in Bayesian networks with less space. In Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence. Montreal, Quebec, Canada: AUAI
Press.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison & Wesley.

Rissanen, J. 1978. Modeling by shortest data description.
Automatica 14:465-471.

Silander, T., and Myllymaki, P. 2006. A simple approach
for finding the globally optimal Bayesian network struc-
ture. In Proceedings of the 22nd Annual Conference on
Uncertainty in Artificial Intelligence (UAI-06). Arlington,
Virginia: AUAI Press.

Singh, A., and Moore, A. 2005. Finding optimal Bayesian
networks by dynamic programming. Technical report,
Carnegie Mellon University.

Teyssier, M., and Koller, D. 2005. Ordering-based search:
A simple and effective algorithm for learning Bayesian net-
works. In Proceedings of the Twenty-First Conference An-

nual Conference on Uncertainty in Artificial Intelligence
(UAI-05),584-590. Arlington, Virginia: AUAI Press.

Tian, J. 2000. A branch-and-bound algorithm for MDL
learning Bayesian networks. In Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, 580—
588. Morgan Kaufmann Publishers Inc.

Yuan, C.; Malone, B.; and Wu, X. 2011. Learning opti-
mal Bayesian networks using A* search. In Proceedings of
the 22nd International Joint Conference on Artificial Intel-
ligence (IJCAI-11),2186-2191.

