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Abstract

The goal of clustering is to detect the presence of distinct groups in a data set
and assign group labels to the observations. Nonparametric clustering is based on
the premise that the observations may be regarded as a sample from some under-
lying density in feature space and that groups correspond to modes of this density.
The goal then is to find the modes and assign each observation to the domain of
attraction of a mode. The modal structure of a density is summarized by its clus-
ter tree; modes of the density correspond to leaves of the cluster tree. Estimating
the cluster tree is the primary goal of nonparametric cluster analysis. We adopt a
plug-in approach to cluster tree estimation: estimate the cluster tree of the feature
density by the cluster tree of a density estimate. For some density estimates the
cluster tree can be computed exactly, for others we have to be content with an
approximation. We present a graph-based method that can approximate the clus-
ter tree of any density estimate. Density estimates tend to have spurious modes
caused by sampling variability, leading to spurious branches in the graph cluster
tree. We propose excess mass as a measure for the size of a branch, reflecting the
height of the corresponding peak of the density above the surrounding valley floor
as well as its spatial extent. Excess mass can be used as a guide for pruning the
graph cluster tree. We point out mathematical and algorithmic connections to
single linkage clustering and illustrate our approach on several examples. Supple-
mental materials for the article, including a R package implementing generalized
single linkage clustering, all data sets used in the examples, and R code producing
the figures and numerical results, are available online.

Keywords: Cluster analysis, level set, single linkage clustering, excess mass, nearest
neighbor density estimation, runt test.
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1 Introduction

The goal of clustering is to identify distinct groups in a data set and assign a group
label to each observation. We use the term “distinct groups” in the sense of Carmichael,
George, and Julius (1968): contiguous, densely populated areas of feature space, sep-
arated by contiguous, relatively empty regions. This definition, while quite general,
admittedly is not all-encompassing: Figures 1(a) - 1(c) would be regarded as showing
two groups, while Figure 1(d) would not.

(a) (b) (c) (d)

Figure 1: (a)-(c) Distinct groups in the sense of Carmichael, George, and Julius; (d)
Groups that would not be considered distinct.

To cast clustering as a statistical problem we regard the data X = {x1, . . . ,xn} ⊂ Rm

as a sample from some unknown probability density p(x). There are two statistical
approaches to clustering. The parametric approach (Fraley and Raftery 1998, 1999, 2006;
McLachlan and Peel 2000) is based on the assumption that each group g is represented
by a density pg(x) that is a member of some parametric family, such as the multivariate
Gaussian distributions. The density p(x) then is a mixture of the group densities, and
the number of mixture components and their parameters are estimated from the data.
Observations can be labeled using Bayes’ rule.

In contrast, the nonparametric approach adopted in this paper is based on the premise
that groups correspond to modes of the density p(x). The goal then is to find the modes
and assign each observation to the “domain of attraction” of a mode. Searching for
modes as a manifestation of the presence of groups was first advocated in D. Wishart’s
(1969) paper on Mode Analysis. According to Wishart, clustering methods should be
able to detect and “resolve distinct data modes, independently of their shape and vari-
ance”.

Hartigan (1975, Section 11; 1981) expanded on Wishart’s idea and made it more precise
by introducing the notion of high density clusters. Define the level set L(λ; p) of a density
p at level λ as the subset of the feature space for which the density exceeds λ:

L(λ; p) = {x |p(x) > λ}.
Hartigan defined the high density clusters at level λ as the connected components of
L(λ; p).
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Hartigan also pointed out that the collection of high density clusters has a hierarchical
structure: for any two clusters A and B (possibly at different levels) either A ⊂ B or
B ⊂ A or A ∩ B = ∅. This hierarchical structure is summarized by the cluster tree of
p. Each node N of the tree represents a subset D(N) of the support L(0; p) of p — a
high density cluster of p — and is associated with a density level λ(N). The cluster
tree is easiest to define recursively (Stuetzle 2003). The root node represents the entire
support of p and has associated density level λ(N) = 0. To determine the descendants of
a node N we find the lowest level λd for which L(λ; p)∩D(N) has two or more connected
components. If there is no such λd then p has only one mode in D(N), and N is a leaf of
the tree. Otherwise, let C1, . . . , Ck be the connected components of L(λd; p) ∩D(N). If
k = 2 (the usual case) we create daughter nodes representing the connected components
C1 and C2, both with associated level λd, and apply the definition recursively to the
daughters. If k > 2 we create daughter nodes representing C1 and C2 ∪ · · · ∪ Ck and
recurse. (Our terminology is different from the one used by Hartigan (1975); Hartigan
refers to the connected components of all level sets as high density clusters, while we
reserve this term for connected components of level sets associated with the nodes of the
cluster tree.)

Figure 2 shows a density and the corresponding cluster tree. It is worth noting that the
topology of the cluster tree of a density is invariant under nonsingular affine transforma-
tions of feature space; only the levels of the nodes change. In particular, the topology
does not depend on the choice of units of measurement.
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Figure 2: (a) Density; (b) cluster tree. The shaded area represents the excess mass of
the left daughter of the root node. The hashed area represents the size of the right
daughter of the root node.
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We regard estimating the cluster tree as the fundamental goal of nonparametric cluster
analysis. In this paper we propose a graph-based approach to cluster tree estimation
which we call generalized single linkage clustering. In Section 2 we review previously
suggested clustering methods that can be described in terms of level sets. In Section 3
we present the basic idea of our graph-based approach, and in Section 4 we illustrate
our algorithm on a simple example. In Section 5 we describe a way of measuring the
“prominence” of modes of a density, motivating a method for pruning branches of a
cluster tree likely to correspond to spurious modes caused by sampling variability. In
Section 6 we point out mathematical and algorithmic connections between our approach
and single linkage clustering. In Section 7 we show additional examples. Section 8 with
a summary and ideas for future work concludes the paper.

2 Previous work

Several previously suggested clustering methods can be described in terms of level sets
and high density clusters.

Probably the earliest such method is Wishart’s (1969) one level mode analysis. The goal
of one level mode analysis is to find the connected components of L(λ; p) for a given
density level λ chosen by the user. The idea is to first compute a kernel density estimate
p̂ (Silverman 1986, Chapter 4) and set aside all observations with p̂(xi) ≤ λ, i.e., all
observations not in the level set L(λ; p̂). If the connected components of L(λ; p) are well
separated then the remaining high density observations should fall into clearly separated
groups. Wishart suggests using single linkage clustering of the high density observations
to identify the groups. One level mode analysis anticipates some of the “sharpening”
ideas later put forth by P.A. Tukey and J.W. Tukey (1981).

A reincarnation of one level mode analysis is the dbscan algorithm of Ester, Kriegel,
Sander, and Xu (1996). dbscan consists of four steps: (a) for each data point calculate
a kernel density estimate using a spherical uniform kernel with radius r; (b) choose a
density threshold λ and find the observations with p̂(xi) > λ; (c) construct a graph
connecting each high density observation to all other observations within distance r; (d)
define the clusters to be the connected components of this graph. All observations not
within distance r of a high density observation are considered “noise”.

dbscan is closely related to Walther’s (1997) method for estimating level sets and to
the clustering method of Cuevas, Febrero, and Fraiman (2000, 2001). Walther’s level set
estimator consists of two steps: (i) compute an estimate p̂ of the underlying density p;
(ii) estimate L(λ; p) by a union of balls centered at those observations with p̂(xi) > λ.
Estimating a level set by a union of balls centered at high density observations is also
the basic idea of Cuevas et al. (2000, 2001). Their estimate differs from Walther’s
estimate in the way the radii of the balls are chosen. The clusters produced by their
method are the connected components of the estimated level set or, more precisely, the
corresponding subsets of the observations. (This short summary does not do justice
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to the work reported in Cuevas et al. (2000, 2001); their papers contain a number of
interesting ideas, for example on using the Bootstrap to more accurately estimate level
sets and assess the variability of the estimates.)

A weakness of one level mode analysis or any method that attempts to find clusters based
on a level set for a single level λ is apparent from Figure 2. The degree of separation
between connected components of L(λ; p), and therefore of L(λ; p̂), depends critically
on the choice of the cut level λ, which is left to the user. Moreover, there might not be
a single value of λ that reveals all the modes.

Citing the difficulty in choosing a cut level, Wishart (1969) proposed hierarchical mode
analysis, which can be regarded as a heuristic for computing the cluster tree of a kernel
density estimate p̂, although it appears that Wishart did not view it thus. (The word
“tree” does not occur in the section of his paper on hierarchical mode analysis.) We
use the term “heuristic” because there is no guarantee that hierarchical mode analysis
will indeed correctly compute the cluster tree of p̂ as defined above. Wishart’s (1969)
algorithm constructs the tree by iterative merging (i.e., is an agglomerative algorithm).
It is quite complex, probably because its iterative approach is not well matched to the
tree structure it is trying to generate.

The basic weakness of one level mode analysis was also noted by Ankerst, Breuning,
Kriegel, and Sander (1999) who proposed OPTICS, an algorithm for “Ordering Points
to Identify the Clustering Structure”. OPTICS generates a data structure that allows
one to calculate efficiently the result of dbscan for any desired density threshold λ. It
also produces a graphical summary of the cluster structure.

Stuetzle (2003) suggested a new method — runt pruning — for extracting clusters from
the cluster tree of the nearest neighbor density estimate (which is isomorphic to the single
linkage dendogram) by pruning branches believed to correspond to spurious modes.

For a generalization of single linkage clustering to the k-th nearest neighbor density
estimate see Wong (1979) and Wong and Lane (1983).

Klemelae (2004, 2005) proposed tools for visualizing the level sets of density estimates
that are piecewise constant over (hyper)-rectangles, such as histograms or discretized
kernel estimates. Level sets and their connected components for such density estimates
are easy to obtain. Klemelae defines a “level set tree” which is different from the cluster
tree in that it has nodes at every one of the (finitely many) levels occuring as values of
p̂.

3 A graph-based approach to estimating the cluster

tree of a density

An obvious way of estimating the cluster tree of a density p from a sample is to first com-
pute a density estimate p̂ and then use the cluster tree of p̂ as an estimate for the cluster
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tree of p. This plug-in approach works for histograms or binned kernel density estimates
(Nugent 2006). Such estimates, however, are only viable in low dimensions because
binning high-dimensional space is not practical: ten bins per variable in ten dimensions
would result in 1010 bins. For many other estimates suitable for high-dimensional data,
like Gaussian mixtures, kernel estimates, or projection pursuit estimates, computing
level sets, and therefore computing the cluster tree, seems intractable; it is not even
clear how one would represent level sets on the computer. Instead we define and solve a
closely related, but much simpler graph problem.

Let p̂ij be the minimum value of the density estimate p̂ over the line segment connecting
observations xi and xj:

p̂ij = min
t∈[0,1]

p̂((1− t)xi + txj) .

Let G be the complete graph over the observations with edge weights p̂ij and vertex
weights p̂ii. Define the threshold graph G(λ) as the subgraph of G consisting of the
edges and vertices with p̂ij > λ. By construction, the vertices of G(λ) are exactly the
observations in L(λ; p̂).

There is also a link between the connected components of L(λ; p̂) and the connected
components of the threshold graph G(λ): Two observations in the same connected
component of G(λ) are guaranteed to lie in the same connected component of L(λ; p̂)
because they are connected by a path in G along which p̂ij > λ. Note that the reverse is
not necessarily true: there might be a curve x(t) : [0, 1] → Rm with x(0) = xi, x(1) = xj

and p̂(x(t)) ≥ λ for all t ∈ [0, 1], even if there is no path in the graph G with this property.
Therefore, observations in the same connected component of L(λ; p̂) may lie in different
connected components of G(λ). However, erroneous splits are rare if p̂ is smooth; we
present some evidence for this assertion in Section 7. We will altogether miss connected
components of L(λ; p̂) that do not contain any observations, but those are probably
artifacts of the density estimate and not of interest. In any case, our real target are
the level sets L(λ; p) of the feature density and their connected components; occasional
mistakes in identifying connected components of L(λ; p̂) are but one component of the
overall estimation error.

The connected components of G(λ) for different values of λ have a tree structure, just
like the connected components of L(λ; p̂). We call this tree the graph cluster tree; it
is our approximation to the cluster tree of p̂. Like the cluster tree of a density, the
graph cluster tree is easiest to define recursively. Each node N of the graph cluster tree
represents a subgraph D̃(N) of G and is associated with a density level λ(N). We refer
to the vertex set of D̃(N) as the graph high density cluster associated with N . The
root node represents the entire graph G and has associated density level λ(N) = 0. To
determine the descendants of a node N we find the lowest level λd for which G(λ)∩D̃(N)
has two or more connected components. If there is no such λd then N is a leaf of the tree.
Otherwise, let C1, . . . , Ck be the connected components of G(λ) ∩ D̃(N). If k = 2 (the
usual case) we create daughter nodes representing the connected components C1 and
C2, both with associated level λd, and apply the definition recursively to the daughters.
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If k > 2 we create daughter nodes representing C1 and C2 ∪ · · · ∪ Ck and recurse.

Remark 1: In our graph-based approach the observations play two conceptually differ-
ent roles. First, they are used to compute the density estimate p̂. Second, they form the
vertices of the graph G. The graph is merely a tool for approximating the structure of
the level sets of p̂. Following Cuevas et al. (2000, 2001), we could use a different set of
“test” points as the graph vertices. For example, we could generate a large sample from
p̂, which would reduce the likelihood of erroneously splitting connected components of
level sets of p̂. We would end up with cluster labels for the test points and could then
label the original observations using any classification method.

4 Computing the graph cluster tree

The recursive definition of the graph cluster tree given at the end of Section 3 translates
directly into a recursive cluster tree algorithm for its computation. Note that when we
apply the splitting procedure to the subgraph D̃(N) associated with a node N the only
values for the threshold λ we have to consider are the weights of the edges in D̃(N).
However, we can simplify the algorithm and its visualization and expose similarities
to other clustering methods (Section 6) by making use of a connection between the
threshold graphs of the graph G and of its maximal spanning tree T :

Proposition 1: Let G be an edge weighted graph and T its maximal spanning tree.
Then two vertices belong to the same connected component of G(λ) iff they belong to
the same connected component of T (λ).

Proof:

Two vertices in the same connected component of T (λ) are in the same connected
component of G(λ) because the edges of T are a subset of the edges of G.

Now assume that vertices xi and xj are in different connected components of T (λ). This
means that the unique path in T connecting xi and xj contains at least one edge e with
weight ≤ λ. Removing e from T breaks T into two connected components T1 and T2,
one containing xi and the other containing xj. If xi and xj were in the same connected
component of G(λ) there would be a path in G connecting xi and xj for which all edge
weights are greater than λ. This path has to contain an edge e∗ connecting T1 and T2.
Replacing e with e∗ in T would lead to a tree with larger total edge weight, contradicting
the assumption that T was the maximal spanning tree of G.

Proposition 1 implies that we can apply the recursive cluster tree algorithm to the
maximal spanning tree of G instead of G itself.

We still face an operational problem: the edge weights

p̂ij = min
t∈[0,1]

p̂((1− t)xi + txj)

7



of G for j 6= i are not known explicitly but are solutions of an optimization problem. One
way of dealing with this problem is to approximate the p̂ij using a numerical optimizer,
most simply a grid search. We used this method to generate the examples presented in
the paper.

We do have a more principled but computationally more demanding approach that can
be shown to produce the correct tree. It is based on two observations: (i) to compute
the maximal spanning tree of G and the graph cluster tree we only need the order of
the edge weights of G; their exact values are not important; (ii) if the density estimate
p̂ is smooth (for example a kernel estimate with a smooth kernel or a Gaussian mixture
estimate) then we can obtain upper and lower bounds on the p̂ij using Taylor expansions.
These bounds can be made arbitrarily tight at the cost of additional evaluations of p̂
and its derivatives. This approach is described in Nugent (2006). In the examples we
have tried, grid search and exact computation produce very similar results.

We now illustrate the cluster tree algorithm on a simple two-dimensional example. Fig-
ure 3(a) shows a data set consisting of two obvious groups, which we will refer to as the
“lump” and the “banana”. Superimposed are the isopleths of a kernel density estimate.

Figure 3(b) shows the maximal spanning tree of G. The “shortest” edge, the one with
lowest edge weight p̂ij and the first one to be broken during the recursive thresholding
process, is dashed. The minimum of the density along this edge is assumed at one of
the end points, drawn in grey. Therefore, thresholding eliminates this edge and the end
point, leaving us with one connected component.

Figure 3(c) illustrates the second step of the algorithm. The second shortest edge, the
second one to be broken, is dashed; edges and vertices below the current threshold are
drawn in grey. Again, the minimum of the density along the edge is assumed at an end
point, and thresholding leaves us with one connected component.

The thresholding process progressively peels off edges and vertices until we reach the
stage shown in Figure 3(d), where for the first time thresholding results in two connected
components, essentially the lump and the banana, with a few low density points removed.

Applying the thresholding process to the lump does not result in any more splits - edges
and vertices are removed until we are left with an empty graph. We therefore focus on
the banana. Figure 3(e) shows the first split of the banana. There are no further splits
of the lower part of the banana, while there is one additional split of the upper part,
shown in Figure 3(f).

The graph cluster tree shown in Figure 4(a) has four leaves, corresponding to the lump
and the three fragments of the banana. In Figure 4(b) observations in the high density
clusters corresponding to the leaves of the tree are indicated by numbers; the remaining
observations (the fluff) are drawn in grey. The numbers below the interior nodes of the
tree are their runt excess masses (Section 5).

Remark 2: The density estimate has at least one additional mode, visible in Figure 3(a)
between the lump and the banana, that does not manifest itself in the cluster tree because
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Data set and isopleths of kernel density estimate; (b) maximal spanning
tree of G with “shortest” edge dashed; (c) maximal spanning tree with second shortest
edge dashed; (d) first split resulting in two connected components; (e) first split of
banana; (f) second split of banana.
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Figure 4: (a) Graph cluster tree; (b) clusters corresponding to leaves of graph cluster
tree. Numbers above leaves are labels, numbers below interior nodes are runt excess
masses.

there are no observations in its vicinity. The valley between the two modes in the upper
part of the banana is shallow and not visible in Figure 3(a) due to the choice of contour
levels.

Remark 3: The maximal spanning tree edge connecting the lump and the banana in
Figure 3(d) might seem implausible. Note, however, that there are many edges of the
complete graph G with very similar edge weights crossing the density valley separating
the lump from the banana. Which of those has the largest edge weight and therefore
ends up in the maximal spanning tree depends on minor details of the density estimate
and the locations of the grid points along the edges.

Remark 4: For the data in this example we would hope to obtain a graph cluster tree
with two leaves corresponding to the lump and the banana, respectively. However, den-
sity estimates are inherently noisy, and the occurrence of spurious modes is unavoidable.
Note, though, that the two valleys separating the three spurious modes in the banana
are shallow, and the separation between them is not nearly as clear as the separation
between the lump and the banana. This fact is not apparent from the graph cluster tree
in Figure 4(a) because the tree only indicates the levels of the valleys, not the heights
of the peaks. In Section 5 we propose a measure for the “prominence” of a high density
cluster incorporating both its spatial extent and the rise of its peak (or peaks) above the
valley separating it from the rest of feature space. Given such a measure, we can then
prune branches of the graph cluster tree corresponding to clusters with low prominence.

Remark 5: As illustrated in Figure 4(b), the graph high density clusters corresponding
to the leaves of the graph cluster tree do not form a partition of the data. If we want a
partition, we need a way of assigning the fluff to the clusters. In keeping with the recur-
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sive nature of the clustering process, it is natural to make this assignment recursively.
Consider Figure 3(d) where we make the first split. The graph high density clusters
corresponding to the daughters of the root node are the solid black points in the lump
and the banana, respectively. The grey points are fluff, and the picture suggests a way
of assigning the fluff to the graph high density clusters: Breaking the dashed edge splits
the maximal spanning tree into two subtrees, and we assign each fluff point to the high
density cluster in its subtree. The same recipe can be applied at any stage of the algo-
rithm. A problem with this method is that it occasionally results in counter-intuitive
assignment of outliers. The minimum densities along the edges in G connecting an out-
lier to the rest of the observations will all be small, and which of them is the smallest
will depend, for example, on the locations of the grid points used to approximate the
edge weights. An alternative, used in the examples, is to assign the fluff using a nearest
neighbor rule. The details of fluff assignment do not appear to make much difference in
terms of performance.

5 Pruning the graph cluster tree

There is an obvious way of measuring the prominence of a high density cluster in the
population case. Consider Figure 2 showing a density with three modes and the corre-
sponding cluster tree. Recall that each node N of the cluster tree represents a subset
D(N) of the feature space and is associated with a level λ(N). We propose to measure
the prominence of a high density cluster by its excess mass

E(N) =
∫

D(N)
(p(x)− λ(N)) dx .

In Figure 2(a) the excess mass associated with the left daughter of the root node is
represented by the shaded area. The concept of “excess mass” is due to Hartigan (1987);
for an approach to clustering based on excess mass see also Mueller and Sawitzki (1991)
and Polonik (1995).

To find a sample analogon to E(N) observe that

∫

D(N)
dx =

∫

D(N)

1

p(x)
p(x) dx

∼ 1

n

∑

i

I(xi ∈ D̃(N))
1

p(xi)
,

and therefore

E(N) ∼ Ẽ(N) =
1

n

∑

i

I(xi ∈ D̃(N)) (1− λ(N)

p(xi)
) .

The estimate Ẽ(N) for E(N) may be poor if the number of observations in the corre-
sponding graph high density cluster D̃(N) is small. However, Ẽ(N) is a sensible measure
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of prominence. If the estimated densities for the observations in D̃(N) are close to λ
(low elevation of the peak above the valley floor) then λ(N)/p(xi) ≈ 1 and Ẽ(N) is
small. If the peak has a high elevation above the valley floor, on the other hand, then
λ(N)/p(xi) ≈ 0 and Ẽ(N) is large.

In order to prune the graph cluster tree we choose an excess mass threshold γ and remove
all nodes with excess mass Ẽ(N) < γ and their incident edges. Note that excess mass is
monotone: If node N2 is a descendant of N1 then Ẽ(N2) < Ẽ(N1). Monotonicity implies
that pruning will not result in any isolated branches or nodes. The resulting graph may
no longer be a binary tree, but it can be converted into one by splicing out internal
degree 2 nodes.

The nodes of the graph cluster tree surviving the pruning process are those whose daugh-
ters both have excess mass > γ. Define the runt excess mass of an interior node as the
smaller of the excess masses of its two daughters. The numbers 46, 2, and 0 next to
the interior nodes of the graph cluster tree in Figure 4(a) are the runt excess masses,
multiplied by the sample size and rounded for readability. (Informally we use the term
“excess mass” for both Ẽ(N) and round(n Ẽ(N)). Multiplying by the sample size ex-
presses excess mass in units of observations.) Clearly there is only one split separating
two prominent peaks of the estimated density, namely the one represented by the root
node; the remaining two split off minor bumps. Pruning the graph cluster tree with
excess mass threshold 46 results in a tree with two leaves representing the lump and the
banana, respectively.

It would be desirable to have an automatic method for determining an appropriate value
for the threshold γ. We do not yet have such a method, so the choice will have to be
subjective (see Section 7).

Remark 6: A simpler measure of “significance” of a mode is its size

S(N) =
∫

D(N)
p(x) dx

which can be estimated by

S̃(N) =
1

n

∑

i

I(xi ∈ D̃(N)) .

In Figure 2(a) the size associated with the right daughter of the root node is represented
by the hashed area. Hartigan and Mohanty (1992) used size as an indicator for “signif-
icance” in their runt test for unimodality. Like excess mass, size is monotone and can
be used for pruning the graph cluster tree. The runt sizes for the three interior nodes of
the tree in Figure 4(a) are 96, 26, and 5. So in this example, runt size does not provide
as clear a guide for pruning as runt excess mass.
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6 Connections to single linkage clustering

Single linkage and generalized single linkage clustering are connected through the nearest
neighbor density estimate

p̂(1)(x) =
1

d1(x,X )
,

where d1(x,X ) = mini d(x,xi). Admittedly, p̂(1) barely deserves the name “density
estimate”: it has a singularity at every observation and cannot even be normalized. On
the other hand, it does provide a sensible measure of density in the non-technical sense
of the word: p̂(1)(x) is small if x is far away from the observations, and large if x is close.

Let G be the complete graph over the observations with edge weights

p̂
(1)
ij = min

t∈[0,1]
p̂(1)((1− t)xi + txj)

and vertex weights p̂
(1)
ii = ∞.

Proposition 2: The graph cluster tree of G is isomorphic to the single linkage dendo-
gram.

A proof of Proposition 2 is given in the appendix (available online). Proposition 2 shows
that generalized single linkage clustering applied to the nearest neighbor density estimate
reduces to single linkage clustering; the name is therefore justified.

The commonly used method of extracting clusters from a single linkage dendogram is
dendogram cutting. Stated in terms of the graph cluster tree, dendogram cutting is
equivalent to choosing a density threshold λ∗ and removing all nodes with level λ(N) >
λ∗ and their incident edges. There are two problems with this pruning strategy. First
it tends to result in many singletons or tiny clusters consisting of outliers, and one or
a few large clusters. This problem could be remedied by choosing a size threshold and
discarding all clusters of size smaller than the threshold. However, there is a more
fundamental problem: dendogram cutting forms the clusters based on a single level set
of the nearest neighbor density estimate and, as Figure 2 illustrates, there may not be
a single level revealing all the groups or modes. An alternative is to apply the pruning
method described in Section 5. Note that the nearest neighbor density estimate has a
singularity at each data point (p̂(1)(xi) = ∞) and therefore the measure of prominence

Ẽ(N) =
1

n

∑

i

I(xi ∈ D̃(N)) (1− λ(N)

p(xi)
)

reduces to the fraction of observations in the graph high density cluster D̃(N), i.e., to
size. Extracting clusters from a single linkage dendogram by pruning branches with small
size was proposed by Stuetzle (2003), who also provided experimental results suggesting
that pruning is vastly superior to dendogram cutting.
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7 Examples

The goal of this section is to illustrate generalized single linkage clustering on some
examples and to compare it to standard hierarchical clustering methods (single linkage,
average linkage, complete linkage, and Ward’s method), and to parametric (model based)
clustering with Gaussian mixtures (Fraley and Raftery 1998, 1999, 2006; McLachlan and
Peel 2000). (For hierarchical clustering we used the functions “hclust” and “cutree” in
R version 2.7.1 (R Development Core Team 2008). For model based clustering we used
the function “Mclust” in the R package mclust version 3.1-5 (Fraley and Raftery 2008).)

Density estimation: Where feasible we present the results of generalized single linkage
clustering for two different density estimates: the nearest neighbor density estimate and
a kernel density estimate with bandwidth determined by least squares cross-validation
(Silverman 1986). We refer to these two versions as gsl-nn and gsl-k, respectively.
The nearest neighbor estimate is computationally attractive because the maximal span-
ning tree of G is the Euclidean minimal spanning tree of the observations, and computing
a Euclidean minimal spanning tree for 10,000 points in ten dimensions only takes about
a minute on a standard PC. We chose kernel estimates as the alternative because they
are well understood and easy to implement, and least squares cross-validation offers a
simple way for automatic bandwidth selection. We use an elliptical Gaussian kernel with
the same covariance as the data. For some of the examples with high dimensional fea-
ture space, kernel density estimation is not viable because least squares cross-validation
fails or the kernel is singular. For these examples we only give results for the nearest
neighbor density estimate.

Edge weights: For a kernel density estimate the edge weights

p̂ij = min
t∈[0,1]

p̂((1− t)xi + txj)

are not available in closed form and have to be approximated. A simple approximation
method is grid search: approximate p̂ij by the minimum of p̂ over a regular grid on the
line segment connecting xi and xj. In the examples we used ten grid points.

In practice it is not necessary to calculate the edge weights for all the edges of the com-
plete graph: edges connecting observations with large Euclidean distance will typically
not end up in the maximal spanning tree. In the examples we only calculate the edge
weights for a sparse test graph with edges that are either in the Euclidean minimal
spanning tree of the observations or in the 20-nearest neighbor graph. This shortcut
results in a large speedup of the edge weight calculation: Evaluating a kernel density
estimate at a single point takes work on the order O(n), and therefore computing all the
edge weights is O(n3). The shortcut reduces this to O(n2) while producing essentially
the same clustering results.

Choosing an excess mass threshold for pruning: We sort the runt excess masses
for the interior nodes of the graph cluster tree in decreasing order. Typically there is
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a small number of large values followed by a long trail of small values, like 98, 32, 22,
4, 3, 3, 3, 2, 2, 1, 1,. . . in Example 1 below. A large runt excess mass indicates a split
separating two prominent modes whereas a small runt excess mass indicates separation
of a spurious mode most likely caused by variability of the density estimate. We scan the
values from small to large looking for the first clear break, in our example between 4 and
22, and then choose the larger value as the threshold. There are three runt excess masses
greater than or equal to the threshold, leading to a pruned tree with three interior nodes
and four leaves.

Leaves versus modes: There is a one-to-one correspondence between modes of p̂
and leaves of the cluster tree of p̂. As pointed out in Section 3, however, the same
is not necessarily true for the graph cluster tree. The graph cluster tree may fail to
reflect modes of p̂ whose domain of attraction does not contain any observations and,
more importantly, multiple leaves may correspond to the same mode due to spurious
splits of level sets of p̂. To get an alternative estimate for the number of modes we use
numerical optimization. We start a numerical optimizer at each of the n observations and
then cluster the resulting local optima using Ward’s clustering method, a hierarchical
version of k-means clustering. Define the loss associated with a partition as the sum of
squared distances of the observations from their closest cluster means. Initially, every
observation is a cluster. At any stage of the algorithm, Ward’s method merges the two
clusters leading to the smallest increase in loss. When applying Ward’s method to the
local optima there typically is a clear jump in the loss. A jump after the i-th merge
indicates that the local optima fall into n− i clusters corresponding to n− i modes.

Measuring agreement between partitions: Let P1 and P2 be two partitions of a set
of n objects. The partitions define a contingency table: let nij be the number of objects
that belong to subset i of partition P1 and to subset j of partition P2. We measure the
agreement between P1 and P2 by the adjusted Rand index (Hubert and Arabie 1985)
defined as

R =

∑
ij

(
nij

2

)
−∑

i

(
ni·
2

) ∑
j

(
n·j
2

)
/
(

n
2

)

1
2

(∑
i

(
ni·
2

)
+

∑
j

(
n·j
2

))
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(
ni·
2

) ∑
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(
n·j
2

)
/
(

n
2

) .

Here ni· =
∑

j nij, and n·j is defined analogously.

The adjusted Rand index has a maximum value of 1 which is achieved when the two
partitions are identical up to re-numbering of the subsets. It has expected value 0 under
random assignment of the objects to the subsets of P1 and P2 that leave the marginals
ni· and n·j fixed.

7.1 Non-elliptical clusters — the Bullseye data

The data in this example consist of a two-dimensional Gaussian cloud forming the cen-
ter of the bullseye and a second group in the shape of a ring around the center. Fig-
ures 5(a),. . . ,(f) show the 2-partitions generated by single linkage, average linkage, com-
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a). . . (f): 2-partitions found by (a) single linkage, (b) average linkage, (c)
complete linkage, (d) Ward’s method, (e) model based clustering, (f) generalized single
linkage clustering

plete linkage, Ward’s method, model based clustering, and generalized single clustering
with a kernel density estimate, respectively.

Generalized single linkage clustering is the only method that recovers the obvious group
structure. Single linkage clustering partitions the data into a cluster consisting of a
single outlier and a second cluster made up of the rest. All the other methods fail in
similar ways. This failure is not surprising, as they are all designed to find elliptical or
roughly convex clusters.

7.2 Gaussian clusters — the Simplex data

The data in this example consist of spherical Gaussian clusters with common standard
deviation σ = 0.25, centered at the vertices of the unit simplex in seven dimensions.
The cluster sizes are 50, 60, . . . , 110. The runt sizes for the nearest neighbor density
estimate are, in descending order, 80, 73, 60, 38, 35, 26, 14, 10, 9, 9, 8, 7, 6, 6 . . . .
The gap between 14 and 26 suggests seven clusters, which is the correct number. The
adjusted Rand index is 0.83.

The runt sizes for the kernel density estimate are 118, 61, 41, 40, 38, 24, 5, 4, 3, . . . , and
the runt excess masses (rounded) are 34, 18, 10, 10, 9, 4, 1, 1, 1,. . . , both suggesting
seven clusters. The adjusted Rand index is 0.95.

The unpruned graph cluster tree of the corresponding kernel density estimate has 210

16



SL AL CL WA MC GSL-NN GSL-K
0.0 (0.02) 0.93 (0.03) 0.89 (0.04) 0.90 (0.03) 0.97 (0.01) 0.83 (0.07) 0.94 (0.09)
0.0 (0.03) 0.93 (0.03) 0.91 (0.03) 0.90 (0.03) 0.97 (0.01) 0.90 (0.06) 0.94 (0.07)

7 8 8 7 7 8 7

Table 1: Comparison of single linkage, average linkage, complete linkage, Ward’s
method, model-based clustering, generalized single linkage with nearest neighbor den-
sity estimate, and generalized single linkage with kernel density estimate for the seven-
dimensional simplex data. First row: adjusted Rand index if methods are made to
generate seven clusters; second row: adjusted Rand index for optimal partition size;
third row: optimal partition size. Numbers in parentheses are standard errors.

leaves, suggesting that the density estimate has 210 modes. To obtain an alternative
estimate for the number of modes we start a numerical optimizer at each of the 560
observations and apply Ward’s method to the local optima. The loss for the first 324
merges stays below 4 × 10−3 and then abruptly jumps to 3.8 × 10−1, suggesting that
there are at least 560 − 324 = 236 distinct local optima. We conclude that the kernel
estimate indeed has more than 200 modes.

Table 1 summarizes the performance of single linkage, average linkage, complete linkage,
Ward’s method, model based clustering, generalized single linkage with nearest neighbor
density estimate, and generalized single linkage with kernel density estimate. The first
row of the table contains the values of the adjusted Rand index when the methods are
asked to construct a 7-partition. The second row contains the optimal values of the index
(optimized over partition size). Numbers in parentheses are standard errors obtained
by half-sampling (Shao and Tu 1995, Section 5.2.2). All methods except single linkage
perform well, although generalized single linkage with the nearest neighbor estimate falls
off a bit.

7.3 The Olive Oil data

The Olive Oil data consist of measurements of eight chemical components on 572 samples
of olive oil. The samples come from three different regions of Italy. The regions are
further partitioned into nine areas: areas A1 . . . A4 belong to region R1, areas A5 and
A6 belong to region R2, and areas A7. . . A9 belong to region R3.

We show the results for the kernel estimate. The unpruned graph cluster tree has 514
leaves. The alternative estimate for the number of modes (obtained by clustering local
optima) is 501.

The runt excess masses are 128, 86, 46, 26, 24, 24, 19, 18, 11, 9, 8, 7, 7, 6, 6, . . . , and the
runt sizes are 129, 89, 47, 33, 25, 24, 24, 20, 11, 9, 9, 8,. . . , both suggesting a nine cluster
solution. Figure 6 shows the (pruned) graph cluster tree. Table 2 shows a table of area
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(vertical axis) against leaf code (horizontal axis). Generalized single linkage clustering is
unable to isolate area A4; area A3, which has by far the largest number of observations,
is split into two clusters (leaf codes 40 and 41); and areas A7 and A8 are not cleanly
separated. The adjusted Rand index is 0.61, reflecting the erroneous split of area A3.

The runt sizes for the nearest neighbor estimate are 168, 97, 59, 51, 42, 42, 33, 13, 13,
12, 11, 11, 11, 10, . . . , suggesting eight clusters. The adjusted Rand index is 0.57.

0
10

20
30

40
50

le
ve

l

4

40 41

21

22 23

6
14 15

12824
86

18

26

19

46
24

Figure 6: Graph cluster tree of Olive Oil data for kernel density estimate. Numbers
above the leaves are labels; numbers below the interior nodes are runt excess masses.

Table 3 summarizes the performance of single linkage, average linkage, complete linkage,
Ward’s method, model based clustering, generalized single linkage with nearest neighbor
density estimate, and generalized single linkage with kernel density estimate. Single
linkage fails, and complete linkage is inferior to the best methods. Performance of the
other methods is comparable.

7.4 The Handwritten Digit data

The data for this example are 2,000 16× 16 grey level images of handwritten digits; the
data therefore are of dimensionality 256. (The data were previously used to evaluate
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4 41 40 21 22 23 15 14 6
A1 24 1 0 0 0 0 0 0 0
A2 0 1 6 49 0 0 0 0 0
A3 0 95 108 3 0 0 0 0 0
A4 5 0 10 20 0 0 0 1 0
A5 0 0 0 0 64 1 0 0 0
A6 0 0 0 0 5 28 0 0 0
A7 0 0 0 0 0 0 32 16 2
A8 0 0 0 0 0 1 0 49 0
A9 0 0 0 0 0 0 0 0 51

Table 2: Olive oil data: leaf code (horizontal axis) tabulated against area (vertical axis).

SL AL CL WA MC GSL-NN GSL-K
0.00 (0.06) 0.61 (0.07) 0.43 (0.08) 0.50 (0.05) 0.56 (0.12) 0.51 (0.05) 0.64 (0.1)
0.0 (0.1) 0.64 (0.06) 0.50 (0.07) 0.62 (0.06) 0.64 (0.07) 0.70 (0.08) 0.64 (0.11)

4 12 7 8 8 5 9

Table 3: Comparison of single linkage, average linkage, complete linkage, Ward’s method,
model-based clustering, generalized single linkage with nearest neighbor density esti-
mate, and generalized single linkage with kernel density estimate for the olive oil data.
First row: adjusted Rand index if methods are made to generate nine clusters; second
row: adjusted Rand index for optimal partition size; third row: optimal partition size.
Numbers in parentheses are standard errors.

machine learning algorithms). Least squares cross-validation failed for this data set, and
we are reporting the results of generalized single linkage clustering only for the nearest
neighbor density estimate. The runt sizes are 288, 283, 90, 84, 74, 47, 37, 35, 22, 21,
21, 19, 19, 18, 13, 12, 12,. . . . The gap after 35 (vaguely) suggests nine clusters. The
corresponding adjusted Rand index is 0.64.

Table 4 summarizes the performance of single linkage, average linkage, complete linkage,
Ward’s method, model based clustering, and generalized single linkage with nearest
neighbor density estimate. Ward’s method and generalized single linkage perform best;
the poor showing of average linkage and model based clustering is surprising.

7.5 The Acute Lymphoblastic Leukemia data

The purpose of this example is to illustrate that generalized single linkage clustering
can be applied to very high-dimensional data sets. The Acute Lymphoblastic Leukemia
(ALL) data are oligonucleotide microarray gene expression levels of 12558 genes for
each of 360 ALL patients. Yeoh et al. (2002) divided the patients into seven diagnostic
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SL AL CL WA MC GSL-NN
0.00 (0.00) 0.07 (0.07) 0.28 (0.07) 0.65 (0.05) 0.35 (0.03) 0.54 (0.05)
0.0 (0.00) 0.25 (0.08) 0.35 (0.06) 0.65 (0.03) 0.38 (0.04) 0.64 (0.05)

12 15 13 10 8 7

Table 4: Comparison of single linkage, average linkage, complete linkage, Ward’s method,
model-based clustering, generalized single linkage with nearest neighbor density esti-
mate, for the handwritten digit data. First row: adjusted Rand index if methods are
made to generate ten clusters; second row: adjusted Rand index for optimal partition
size; third row: optimal partition size. Numbers in parentheses are standard errors.

groups corresponding to six known leukemia subtypes (T-ALL, E2A-PBX1, BCR-ABL,
TELAML1, MLL rearrangement, and Hyperploid>50 chromosomes), and one unknown
type, labeled OTHER. The data were taken from the Kent Ridge Bio-Medical Data Set
Repository, where they have been split into training and test sets. We clustered the
training set comprising 215 patients.

We first selected the 1000 genes with the highest variance and normalized the expres-
sion profiles to have zero mean and unit variance; squared Euclidean distance between
patients then measures the correlation between the corresponding expression profiles.
Kernel density estimation does not make sense in this example, as the observations lie
in a 214-dimensional subspace of 1000-dimensional space. Next, we computed the graph
cluster tree for the nearest neighbor density estimate (the single linkage dendogram).
The largest runt sizes are 36, 27, 21, 14, 8, 5, 5,. . . , suggesting five clusters. Figure 7
shows the (pruned) graph cluster tree, and Table 5 shows a table of ALL subtype (ver-
tical axis) against leaf code (horizontal axis). The T-ALL, E2A-PBX1, and TEL-AML1
subtypes correspond to clusters with leaf codes 3, 4, and 23; the remaining subtypes
are not isolated. These results are qualitatively similar to the ones obtained by Murua,
Stanberry, and Stuetzle (2007) using Potts model clustering. The adjusted Rand index
of the generalized single linkage partition is 0.55, compared to 0.53 for Potts model
clustering.

Table 6 summarizes the performance of single linkage, average linkage, complete linkage,
Ward’s method, model based clustering, and generalized single linkage with nearest
neighbor density estimate. Single, average, and complete linkage are not competitive.
Ward’s method, model-based clustering and generalized single linkage show comparable
perfomance.

8 Summary and discussion

Nonparametric clustering is based on the premise that groups in the data correspond
to modes of the feature density. The goal then is to detect modes of the density and
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Figure 7: Graph cluster tree of ALL data for nearest neighbor density estimate. Numbers
above the leaves are labels; numbers below the interior nodes are runt sizes.

assign each observation to the domain of attraction of a mode. The modal structure
of a density is summarized by its cluster tree; the modes of the density correspond
to the leaves of the cluster tree. We have pursued a plug-in approach to cluster tree
estimation: estimate the cluster tree of the feature density by the cluster tree of a
density estimate. For some density estimates the cluster tree can be computed exactly,
for others we have to be content with an approximation. We have developed a graph-
based method that can approximate the cluster tree of any density estimate. Due to
sampling variability, density estimates tend to have spurious modes that do not reflect
modes of the feature density and that will lead to spurious branches in the graph cluster
tree. We have proposed excess mass as a measure for the size of branches of the graph
cluster tree, reflecting the height of the corresponding peak (or peaks) of the density
above the surrounding valley floor and its spatial extent. Excess mass can be used as
a guide for subjective pruning of the graph cluster tree. The graph cluster tree of the
nearest neighbor density estimate is (essentially) the single linkage dendogram. Excess
mass pruning is a generalization of the runt pruning method for extracting clusters from
a single linkage dendogram proposed by Stuetzle (2003).

In the examples presented in Section 7, as well as in about a half dozen others not
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3 5 9 16 17
BCR-ABL 0 0 0 6 3
E2A-PBX1 0 18 0 0 0

Hyperdip>50 0 1 0 41 0
MLL 0 4 10 0 0

OTHERS 0 2 14 24 12
T-ALL 28 0 0 0 0

TEL-AML1 0 0 0 0 52

Table 5: ALL data: leaf code (horizontal axis) tabulated against ALL subtype (vertical
axis).

SL AL CL WA MC GSL-NN
0.12 (0.03) 0.12 (0.09) 0.30 (0.11) 0.60 (0.08) 0.64 (0.08) 0.54 (0.07)
0.12 (0.03) 0.29 (0.16) 0.48 (0.08) 0.63 (0.07) 0.64 (0.06) 0.55 (0.05)

13 12 15 6 8 5

Table 6: Comparison of single linkage, average linkage, complete linkage, Ward’s method,
model-based clustering, generalized single linkage with nearest neighbor density esti-
mate, for the acute lymphoblastic leukemia data. First row: adjusted Rand index if
methods are made to generate seven clusters; second row: adjusted Rand index for
optimal partition size; third row: optimal partition size. Numbers in parentheses are
standard errors.

reported here, we have observed that:

1. Single linkage clustering - extracting clusters from the single linkage dendogram
by dendogram cutting - is not a viable clustering method. Pruning branches with
small size is vastly superior.

2. The other standard hierarchical clustering methods (average and complete linkage,
and Ward’s method), and model based clustering cannot find clusters that are
highly non-convex (bullseye), while generalized single linkage can.

3. In the (admittedly small number of) examples, generalized single linkage clustering
was consistently among the top performers. This suggests that the performance
penalty paid for the flexibility of generalized single linkage clustering (the ability
to cope with non-convex clusters) is small.

4. Kernel density estimates with bandwidth determined by least squares cross-validation
tend to have many modes, most of them caused by sampling variability, and prun-
ing the graph cluster tree is crucial. Runt size and runt excess mass provide are
good indicators for the number of groups.
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5. Kernel and nearest neighbor density estimates give comparable clustering perfor-
mance in most examples. This came as a pleasant surprise because the calculations
for the nearest neighbor estimate are very fast: clustering the Handwritten Digit
data with 2,000 observations and 256 variables takes less than 10 seconds on a
modern PC.

There are several directions for future work:

Other density estimates. Kernel and near neighbor density estimates are known to
be susceptible to the curse of dimensionality. It may be worthwhile to investigate the
performance of generalized single linkage clustering with other density estimates poten-
tially less impacted by high dimensionality, like Projection Pursuit density estimates
(Friedman, Stuetzle, and Schroeder 1984; Friedman 1987).

Alternative pruning strategies. Excess mass pruning is based solely on the promi-
nence of peaks of the estimated density, i.e. their height and spatial extent; it does not
take into account the spatial separation between peaks. Pruning strategies taking into
account both prominence and separation may allow for better detection of small but
highly isolated groups.

Automatic pruning. Subjective pruning casts doubts on interpretations of clustering
results and makes quantitative comparisons of results difficult. A fully automatic pruning
method (analogous to model selection methods for regression and classification) would
be preferrable. Nugent (2006) contains some preliminary ideas and results.

Supplemental materials

A zip archive containing a R package implementing generalized single linkage clustering
as well as the Latex source, R code, and data needed to reproduce paper, appendix,
and all the figures and numerical results presented therein is available online. The file
“README.txt” in the archive has a detailed description of the archive.
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