Hierarchical Model-Based Clustering of Large Datasets
Through Fractionation and Refractionation.
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ABSTRACT

The goal of clustering is to identify distinct groups in a
dataset. Compared to non-parametric clustering methods
like complete linkage, hierarchical model-based clustering
has the advantage of offering a way to estimate the number
of groups present in the data. However, its computational
cost is quadratic in the number of items to be clustered,
and it is therefore not applicable to large problems. We
review an idea called Fractionation, originally conceived by
Cutting, Karger, Pedersen and Tukey for non-parametric hi-
erarchical clustering of large datasets, and describe an adap-
tation of Fractionation to model-based clustering. A further
extension, called Refractionation, leads to a procedure that
can be successful even in the difficult situation where there
are large numbers of small groups.

Categories and Subject Descriptors

1.5.3 [Pattern Recognition]: Clustering; 1.5.1 [Pattern
Recognition]: Models—Statistical

General Terms
Model-based Clustering

Keywords

Model-based Clustering, Fractionation, Refractionation

1. INTRODUCTION

The goal of clustering is to identify distinct groups in a
dataset X = {@1,... ,£,} C R™. For example, when pre-
sented with (a typically higher dimensional version of) a
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dataset like the one in Figure 1 we would like to detect that
there appear to be (perhaps) five or six distinct groups, and
assign a group label to each observation.
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Figure 1: Data set with 5—6 apparent groups.

To cast clustering as a statistical problem we regard the
data @1, ... , T, as a sample from some unknown probability
density p(z). There are two statistical approaches to clus-
tering. Nonparametric clustering [16, 12, 2, 9] is based on
the premise that groups correspond to modes of the density
p(x). The goal then is to estimate the modes and assign each
observation to the “domain of attraction” of a mode. In con-
trast, model-based clustering (see [13] and references therein)
assumes that each group g is represented by a density py ()
that is a member of some parametric family, such as the mul-
tivariate normal family. The density p(x) then is a mixture
of the group densities, and the parameters of the mixture
components as well as their number can be estimated from
the data. The ability to estimate the number of groups is an
important strength of the model-based approach. There is,
as yet, no comparable method for nonparametric clustering.
In this paper we focus on model-based clustering. Specifi-
cally, we present ideas for extending model-based clustering
to large datasets.

1.1 Model-based clustering in a nutshell

The underlying assumption of model-based clustering is
that the data are a sample from a mixture density p(x) =

EQG:IWQ pg(x). Here, my is the prior probability that a



randomly chosen observation belongs to group g, and pg
is the density modeling group g. A common assumption
is that the group densities p, are multivariate Gaussian
with mean pg and covariance matrix X4. Define variables
Zig,t = 1,...,n,9g = 1,... ,G by 2z, = 1 if observation
is in group g, zig = 0 otherwise. For a given number G of
mixture components the log-likelihood of the sample then is

n G
L=ZZZ1’§ log(7g ¢(wi§ugvzg))7 (1)

i=1 g=1

where ¢(-; p, X) is the Gaussian density with mean vector p
and covariance matrix X. This log-likelihood can be opti-
mized over the 7y, i, and ¥y using the EM-algorithm ([13]
chapter 2.8.)

There are several ways of estimating the number G of
groups ([13], Chapter 6.) We use the Bayesian Information
Criterion (BIC) [14, 11]:

G = argmax (2 X Lmaz(G) —rlog(n)). (2)

Here, G is the estimated number of groups, Lmaz (G) is the
log-likelihood of the best G component model, r is the num-
ber of parameters of the model and n is the number of ob-
servations.

Estimating the number of groups (or mixture components)
requires optimizing the likelihood for many different values
of G. Moreover, the success of the EM algorithm in find-
ing a good local optimum depends strongly on the starting
value. Fraley and Raftery [11] address these problems by
using a hierarchical approach: Find the starting guess for a
model with G — 1 components by merging the two groups
of the G component model for which the merge leads to the
smallest decrease in likelihood. Unfortunately, a straight-
forward implementation of Fraley and Raftery’s hierarchical
model-based clustering leads to an O(n?) algorithm. This is
the problem we are trying to address in our paper.

1.2 Previous work on model-based clustering
for large datasets

There are several ways of extending model-based cluster-
ing to large datasets. The simplest and potentially fastest
is to draw a sample of the data, fit a mixture model to the
sample, and then use Bayes’ rule to assign the remaining
observations to the clusters. A problem with this approach
is that small groups will be represented in the sample by
very few observations or be missed altogether. Therefore
the corresponding clusters will be either ill determined or
absent.

Another method of fitting mixture models to large data-
sets is the Scalable EM (SEM) algorithm of Bradley, Fayyad
and Reina [4, 5]. Their method requires only a single scan
of the data set. Its main drawback is that it does not of-
fer a way of estimating the number of groups or mixture
components; the number of clusters is a parameter of the
procedure.

Domingos and Hulten’s [7] approach is similar to the one
proposed in [4, 5]. They cluster the data in manageable
sections and pass through the dataset only once. The biggest
difference is that Domingos and Hulten assume that they
work on an infinite data stream and so choose to stop when
their estimates of the clusters are not changing significantly.
The number of clusters is a parameter of the procedure.

2. FRACTIONATION

Fractionation was originally presented by Cutting, Karger,
Pedersen, and Tukey [6] as a method for extending O(n?)
hierarchical clustering methods to large datasets. In their
application the desired number G of clusters was specified
a priori; there was no attempt at estimating the number of
groups in the data. Let M be the largest number of items
to which we can reasonably apply the base hierarchical clus-
tering procedure.

The original Fractionation algorithm proceeds as follows:

1 Split the data into subsets or fractions of size M.

2 Cluster each fraction into a fixed number a M of clusters,
with @ < 1. Summarize each cluster by its mean. We
refer to these cluster means as meta-observations.

3 If the total number of meta-observations is greater than
M, return to step (1), with the meta-observations tak-
ing the place of the original data.

4 Cluster the meta-observations into G clusters.

5 Assign each individual observation to the cluster with the
closest mean.

The number of fractions in the i-th iteration is o'~ 'n/M
and the work involved in clustering a fraction is O(M?) in-
dependent of n. This shows that the total run time is linear
in n and decreasing in a.

2.1 Model-based Fractionation

If we use hierarchical model-based clustering as the base
clustering method in Fractionation, then we get model-based
Fractionation. The main difference between the Fractiona-
tion method of Cutting et al.[6] and model-based Fractiona-
tion is that in model-based Fractionation a meta-observation
is not characterized just by a mean, but by all the sufficient
statistics, i.e. the mean, the covariance, and the number of
observations in the cluster.

We do not want to assume that the number of groups is
known a priori. Instead we determine the number of clus-
ters (mixture components) in Step 4 of the Fractionation
algorithm using BIC.

3. MODEL-BASED REFRACTIONATION

A major problem with Fractionation is that once observa-
tions from different groups have been assigned to the same
meta-observation this error will never be corrected. Such er-
roneous assignments are less likely to occur if fractions are
pure, i.e. contain observations from few groups or, equiva-
lently, if groups are split over few fractions. We could form
purer fractions if we knew the group labels of the obser-
vations. This observation suggests applying Fractionation
repeatedly and forming the fractions for Step 1 of the i-
th pass based on the clustering produced in the (i — 1)st
pass. Conceptually, Step 4 of the Fractionation algorithm
is replaced by two steps, both involving hierarchical model-
based clustering of the meta-observations generated by Step
3:

4a Cluster the meta-observations into G clusters, where G
is determined by BIC.



Pass | Min Median Max | >1 >2

1 4 4 4 25 25
2 1 1 2 10 0
3 1 1 2 1 0

Table 1: The distribution of the number of fractions
each group resides in at the start of each Fractiona-
tion pass.

4b Define the fractions for the i-th pass: as soon as a cluster
formed during the merging represents more than M
observations, make those observations into a fraction
and remove the cluster from the merge process.

We stop the Refractionation iterations when the change
in the number G of clusters and the cluster compositions is
small enough.

3.1 [lllustration

To illustrate how Refractionation works, consider a simple
example in two dimensions with 25 equally spaced Gaussian
groups containing 16 points each. Figure 2 shows the data
and the component densities of the model. The circles in
this and the following figures are isopleths of the component
densities containing 95% of the mass.

We randomly split the data into four fractions of 100 ob-
servations each (Step 1 of the Fractionation algorithm), and
then use model-based hierarchical clustering to cluster each
fraction into M /10 = 10 clusters (Step 2 of the algorithm).
The fractions and their clusters are shown in Figure 3.

The number of meta-observations produced by clustering
the fractions in this case is 40 which is less than M = 100
(Step 3) and we can therefore proceed to steps 4a and 4b.

Clustering the 40 meta-observations into 25 clusters (Step
4a) produces the mixture model whose component densities
are shown in Figure 4. Clearly, this clustering in no way
reflects the structure of the data.

Clustering the 40 meta-observations into new fractions
(Step 4b) results in fraction sizes of 97, 108, 104, and 91.
Figure 5 shows the new fractions.

We now start the second pass of Fractionation. Each frac-
tion again is clustered into 10 clusters (Step 2) shown in
Figure 5.

Clustering the 40 meta-observations into 25 clusters (Step
4a) produces the mixture model shown in Figure 6. We have
essentially recovered the structure of the data.

A third pass of Fractionation (Figures 7 and 8) leads to
almost the same mixture model (Figure 8) as the second
pass (Figure 6), and the Refractionation process stops.

Table 1 gives numerical summaries of the purity of the
fractions. At the beginning of the first Fractionation pass,
each of the 25 groups is scattered over all four fractions,
whereas at the beginning of the third pass only one of the
groups is split across multiple fractions.

3.2 Scope of (Re)Fractionation

In order to gain some insight into the scope and limita-
tions of (Re)Fractionation, we consider an idealized situa-
tion where the groups are so well separated that it is unam-
biguous whether or not two observations or meta-observa-
tions belong to the same group. This allows us to separate
performance of the base clustering method from the perfor-
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Figure 2: Observations and component densities.

Figure 3: Meta-observations obtained by clustering
the initial four fractions.

Figure 4: Clusters after the first pass of Fractiona-
tion.
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Figure 5: Meta-observations obtained by clustering
the four fractions in the second pass of Fractiona-

tion.

. ' ' T
" . ’ . B
. I l -
I B
. I .' B

Figure 6: Clusters after the second pass of Fraction-

ation.
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Figure 7: Meta-observations obtained by clustering
the four fractions in the third pass of Fractionation.
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Figure 8: Clusters after the third pass of Fractiona-

tion.



mance of Fractionation and Refractionation.

Let ng be the number of groups in the data, let ny be the
number of fractions, and let n. be the number of clusters
generated from each fraction in Step 2 of the Fractionation
algorithm. Clearly, if ny < n. then Fractionation will work
and Refractionation is unnecessary. On the other hand, if
ng > n. then it is possible for a fraction to contain observa-
tions from more than n. groups, which will lead to impure
clusters, and therefore the groups will not be recovered per-
fectly.

Even in our simple scenario it is difficult to make such
simple statements about Refractionation. We can only prove
that Refractionation works for ny = n. + 1, under some
restrictions about the group sizes. However our examples
show that the range of applicability is much larger. It is
also clear that refractionation will not recover the groups if
ng > nsnc. In this case there must be at least one fraction
that contains observations from more than n. groups, and
clustering this fraction will lead to impure clusters.

4. EXAMPLES

In order to investigate how well model-based Fractiona-
tion and Refractionation can find groups in a dataset, we
apply them to three datasets for which the group labels are
known. In the examples we do not use BIC to estimate the
number of groups, but rather take this number as given.
This seems reasonable because our point here is to explore
the performance of model-based Fractionation and Refrac-
tionation, and not the ability of BIC to correctly estimate
the number of groups.

4.1 Measuring the agreement between parti-
tions

In our examples we know the true group labels of the ob-
servations, and we want to measure the degree of agreement
between the groups and the clusters. We use the Fowlkes-
Mallows index [10] as a measure of agreement. The index
is the geometric mean of two probabilities: the probabil-
ity that two randomly chosen observations are in the same
cluster given that they are in the same group, and the prob-
ability that two randomly chosen observations are in the
same group given that they are in the same cluster. Hence
a Fowlkes-Mallows index near 1 means that the clusters are
a good estimate of the groups.

To compute the Fowlkes-Mallows index we construct a
contingency table of the groups and the clusters, as shown
in Table 2. Let n;. be the sum over the i-th row of the
table, and let n.; be the sum over the j-th column. Then
the Fowlkes-Mallows index is given by:

S EE)sf) o

4.2 The TDT dataset

Our examples are derived from a dataset of 1,131 doc-
uments that is part of the Topic Detection and Tracking
document collection [1]. The 1,131 documents were manu-
ally classified into a total of 25 groups or topics. Six of the
topics have less than eight documents each, and contain a
total of only 31 documents. We only used the remaining
1,100 documents, partitioned into 19 topics.

true clusters
groups | 1 2 e G | Total
1 ni1 M2 - MG n1.
2 M21 MN22 - N2@ n2-
J nji MNJ2 - NJG nJ.
Total | n.i nse -+ ng n

Table 2: Comparison between clusters (columns)
and groups (rows). Each cell count n;; is to the
number of common elements in cluster g and group
i.

We relied on standard document retrieval technology to
convert the 1,100 documents into vectors in a 50-dimensional
space: We assembled the term-document matrix, applied the
log-1df transformation to the term counts as suggested by
Dumais [8], and then reduced the dimensionality by latent
semantic indexing [3].

Model-based clustering of the 1,100 documents (more pre-
cisely, the 1,100 50-dimensional vectors corresponding to the
documents) into 19 clusters resulted in a Fowlkes-Mallows
index of 0.76 and a 19 x 19 contingency table (analogous
to Table 2) with 27 non zero entries. This is the standard
against which we measure the results in the following exam-
ples.

4.3 Example 1

To create the data for this example, we estimated the
mean vector and covariance matrix for each of the 19 groups
in the TDT dataset. We then generated 20 times the num-
ber of observations in each group from the Gaussian distri-
bution with the group mean vector and covariance matrix.
This gave a dataset with 22,000 observations. We randomly
partitioned the data into 22 fractions of M = 1,000 ob-
servations each, and clustered fractions into M /10 = 100
clusters. As the number of groups (19) is small relative to
the number of clusters generated in each fraction, one pass of
Fractionation was sufficient; no Refractionation was needed.
The Fowlkes-Mallows index of the resulting clustering was
0.99, indicating almost perfect agreement between groups
and clusters. This is reassuring — after all, the data were
generated from a Gaussian mixture, and we would hope that
model-based clustering would do well.

4.4 Example 2

The data in this example were obtained by estimating
each group density by a kernel density estimate [15] and
then sampling from this estimate, again generating 20 times
the number of observations in the group. We used a Gaus-
sian kernel with covariance matrix that is one tenth of the
sample covariance matrix of the corresponding group. As in
Example 1 this resulted in a dataset of 22,000 observations.
However, unlike in Example 1 the data no longer come from
a Gaussian mixture. The Fowlkes-Mallows index of the clus-
tering was 0.75 which is as good as we can expect: recall
that clustering the original data set of 1,100 observations
using model-based clustering — no Fractionation necessary
— resulted in a Fowlkes-Mallow index of 0.76.

45 Example 3

Examples 1 and 2 are easy: the number of groups is small,



Pass | Fowlkes mnon zero
Mallows  entries
1 0.325 1729
2 0.554 908
3 0.616 671
4 0.613 651

Table 3: Example 3 — agreement between clusters
and groups after each Fractionation pass.

Pass | Min Median Max | >1 >2

1 6 18 20 361 361
2 1 4 10 350 287
3 1 1 3 68 7
4 1 1 2 41 0

Table 4: Example 3 — distribution of the number
of fractions in which groups are represented, at the
start of each Fractionation pass.

and all the groups are large. They could certainly have been
recovered by clustering a random sample of manageable size.
Example 3 is more challenging.

We generated the data for Example 3 by essentially repli-
cating the TDT dataset 19 times, replacing each group by
a scaled and shifted version of the entire dataset: Let wu;
and X; be the mean vector and covariance matrix of the
i-th group. We obtained the ¢-th replicate by scaling and
shifting the entire dataset to have mean vector p,; and co-
variance matrix 3;. We end up with 19 x 19 = 361 groups
and 19 x 1100 = 20,900 observations.

We randomly split these 20,900 into M = 20 fractions
of 1,045 observations each and clustered fractions into 100
clusters. Because the number of groups (361) is larger than
the number of clusters per fraction (100), and initial frac-
tions will typically contain observations from more than 100
groups, a single pass through Fractionation will not result
in a good clustering of the data, and Refractionation is nec-
essary.

Table 3 shows the Fowlkes-Mallows index of the clustering
after the first four passes through Fractionation. The in-
dex almost doubles, indicating that the agreement between
groups and clusters improves dramatically. This improve-
ment goes along with an equally drastic decrease in the
number of non zero entries in the 361 x 361 contingency
table.

Tables 4 and 5 confirm that Refractionation indeed in-
creases the purity of the fractions. Table 4 shows that,
initially, groups are scattered over many fractions, while af-

Pass | Min Median Max | ny 361/ny
1| 270 289 296 | 20 18.0
2 18 88 150 | 18 20.1
3 18 19 60 17 21.2
4| 19 19 58 16 22.6

Table 5: Example 3 — distribution of the number of
groups represented in each fraction at the start of
each Fractionation pass.

ter the fourth pass through Fractionation 320 of the 361
groups are contained entirely in a single fraction, and the
remaining 41 groups are each split across two fractions.

Table 5 gives the number of groups represented in each
fraction at the beginning of each Fractionation pass. At the
beginning of the first pass the least diverse fraction contains
observations from 270 groups, and the most diverse fraction
contains observations from 296 groups. The median number
of groups per fraction is 289. In contrast, at the beginning
of the fourth Fractionation pass the least diverse fraction
contains observations from 19 groups, and the most diverse
fraction contains observations from 58 groups. The median
number of groups per fraction is 19. These numbers again
demonstrate how successful Refractionation is at purifying
the fractions.

5. CONCLUSIONS

We have proposed model-based Fractionation and Refrac-
tionation, methods for extending the range of model-based
hierarchical clustering to datasets with tens of thousands
of observations and hundreds of groups. Compared with
competing approaches to model-based clustering of large
datasets, model-based Refractionation does not require that
the number of groups in the data be known a priori; it can
be estimated from the data. Initial experiments presented
in the paper are encouraging. They provide evidence that
the heuristics underlying our method indeed appear to be
valid.

There are a number of areas for future work. Most im-
portantly, we want to study the performance of the BIC
criterion for estimating the number of groups in situations
where both the size of the dataset and the number of groups
are large. So far, most studies of BIC have been for small
problems. We also plan to investigate the performance of
model-based Refractionation on problems that are another
order of magnitude larger than those tackled here, problems
with hundreds of thousands of observations and thousands
of groups.
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