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ABSTRACT

The goal of clustering is to identify distinct groups in a
dataset. The basic idea of model-based clustering is to ap-
proximate the data density by a mixture model, typically a
mixture of Gaussians, and to estimate the parameters of the
component densities, the mixing fractions, and the number
of components from the data. The number of distinct groups
in the data is then taken to be the number of mixture com-
ponents, and the observations are partitioned into clusters
(estimates of the groups) using Bayes’ rule. If the groups are
well separated and look Gaussian, then the resulting clusters
will indeed tend to be “distinct” in the most common sense
of the word - contiguous, densely populated areas of feature
space, separated by contiguous, relatively empty regions. If
the groups are not Gaussian, however, this correspondence
may break down; an isolated group with a non-elliptical dis-
tribution, for example, may be modeled by not one, but
several mixture components, and the corresponding clusters
will no longer be well separated. We present methods for
assessing the degree of separation between the components
of a mixture model and between the corresponding clus-
ters. We also propose an algorithm for pruning the cluster
tree generated by hierarchical model-based clustering. The
algorithm starts with the tree corresponding to the mix-
ture model chosen by the Bayesian Information Criterion.
It then progressively merges clusters that do not appear to
correspond to different modes of the data density.

Categories and Subject Descriptors

1.5.3 [Pattern Recognition|: Clustering; 1.5.1 [Pattern
Recognition]: Models—Statistical; G.3 [Probability and
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1. INTRODUCTION AND MOTIVATION

The goal of clustering is to identify distinct groups in a
dataset X = {@1,...,z,} C R™. For example, when pre-
sented with (a typically higher dimensional version of) a
dataset like the one in Figure la we would like to detect
that there appear to be two groups, and assign a group label
to each observation. (Throughout this paper we distinguish
between “groups” and “clusters”, which are estimates for
the groups.)

Model-based clustering in a nutshell. To cast clustering
as a statistical problem we regard the data x1,... ,x, as a
sample from some unknown probability density p(x). Model-
based clustering (see [9] and references therein) relies on the
premise that each group g is represented by a density pg(x)
that is a member of some parametric family, typically the
multivariate Gaussian distributions. In this case p(x) is a
Gaussian mixture:

G
p@) = 7 po(@; pry, B , (1)

where G is the number of groups, 7, is the prior probability
of group g, and p(x; u, X) denotes the Gaussian density with
mean 4 and covariance matrix ¥. For fixed G we can esti-
mate the parameters mg, p,, and Xg by maximum likelihood,
using the EM-algorithm [9, Chapter 2.8]. There are many
ways of estimating G [9, Chapter 6], e.g. by maximizing the
Bayesian Information Criterion (BIC) [10, 5]:

G = argmax, (2 x L(G) — r log(n)) . (2)
Here, L(G) is the log-likelihood of the best G component

model, 7 is the number of parameters of the model and n is
the number of observations.



While attractive conceptually, the straight-forward ap-
proach to mixture modeling — fit models for many different
values of GG using the EM algorithm, and then choose the
model that maximizes the BIC — is slow. Following a sug-
gestion by Fraley and Raftery [5], we address this problem
by using a hierarchical approach: Find a model with G — 1
components by merging the two groups of the G component
model for which the merge leads to the smallest decrease in
log-likelihood. Among the sequence of models thus gener-
ated choose the one maximizing the BIC.

Once we have fit a mixture model, we can cluster the
data by using Bayes’ rule. There have been several recent
advances in extending the normal mixture model to large
datasets [2, 12].

A conceptual problem with model-based clustering.
Model-based clustering relies on the premise that mixture
components in the model correspond to distinct groups in
the data. If the groups are Gaussian, then the resulting
clusters will indeed tend to be “distinct” in the most com-
mon sense of the word - contiguous, densely populated areas
of feature space, separated by contiguous, relatively empty
regions [3]. If the groups are not Gaussian, however, the cor-
respondence between groups and mixture components may
break down. An isolated group with a non-elliptical distri-
bution, for example, may be modeled by not one, but several
mixture components, and the corresponding clusters will no
longer be distinct. This problem is illustrated in Figure 1la.
Most observers would probably agree that the data in this
figure fall into two separate groups. The BIC criterion, how-
ever, chooses a mixture model with four components; Fig-
ure 1b shows regions containing 60% of the mass of each
component.

Contributions of the paper. We present diagnostic tools
for assessing the degree of separation between the compo-
nents of a mixture model and between the corresponding
clusters. We also propose an algorithm for pruning the
cluster tree generated by hierarchical model-based cluster-
ing. The algorithm starts with the tree corresponding to
the mixture model chosen by the Bayesian Information Cri-
terion. It then progressively merges clusters that do not
appear to correspond to different modes of the data den-
sity. The resulting procedure can be regarded as a hybrid
between non-parametric and model-based clustering.

2. ASSESSING SEPARATION BETWEEN
MIXTURE COMPONENTS

Roughly speaking, we would expect mixture components
modeling different groups in the data to be well separated.
On the other hand, mixture components modeling parts of
the same group would be expected to exhibit significant
overlap.

We now put this concept in probability terms. We can
generate observations from a mixture density > g mgpg(x) by
first generating a component label Y with P(Y = g) = mg,
and then generating X from py. According to Bayes rule,
the posterior probability P(Y = g|X) is

PIY =gl%) = =g

Component g is well separated from all the other compo-

Figure 1: Data set with fitted Gaussian mixture.
The modes of the mixture are indicated by the two
white dots. (This example is referred to as the run-
ning example in the remainder of the paper.)

nents if P(Y = ¢g|X) only takes extreme values, either close
to zero or close to one - one for observations actually gener-
ated from component g, and zero for all others.

Exactly evaluating the distributions of P(Y = g¢|X) for
the G components is impossible when the dimension m is
larger than 1, and hence we resort to Monte Carlo simula-
tion.

In the following we present three methods for assessing
the separation between mixture components, based on the
posterior probabilities, the margins, and the misclassifica-
tion probabilities.

2.1 Assessing separation using posterior prob-
abilities

Figure 2 shows rootograms of the posterior probabilities
P(Y = g|X) for the four components of the mixture model
in our running example. (A rootogram is a variant of a
histogram where the heights of the bars encode the square
roots of the bin counts, instead of the bin counts themselves.
This makes low counts more visible.) We have omitted the
bin containing P(Y = ¢g|X) = 0 in the rootograms, because
it would have by far the largest bin count and would obscure



the information in the remaining bins.

The rootogram for component one has a large peak at
P(Y = 1|X) = 1 and is essentially zero elsewhere, indicat-
ing clear separation of component one from all the other
components. On the other extreme, the rootogram for com-
ponent four has no peak at P(Y = 4|X) = 1. This is due
to the fact that component four is completely overlapped
by components two and three, and hence there is always a
substantial posterior probability that an observation gener-
ated from ps4 might have come from p2 or ps. Furthermore,
the significant mass away from P(Y = g¢g|X) = 1 in the
rootograms for components two, three, and four shows that
these components are not well separated.
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Figure 2: Running example: Rootograms of the pos-
terior probabilities P(Y = g|X) for X distributed ac-
cording to the mixture model.

2.2 Assessing separation using margins

An alternative to looking at the posterior probabilities is
to consider the margins. Let Y (X) be the estimated com-
ponent label assigned to X by Bayes’ rule:

Y (X) = argmax P(Y = g|X).
g

The margin of X drawn from component Y of the model is
given by

margin(X,Y) = P(Y(X) =Y|Y) — max P(Y(X)=glY).

Note that a negative margin means that X is assigned to
the wrong component, and that a small margin means that
X lies in a region where components overlap significantly.

Figure 3 shows the cumulative distribution function (cdf)
of the margin for observations drawn from the four com-
ponent mixture model of our running example. There is a
large proportion of small margins (below < 0.5) indicating
substantial overlap between the components.

2.3 Assessing separation using misclassifica-
tion probabilities

When the number of clusters is moderate, we can look at
the misclassification matrix to detect well separated as well
as overlapping components of a mixture model. Table 1
shows the misclassification matrix for the mixture model
in our running example. Let mg,, be the probability that
the Bayes rule assigns an observation from component g to
component ¢’.
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Figure 3: Running example: Cumulative distribu-
tion function of the margin.

1 2 3 4 MC, m,
0.998 0002 0 0 [ 0.002 [0.162
0.001 0.879 0.001 0.119 | 0.121 | 0.388

0 0 0908 0.092 |0.092 |0.191

0  0.060 0.105 0.835|0.165 | 0.259

W N =

Table 1: Misclassification matrix for the running ex-
ample.

From the misclassification matrix we can extract informa-
tion at three different levels of detail. At the coarsest level
we can look at the overall misclassification probability given
by >, mg(1—mygg). The lower this probability is, the better
the separation. At the next higher level of detail, we can look
at the component-wise misclassification probabilities M C|,.
In our example (Table 1) the misclassification probability
for component one is very small (MC; = 0.002), indicating
that component one is well separated. The misclassifica-
tion probabilities for the other components are substantially
larger. On the most detailed level, the values of mgy, and
mg 4 indicate which other components overlap component
g. The pattern of entries in Table 1 shows that components
two, three and four are mutually overlapping. We could not
see this from the less detailed views.

3. ASSESSING SEPARATION BETWEEN
CLUSTERS

A mixture model is only an estimate for the true underly-
ing density of the data. Therefore the degree of separation
between mixture components (or lack thereof) does not al-
ways accurately reflect the actual separation between the
clusters.

We cannot compute the matrix of misclassification prob-
abilities for the observed data 1, ... ,x,, nor the margins,
because those require knowing the true labels. However we
can compute the posterior probabilities P(Y = g|x;), and
therefore generate a plot analogous to Figure 2, shown in
Figure 4. The rootogram for P(Y = 4|x;) looks basically
flat, from which we can conclude that cluster 4 almost cer-
tainly does not correspond to a distinct group in the data.

4. HYBRID CLUSTERING

Hierarchical model-based clustering generates a hierarchy
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Figure 4: Running example: Rootograms of the pos-
terior probabilities P(Y = g|x;) for the data.

of mixture models: The model with m — 1 mixture com-
ponents is obtained by merging the two clusters of the m
component model for which the change leads to the small-
est decrease in log-likelihood. The result of this merging
process can be represented by a binary tree T'. The leaves
of the tree are the observations. Each interior node N of
the tree is assigned a generation between 1 and n — 1, in-
dicating where in the sequence of merges it was generated.
The interior node corresponding to the ¢-th merge in the se-
quence is assigned generation n — i; the root node therefore
has generation 1. Each node N is also associated with the
cluster formed by its descendent leaves.

The merge sequence defines a sequence of trees: T,, is
obtained from 7' by pruning away the offspring of all nodes
with generation greater than or equal to m. By construction,
T has m leaves and corresponds to a mixture model with m
mixture components. Let G be the number of mixture com-
ponents chosen by the BIC, and let T¢ be the corresponding
tree.

If the distinct groups in the data all have Gaussian dis-
tributions, then we expect roughly a one-to-one correspon-
dence between groups and mixture components associated
with the leaves of T. Also, the clusters associated with
the leaves of T¢ will be similar to the groups. (“Roughly”
because G, after all, is only an estimate.) If the groups are
not Gaussian, however, each group may be modeled by more
than one mixture component, and consequently will be the
union of several clusters.

The idea of hybrid clustering is to test, for each node of
T whose daughters are leaves, whether the corresponding
clusters are well separated. If they are not, then the clusters
probably correspond to the same group, and we prune the
daughters. The process is repeated until no further nodes
can be pruned. The final clusters are the leaves of the pruned
tree.

4.1 llustration of hybrid clustering

Before describing its ingredients in more detail, let us see
the pruning process in action. The upper panel of Figure 5
shows the tree whose leaves correspond to the mixture model
fit to the data in our running example. The circled node is
the one being tested. The lower panel of Figure 5 shows the
projection of its associated cluster onto the Fisher discrim-
inant direction, which is the direction that best separates
the projections of the two daughter clusters [6][8, Chapter

11.5]. The grey curve is the kernel density estimate for the
projected data with the smallest bandwidth that yields a
unimodal density [11, Chapter 6.3 and 6.4]. The black curve
is the kernel density estimate with the smallest bandwidth
that yields a bimodal density. The dot plot of the pro-
jected data looks unimodal, and the unimodal and bimodal
distributions are almost identical, which indicates that the
daughter clusters are not well separated in feature space.
A formal test for unimodality of the projected data (Sec-
tion 4.2) would reject the null hypotheses of unimodality at
level a = 0.49, meaning that the evidence against unimodal-
ity is weak. We therefore prune the daughters. The new tree
is the one shown in black in Figure 6. The diagnostic plot
is qualitatively similar to the one in Figure 5; the daughter
clusters of the node being tested do not seem to be well sep-
arated, with unimodality being rejected at level a = 0.12.
We therefore prune again and are left with the tree shown in
Figure 7. Now the picture is different: The diagnostic plot
reveals a clear separation between the clusters, and a formal
test rejects the hypothesis of unimodality at level a = 0.002.
We conclude that there appear to be two distinct groups in
the data, one modeled by three mixture components, and
the other one modeled by one mixture component.
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Figure 5: Running example: Tree generated by hier-
archical model-based clustering and diagnostic plot
for the circled node.

4.2 Testing for unimodality

In order to automate the pruning process described in Sec-
tion 4.1 we need a way of measuring the amount of evidence
against unimodality for a univariate data set (the projec-
tion of a cluster onto the Fisher discriminant direction best
separating its daughters). Even if we carry out the pruning
process interactively, by looking at diagnostic plots like the
ones in Figures 5-7, such a measure of evidence still provides
a useful guideline.

Let x1,... ,xn be a set of (univariate) data sampled from
some density f(z), and let Fy,(z) be the empirical cdf of the
sample. To test the null hypotheses that f(z) is unimodal
we use the Hartigan and Hartigan’s DIP test described in
[7]. The test statistic is the DIP

D = sup |Fu(e) - H(a)],

where H is the unimodal cdf closest to F,,. Bickel and Fan



Figure 6: Running example: Tree generated by hi-
erarchical model-based clustering after first step of
pruning, and diagnostic plot for the circled node.
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Figure 7: Running example: Tree generated by hi-
erarchical model-based clustering after second step
of pruning, and diagnostic plot for the circled node.

[1] show that the non-parametric maximum likelihood esti-
mate of the closest unimodal cdf, given the mode location
my, is the greatest convex minorant of F, on (—oo,mg] and
the least concave majorant on [mg, —o0). They also show
that this estimate is robust against inaccuracy in the esti-
mate of the mode. We could estimate the mode location by
minimizing the DIP. However, this would be computation-
ally expensive. Instead we estimate the mode using a kernel
smoother, as suggested by Silverman [11, Chapter 6.3 and
6.4]. Figure 8 shows the empirical cdf of a sample (black
curve), and the closest unimodal cdf (grey curve). The DIP
is the maximum absolute difference between the two curves,
indicated by the heavy vertical line. The estimated mode
location is shown by the grey vertical line.

The distribution of the DIP under the null hypotheses
is not available in closed form; it has to be estimated by
Monte Carlo. As before, let H(z) be the unimodal cdf clos-
est to Fp,(z). We generate M samples of size n from H(z)
(M = 100, say) and compute the DIPs D1,...,Dys. If the
DIP Dyrig for the original sample is the k-th largest among
{Dorig, D1,... ,Dn} then we reject the null hypotheses of
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Figure 8: Illustration of the DIP statistic.

unimodality at level k/(M + 1).
4.3 Remarks

The significance levels that we compute should be merely
considered as rough guidelines and not be taken too literally.
First, there is the problem of multiplicity: If we are carry-
ing out many tests at a given level o, then the probability
of erroneously rejecting one or more of the null hypotheses
is greater than «. Second, we are choosing the projection
directions to maximize the separation between the clusters.

Automatic pruning requires specification of a significance
level; the larger the level, the larger the pruned tree.

5. EXAMPLE

The data for our example consist of measurements of eight
chemical concentrations on 572 samples of olive oils from
nine different areas of Italy. Applying hierarchical model-
based clustering with diagonal covariance matrices and us-
ing the BIC to estimate the number of mixture components
results in a mixture model with 28 components, correspond-
ing to the 28 leaves of the tree shown in Figure 9. The 28
columns of Figure 10 are histograms of P(Y = g|z;) for
g =1,...,28, with the counts encoded as grey levels; the
columns thus are a different graphical representation of the
rootograms making up the rows of Figure 4. The bars in
the upper panel of Figure 10 encode the observation counts
in the clusters. If the clusters were all well separated, then
each observation would have posterior probability one for
one of the mixture components and zero for all the others,
and the plot would have a solid black stripe at the top and
be white elsewhere. We are obviously quite far removed
from this ideal situation. This impression is confirmed by
Figure 11. Some of the mixture components are not very
isolated; observations generated from mixture component 1,
for example, have roughly an 11% probability of being as-
signed to some other component.

Applying our pruning algorithm with significance level
a = 0.01 prunes the nodes shown in grey in Figure 9 and
results in 13 clusters, ten of which are modeled by more than
one mixture component. Figure 12 shows a typical diagnos-
tic plot for a node whose daughters are pruned (o = 0.88),
and Figure 13 shows a typical plot for a node whose daugh-
ters are retained (o = 0.01). These two nodes are circled in
Figure 9.

Figure 14 is the post-pruning analog to Figure 10. It is



Figure 9: Olive oil data: Original tree (all nodes) and pruned tree (dark nodes).
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Figure 10: Olive oil data: Histograms of posterior
probabilities P(Y = g|x;) for the data, before pruning

much closer to the ideal of “black stripe, white elsewhere”.
The misclassification probabilities shown in Figure 15 also
have decreased somewhat; the largest one is now 8% instead
of 11%.

Figure 16 shows the cdf’s of the margins for the two clus-
terings, pre-pruning in black, post-pruning in grey. If the
mixture components were perfectly separated then the cdf
of the margin would be a step function with a single step at

Missclassification Rate
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Figure 11: Olive oil data: Misclassification proba-
bilities MCy for the 28 components of the mixture
model.

margin = 1. Pruning brings us closer to this ideal.

In our example we know the group labels of the obser-
vations - we know the area of origin for each olive oil and
it seems reasonable to assume that any groups in the data
reflect the areas of origin. We therefore assess how closely
the clusters match the areas.

We use the Fowlkes-Mallows index [4] as a measure of
agreement. The index is the geometric mean of two prob-
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Figure 12: Pruned node of olive oil tree
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Figure 13: Non pruned node of olive oil tree
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abilities: the probability that two randomly chosen obser-
vations are in the same cluster given that they are in the
same group, and the probability that two randomly chosen
observations are in the same group given that they are in
the same cluster. Hence a Fowlkes-Mallows index near 1
means that the clusters are a good estimate of the groups.
For our example, the Fowlkes-Mallows index before pruning
is 0.39, compared to an index of 0.55 after pruning. This
shows that pruning substantially improved the agreement
between groups and clusters.

6. SUMMARY

The basic premise of model-based clustering is that each
distinct group in the data corresponds to a single component
of the mixture density. If this premise holds, then the ability
to estimate the number of mixture components (equal to
the number of groups) is a major strength of model-based
clustering compared to non-parametric clustering methods.

On the other hand, if the premise does not hold, the re-
sult of model-based clustering can be misleading, because
several mixture components may model the same group.
Consequently the number of mixture components will over-
estimate the number of groups, and the clusters correspond-
ing to individual mixture components will no longer be well
separated. It is therefore important to be able to decide
whether or not the premise holds and, in case the premise
does not hold, to determine which mixture components cor-
respond to the same group.

We have introduced methods for assessing the degree of
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Figure 14: Olive oil data: Histograms of posterior
probabilities P(Y = g|z;) for the data, after pruning.
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Figure 15: Misclassification probabilities for the
model, after pruning.

separation between the components of a mixture model, and
between the corresponding clusters. We have also presented
an algorithm for pruning the cluster tree generated by hier-
archical model-based clustering. The algorithm starts with
the tree corresponding to the mixture model chosen by the
BIC. It then progressively merges clusters that do not ap-
pear to correspond to different modes of the data density.

We have applied model-based clustering to a simple syn-
thetic example in which the premise was violated. In this
case the method indeed exhibited the deficiencies that we
had anticipated. We have also shown that our proposed di-
agnostic tools reveal the true structure of the data and lead
to more accurate clustering. Application of our new tech-
niques to a real-world example has also been encouraging.
Our diagnostics have shown that most probably the premise
of model-based clustering was violated in this case as well,
and our pruning algorithm has significantly improved the
quality of the clustering.
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