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Abstract

We present runt pruning, a new clustering method that attempts
to find modes of a density by analyzing the minimal spanning tree of
a sample. The method exploits the connection between the minimal
spanning tree and nearest neighbor density estimation. It does not
rely on assumptions about the specific form of the data density (e.g.,
normal mixture) or about the geometric shapes of the clusters, and is
computationally feasible for large data sets.

Keywords: Two-way, two-mode data; nearest neighbor density esti-
mation; single linkage clustering; runt test; mixture models.

∗Supported by NSF grant DMS-9803226 and NSA grant 62-1942. Work partially per-
formed while on sabbatical at AT&T Labs - Research. Author’s address: Department of
Statistics, Box 354322, University of Washington, Seattle, WA 98195-4322; email: wxs-
stat.washington.edu

1



1 Introduction

The goal of clustering is to identify distinct groups in a two-mode, two-way
dataset X = {x1, . . . ,xn} ⊂ Rm. For example, when presented with (a
typically higher dimensional version of) a data set like the one in Figure 1
we would like to detect that there appear to be (perhaps) five or six distinct
groups, and assign a group label to each observation.

Figure 1: Data set with 5–6 apparent groups.

To cast clustering as a statistical problem we regard the data x1, . . . ,xn

as an iid sample form some unknown probability density p(x). There are
two statistical approaches to clustering. The parametric approach (Fraley
and Raftery 1998, 1999; McLachlan and Peel 2000) is based on the assump-
tion that each group g is represented by a density pg(x) that is a member
of some parametric family, such as the multivariate Gaussian distributions.
The density p(x) then is a mixture of the group densities, and the number
of mixture components and their parameters are estimated from the data.
Observations can be labeled using Bayes’s rule.

In contrast, the nonparametric approach adopted in this paper is based
on the premise that groups correspond to modes of the density p(x). The
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goal then is to find the modes and assign each observation to the “domain
of attraction” of a mode. Searching for modes as a manifestation of the
presence of groups was first advocated in D. Wishart’s (1969) paper on Mode
Analysis. According to Wishart, clustering methods should be able to detect
and “resolve distinct data modes, independently of their shape and variance”.

Hartigan (1975, Section 11; 1981) expanded on Wishart’s idea and made
it more precise by introducing the notion of high density clusters. Define the
level set L(λ; p) of a density p at level λ as the subset of the feature space
for which the density exceeds λ:

L(λ; p) = {x | p(x) > λ}.
The high density clusters at level λ are the maximally connected subsets of
L(λ; p).

Hartigan also pointed out that the collection of high density clusters has
a hierarchical structure: for any two clusters A and B (possibly at different
levels) we have either A ⊂ B or B ⊂ A or A ∩ B = ∅. This hierarchical
structure is summarized by the cluster tree of p. Each node N of the tree
represents a subset D(N) of the support L(0; p) of p — a high density cluster
of p — and is associated with a density level λ(N). The cluster tree is easiest
to define recursively. The root node represents the entire support of p, and
has associated density level λ(N) = 0. To determine the descendents of a
node N we find the lowest level λd for which L(λ; p) ∩ D(N) has two or
more connected components. If there is no such λd then p has only one
mode in D(N), and N is a leaf of the tree. Otherwise, let C1, . . . , Ck be the
connected components of L(λd; p)∩D(N). If k = 2 (the usual case) we create
daughter nodes representing the connected components C1 and C2, both with
associated level λd, and apply the definition recursively to the daughters. If
k > 2 we create daughter nodes representing C1 and C2∪· · ·∪Ck and recurse.

Figure 2 shows a density and the corresponding cluster tree. Estimating
the cluster tree is a fundamental goal of nonparametric cluster analysis.

1.1 Previous work

Several previously suggested clustering methods can be described in terms
of levels sets and high density clusters.

Probably the earliest such method is Wishart’s (1969) one level mode
analysis. The goal of one level mode analysis is to find the high density clus-
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Figure 2: Density and corresponding tree of high density clusters.

ters at a given density level λ chosen by the user. The idea is to first compute
a kernel density estimate p̂ (Silverman 1986, Chapter 4) and set aside all ob-
servations with p̂(xi) ≤ λ, i.e., all observations not in the level set L(λ; p̂).
If the population density has several well separated high density clusters at
level λ then the remaining high density observations should fall into clearly
separated groups. Wishart suggests using single linkage clustering of the
high density observations to identify the groups. One level mode analysis
anticipates some of the “sharpening” ideas later put forth by P.A. Tukey
and J.W. Tukey (1981).

A reincarnation of one level mode analysis is the DBScan algorithm of
Ester, Kriegel, Sander, and Xu (1996). DBScan consists of four steps: (a)
for each data point calculate a kernel density estimate using a spherical
uniform kernel with radius r; (b) choose a density threshold λ and find
the observations with p̂(xi) > λ; (c) construct a graph connecting each high
density observation to all other observations within distance r; (d) define the
clusters to be the connected components of this graph. All observations not
within distance r of a high density observation are considered “noise”.

A weakness of one level mode analysis is apparent from Figure 2. The
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degree of separation between connected components of L(λ; p), and therefore
of L(λ; p̂), depends critically on the choice of the cut level λ, which is left to
the user. Moreover, there might not be a single value of λ that reveals all
the modes.

Citing the difficulty in choosing a cut level, Wishart (1969) proposed hi-
erarchical mode analysis, which can be regarded as a heuristic for comput-
ing the cluster tree of a kernel density estimate p̂, although it appears that
Wishart did not view it thus. (The word “tree” does not occur in the section
of his paper on hierarchical mode analysis.) We use the term “heuristic”
because there is no guarantee that hierarchical mode analysis will indeed
correctly compute the cluster tree of p̂ as defined above. Wishart’s (1969)
algorithm constructs the tree by iterative merging (i.e., is an agglomerative
algorithm). It is quite complex, probably because its iterative approach is
not well matched to the tree structure it is trying to generate.

The basic weakness of one level mode analysis was also noted by Ankerst,
Breuning, Kriegel, and Sander (1999) who proposed OPTICS, an algorithm
for “Ordering Points to Identify the Clustering Structure”. OPTICS gen-
erates a data structure that allows one to calculate efficiently the result of
DBScan for any desired density threshold λ. It also produces a graphical
summary of the cluster structure. The idea behind their algorithm is hard
to understand.

1.2 Outline of runt pruning

An obvious way of estimating the cluster tree of a density p from a sample
is to first compute a density estimate p̂ and then use the cluster tree of p̂ as
an estimate for the cluster tree of p. A difficulty with this approach is that
for most density estimates computing the cluster tree seems computationally
intractable. To determine the number of connected components of a level
set L(λ; p̂) one would have to rely on heuristics, like the ones suggested by
Wishart (1969) and Ester et al. (1996), which is at the very least an esthetic
drawback. A notable exception is the nearest neighbor density estimate

p̂1(y) =
1

n V d(y,X )p
,

where V is the volume of the unit sphere in Rm and d(y,X ) = mini d(y,xi).
In Section 2 we show that the cluster tree of the nearest neighbor density

5



estimate is isomorphic to the single linkage dendogram. The argument ex-
ploits a connection between the minimal spanning tree (MST) and nearest
neighbor density estimation first pointed out by Hartigan (1985).

The nearest neighbor density estimate has some undesirable properties.
For example, it has a high variance and it cannot be normalized. As we
are not interested in estimating the density itself but rather its cluster tree,
these flaws are not necessarily fatal. However, it also has a singularity at
every data point, leading to a cluster tree with as many leaves as there are
observations. Therefore the cluster tree has to be pruned.

Our pruning method, runt pruning, is based on the runt test for multi-
modality proposed by Hartigan and Mohanty (1992). In Section 3 we describe
runt pruning, provide a heuristic justification for the method, and present
an algorithm.

In Section 4 we compare runt pruning to the standard single linkage
method for extracting clusters from a MST. In Section 5 we show runt prun-
ing in action, illustrate diagnostic tools that can be helpful in choosing the
runt size threshold determining tree size, and compare its performance to
other clustering methods. In Section 6 we discuss some general issues such
as the underlying assumptions and the relative merits of parametric and
nonparametric clustering methods. Section 7 concludes the paper with a
summary and ideas for future work.

2 Nearest neighbor density estimation and

the Euclidean minimal spanning tree

In this section we show that the cluster tree of the nearest neighbor density
estimate can be obtained from the MST of the data, and that it is isomorphic
to the single linkage dendogram. For a given density level λ, define

r(λ) =
(

1

n V λ

) 1
p

.

By definition, p̂1(y) > λ iff d(y,X ) < r(λ), and therefore L(λ; p̂1) is the
union of (open) spheres of radius r(λ), centered at the observations:

L(λ; p̂1) =
⋃
i

◦
S (xi, r(λ)) .
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Let T be the Euclidean MST of X , that is, the graph with shortest total
edge length connecting all the observations. Breaking all MST edges with
length ≥ 2r(λ) defines a partition of the MST into k subtrees T1, . . . , Tk (pos-
sible k = 1) and a corresponding partition of the observations into subsets
X1, . . . ,Xk.

Proposition 1: (Hartigan 1985): The sets Li =
⋃

i∈Xj

◦
S (xi, r(λ)) are

the connected components of L(λ; p̂1).

Proof: Each of the sets Li is connected, because by construction the
maximum edge length of the corresponding MST fragment Ti is smaller than
2r(λ), and therefore the MST fragment is a subset of Li.

On the other hand, Li and Lj are disconnected for i �= j. Otherwise there
would have to be observations x∗ and x∗∗ in Xi and Xj , respectively, with
d(x∗,x∗∗) < 2r(λ). We could then break an edge of length ≥ 2r(λ) in the
MST path connecting fragments Ti and Tj and insert an edge connecting x∗

and x∗∗, thereby obtaining a spanning tree of smaller total edge length. This
contradicts the assumption that T was the MST.

Proposition 1 implies that we can compute the cluster tree of the nearest
neighbor density estimate by breaking the longest edge of the MST, thereby
splitting the MST into two subtrees, and then applying the splitting oper-
ation recursively to the subtrees. Gower and Ross (1969) show that this
algorithm finds the single linkage dendogram, which demonstrates that the
cluster tree of the nearest neighbor density estimate and the single linkage
dendogram are isomorphic.

3 Runt pruning

The nearest neighbor density estimate has a singularity at every observation,
and consequently its cluster tree — the single linkage dendogram — has as
many leaves as there are observations and is a poor estimate for the cluster
tree of the underlying density. It has to be pruned.

Runt pruning is based on the runt test for multimodality proposed by
Hartigan and Mohanty (1992). They define the runt size of a dendogram
node N as the smaller of the number of leaves of the two subtrees rooted
at N . If we interpret the single linkage dendogram as the cluster tree of

7



the nearest neighbor density estimate p̂1, then a node N and its daughters
represent high density clusters of p̂1. The runt size of N can therefore also
be regarded as the smaller of the number of observations falling into the two
daughter clusters. As each node of the single linkage dendogram corresponds
to an edge of the MST, we can also define the runt size for an MST edge e:
Break all MST edges that are as long or longer than e. The two MST nodes
originally joined by e are the roots of two subtrees of the MST, and the runt
size of e is the smaller of the number of nodes of those subtrees.

The idea of runt pruning is to consider a split of a high density cluster
of p̂1 into two connected components to be “real” or “significant” if both
daughters contain a sufficiently large number of observations, i.e., if the runt
size of the corresponding dendogram node is larger than some threshold. The
runt size threshold controls the size of the estimated cluster tree.

3.1 Heuristic justification

MST edges with large runt size indicate the presence of multiple modes,
as was first observed by Hartigan and Mohanty (1992). We can verify this
assertion by considering a simple algorithm for computing a MST: Define
the distance between two groups of observations G1 and G2 as the minimum
distance between observations:

d(G1, G2) = min
x∈G1

min
y∈G2

d(x,y) .

Initialize each observation to form its own group. Find the two closest groups,
add the shortest edge connecting them to the graph, and merge the two
groups. Repeat this merge step until only one group remains. The runt size
of an edge is the size of the smaller of the two groups connected by the edge.

Suppose now that the underlying density is multimodal. Initial merges
tend to take place in high density regions where interpoint distances are
small, and tree fragments will tend to grow in those regions. Eventually,
those fragments will have to be joined by edges, and those edges will have
large runt sizes, as illustrated in Figure 3. Panel (a) shows a sample from a
bimodal density, and panel (b) shows the corresponding rootogram of runt
sizes. (A rootogram is a version of a histogram where the square roots of
the counts are plotted on the vertical axis.) There is one edge with runt size
75. Panel (c) shows the MST after removal of all edges with length greater
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than the length of the edge with largest runt size. Note the two large tree
fragments in the two high density regions.

Figure 3: (a) Sample from bimodal density; (b) Rootogram of runt sizes; (c)
MST with longest edges removed; (d). . . (f) Corresponding plots for unimodal
density.

If the density is unimodal, on the other hand, then a single fragment will
start in the area of highest density and grow toward the lower density fringe,
where interpoint distances tend to be higher. This result is illustrated in
panels (d). . . (f) of Figure 3. The largest runt size here is 37. When all
longer edges are removed, there is a large fragment in the high density area
and a number of smaller fragments towards the fringe.

3.2 Algorithm

Our algorithm for constructing a pruned cluster tree of the nearest neighbor
density estimate parallels exactly the recursive definition of a cluster tree.
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Each node N represents a high density cluster D(N) of p̂1, a sample cluster
core X (N) consisting of the observations in D(N), and a subtree T (N) of the
MST, and is associated with a density level λ(N). The root node represents
the entire feature space, sample, and MST, and is associated with density
level λ = 0.

To determine the descendents of a node N we find the lowest density level
λ or, equivalently, the longest edge e in T (N) with runt size larger than our
chosen threshold. If there is no such edge then N is a leaf of the tree.

Otherwise, we create daughter nodes Nr and Nl associated with density
level

λ(Nl) = λ(Nr) =
2m

nV ‖e‖m
.

Breaking all edges of T (N) with length ≥ ‖e‖ results in a subgraph of T (N);
the sample cluster cores X (Nl) and X (Nr) consist of the observations in the
fragments rooted at the ends of e. The high density clusters D(Nl) and
D(Nr) are unions of spheres of radius ‖e‖/2 centered at the observations in
X (Nl) and X (Nr), respectively. The trees T (Nl) and T (Nr) are obtained by
breaking the edge e of T (N).

We refer to the observations in T (N) as the sample cluster or, if there is
no ambiguity, simply as the cluster represented by N . If N1, . . . , Nk are the
leaves of the cluster tree, then the corresponding clusters form a partition of
the sample. The cluster cores X (Ni) are subsets of the corresponding clusters
located in the high density regions.

4 Runt pruning and single linkage clustering

The standard method for extracting clusters from a MST is single linkage
clustering: to create k clusters, break the k − 1 longest edges in the MST.
This approach can be successful if the groups are clearly separated, i.e.,
if the Hausdorff distance between groups is large compared to the typical
nearest neighbor distance. For an illustration, see the “Bullseye”” example in
Section 5.2. However, in situations where the grouping is not quite as obvious,
single linkage clustering tends to fail, and it has acquired a (deservedly) bad
reputation. There are two reasons for this failure.

First, single linkage clustering tends to generate many small clusters be-
cause the longest edges of the minimal spanning tree will be in low density
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regions, which typically are at the periphery of the data: long edges tend to
connect stragglers to the bulk.

Second, choosing a single edge length threshold for defining clusters is
equivalent to looking at a single level set of the nearest neighbor density
estimate. However, as Figure 2 illustrates, there are densities where no single
level set will reveal all the modes. Therefore single linkage clustering cannot
be “repaired” by simply discarding all small clusters and considering only
the large ones as significant — the problem is more fundamental.

5 Examples

We present four examples. The first, simulated data with highly nonlinear
cluster shapes, demonstrates that runt analysis can indeed find such structure
for which other algorithms, like average linkage, complete linkage, and model-
based clustering fail.

The second example, simulated data with spherical Gaussian clusters, is
designed to be most favorable for model-based clustering and suggests that
the performance penalty of runt pruning in such cases is not disastrous.

The third example, data on the chemical compositions of 572 olive oil
samples from nine different areas of Italy, is used to illustrate how we might
set a runt size threshold, and how we can use diagnostic plots to assess
whether clusters are real or spurious.

The fourth example, 256-dimensional data encoding the shapes of hand-
written digits, shows that runt pruning can be reasonably applied to high-
dimensional data, despite the fact that it is based on a poor density estimate.

5.1 Comparing clustering methods

To evaluate clustering methods empirically we have to apply them to labeled
data. We can then compare the partitions found by the various methods with
the true partition defined by the labels. In simple situations, as in the “bulls-
eye” example of Section 5.2, the comparison can be informal, but in general
we want a figure of merit that does not rely on subjective judgments. This
goal raises two questions: (a) how do we measure the degree of agreement
between two partitions, and (b) how do we choose the size of the partition
to be generated by the clustering method that we want to evaluate?
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Measuring agreement between partitions. Let P1 and P2 be two
partitions of a set of n objects. The partitions define a contingency table:
let nij be the number of objects that belong to subset i of partition P1 and
to subset j of partition P2. We measure the agreement between P1 and P2

by the adjusted Rand index (Hubert and Arabie 1985) defined as

R =

∑
ij

(
nij

2

)
− ∑

i

(
ni·
2

) ∑
j

(
n·j
2

)
/
(

n
2

)
1
2

(∑
i

(
ni·
2

)
+

∑
j

(
n·j
2

))
− ∑

i

(
ni·
2

) ∑
j

(
n·j
2

)
/
(

n
2

) .

Here ni· =
∑

j nij , and n·j is defined analogously.

The adjusted Rand index has a maximum value of 1 which is achieved
when the two partitions are identical up to re-numbering of the subsets. It
has expected value 0 under random assignment of the objects to the subsets
of P1 and P2 that leave the marginals ni· and n·j fixed.

Choosing a partition size. Choosing a partition size is a difficult issue,
especially for nonparametric clustering methods, for which there is as yet
no automatic method, and subjective judgment is required. To eliminate
the subjective element from the comparisons, we decompose the clustering
problem into two subproblems: (a) determining the number of groups, and
(b) finding the groups, given their number. We compare the performance on
subproblem (b), using two different rules for setting the number of groups.
First, we have each method produce the true number of groups. Second, we
generate a range of partitions of different sizes, calculate the adjusted Rand
index for each of them, and then report the maximum value of the index
achieved by the method and the corresponding partition size.

5.2 Nonlinear clusters — Bullseye

The data used in this example are shown in Figure 4(a). There are 500
observations uniformly distributed over the center of the bullseye and the
ring. Figure 4(b) shows the 2-partition generated by runt pruning of the
MST. Figures 4(c),. . . , 4(e) show the 2-partitions generated by single, av-
erage, and complete linkage, respectively. Figure 4(f) shows the 2-partition
generated by fitting Gaussian mixtures. We used the software described in
Fraley and Raftery (1999). The Gaussians were constrained to have equal
spherical covariance matrices.
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Figure 4: (a) Observations; (b). . . (f) 2-partitions found by (b) runt analysis,
(c) single linkage, (d) average linkage, (e) complete linkage, (f) model-based
clustering.

Runt pruning correctly identifies the two clusters, as does single linkage
clustering. Single linkage performs well in this example because the Hausdorff
distance between the groups is large compared to the typical nearest neighbor
distance. The other methods all fail in similar ways. This result is not
surprising, because they are all designed to find roughly convex clusters.

5.3 Gaussian clusters — Simplex

The data in this example consist of spherical Gaussian clusters with common
standard deviation σ = 0.25, centered at the vertices of the unit simplex in
p − 1 dimensions.

The first example is for p = 3, with cluster sizes 100, 200, and 300,
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respectively. The runt sizes of the MST are, in descending order, 194, 94, 29,
29, 20, 20, 20, 19, 15, 15, 12, 11, 11, 10, 10, . . . . There is a big gap after 94,
suggesting the presence of three modes.

Figure 5(a) shows the cluster tree, with the root node selected. Panel (b)
shows the descendents of the root node. In panel (c) we have selected the
right daughter of the root node. Panel (d) shows its descendents.

Figure 5: (a) Cluster tree for tri-modal Gaussian data with root node se-
lected; (b) left and right descendents of root node; (c) cluster tree with right
daughter of root node selected; (d) left and right descendents.

In this simple example, average and complete linkage, runt analysis, and
model-based clustering all do an excellent job of finding the groups when
asked to produce a 3-partition. The exception is single linkage clustering.
Breaking the two longest edges of the MST results in two clusters of size 1
and one cluster containing the rest of the data.
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SL AL CL RP MC-EI MC-VI
0.0 (0.03) 0.92 (0.01) 0.92 (0.04) 0.82 (0.05) 0.93 (0.02) 0.92 (0.01)
0.0 (0.08) 0.92 (0.01) 0.92 (0.02) 0.90 (0.03) 0.93 (0.02) 0.92 (0.01)

16 7 7 8 7 7

Table 1: Comparison of single, average, and complete linkage, runt pruning,
and two versions of model-based clustering for seven-dimensional simplex
data. First row: adjusted Rand index if methods are made to generate seven
clusters; second row: adjusted Rand index for optimal partition size; third
row: optimal partition size. Numbers in parentheses are standard errors.

We next consider dimensionality p = 7, with cluster sizes 50, 60, . . . , 110.
The runt sizes are 80, 73, 60, 38, 35, 26, 14, 10, 9, 9, 8, 7, 6, 6, 6.

Table 1 summarizes the performance of single, average, and complete link-
age, runt analysis, and two versions of model-based clustering, fitting spher-
ical Gaussians with equal variance and fitting spherical Gaussians with un-
equal variances. The first row of the table contains the values of the adjusted
Rand index when the methods are asked to construct a 7-partition. The sec-
ond row contains the optimal values of the index (optimized over partition
size). Numbers in parentheses are standard errors obtained by half-sampling
(Shao and Tu 1995, Section 5.2.2). All methods except single linkage clus-
tering perform well, although runt pruning appears to fall off a little.

5.4 Olive oil data

The data for this example consist of measurements of eight chemical concen-
trations on 572 samples of olive oil. The samples come from three different
regions of Italy. The regions are further partitioned into nine areas: areas
A1. . . A4 belong to region R1, areas A5 and A6 belong to region R2, and
areas A7. . . A9 belong to region R3. We did not scale or sphere the data, be-
cause the variables are already on the same scale. The largest runt sizes were
168, 97, 59, 51, 42, 42, 33, 13, 13, 12, 11, 11, 11, 10, 10,. . . . The gap after
33 suggests the presence of eight modes. We thus chose runt size threshold
33 in the construction of the cluster tree. (The picture often is not as clear.)

Figure 6 shows the cluster tree. We have labeled each leaf with the pre-
dominant area for the olive oil samples falling into this leaf. Table 2 shows
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Figure 6: Cluster tree for olive oil data. Nodes have been labeled with
predominant area.

the distribution of areas over clusters. Table 3 summarizes the performance
of clustering methods for the olive oil date. Runt pruning with threshold 33
(eight clusters) gives an adjusted Rand index of 0.57. Again, single linkage
is the lone outlier.

The split represented by the root node separates region R3 from regions
R1 and R2. The left daughter separates region R1 from region R2. The
method erroneously splits area A3 into two clusters and was not successful
in identifying areas A1 and A4. This raises two questions: (a) do the olive
oils from area A3 really have a bimodal density, and (b) does the density
really have modes corresponding to areas A1 and A4?

The first question is at least partly answered by Figure 7. Panel (a) shows
the cluster tree. We have selected the node N that has partitioned area A3.
Panel (b) shows a rootogram (histogram with the roots of the cell counts
plotted on the vertical axis) of the cluster represented by N , projected onto
the Fisher discriminant direction calculated to separate the daughter clusters.
(The idea for this diagnostic plot comes from Gnanadesikan, Kettenring, and
Landwehr (1982). The Fisher discriminant direction maximizes the ratio
of between-cluster variance to within-cluster variance of the projected data
(Mardia, Kent, and Bibby 1979, Section 11.5). In that sense it is the direction

16



1 2 3 4 5 6 7 8
A1 0 1 0 0 0 17 0 7
A2 0 51 1 0 0 4 0 0
A3 90 11 103 1 0 0 1 0
A4 5 13 4 0 0 14 0 0
A5 0 0 0 64 1 0 0 0
A6 0 0 0 0 33 0 0 0
A7 0 3 0 0 0 43 0 4
A8 0 2 0 0 0 2 45 1
A9 0 0 0 0 0 0 0 51

Table 2: Olive oil data: cluster number (horizontal axis) tabulated against
area (vertical axis).

that best reveals separation between clusters.) The rootogram does not look
bimodal. While this does not conclusively show that there is only one mode
— there might be two modal regions with nonlinear shapes, so that the
separation does not manifest itself in the projection — it is an indication,
and we might want to prune the tree by removing the daughters. In contrast,
the rootogram in panel (d) where we have selected the node separating area
A2 from area A3, shows clear bimodality. Note that this diagnostic can be
used in practical problems because it does not require knowing the true labels
of the observations.

To answer the question whether areas A1 and A4 really are separated from
areas A2 and A3 and correspond to modes of the density, we project the
observations from the four areas onto the first two discriminant coordinates
(Mardia, Kent, and Bibby 1979, Section 12.5). Figure 8 shows that while
areas A2 (open circle) and A3 (filled circle) form fairly obvious groups, this
is not true for areas A1 (triangle) and A4 (cross). Again, finding this is not
strictly conclusive because we are seeing only a two-dimensional projection
of the eight-dimensional data but it is a good indication. Note that this
approach is not an “operational” diagnostic, because in practice the true
labels of the observations would be unknown. We use it here merely to help
evaluate the performance of our method.
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Figure 7: Diagnostic plots. Panel (a): cluster tree with node splitting area A3
selected; (b) projection of data in node on the Fisher discriminant direction
separating daughters; (c) cluster tree with node separating area A3 from area
A2 selected; (d) projection of data on the Fisher discriminant direction.

5.5 Handwritten digit data

The data for this example are 2,000 16×16 grey level images of handwritten
digits; the data therefore are of dimensionality 256. (The data were previ-
ously used to evaluate machine learning algorithms). The runt sizes are 288,
283, 90, 84, 74, 47, 37, 35, 22, 21, 21, 19, 19, 18, 13, 12, 12,. . . . The gap
after 35 (vaguely) suggests presence of nine groups.

Table 4 summarizes the performance of various clustering methods on the
handwritten digit data. The clear winners are model-based clustering with
identical, spherical covariance matrices, and runt pruning. Runt pruning
with threshold 35 (nine clusters) gives an adjusted Rand index of 0.64. The
poor performance of average linkage is surprising.
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Figure 8: Projection of areas A1 (triangle), A2 (open circle), A3 (filled circle),
and A4 (cross) on the plane spanned by first two discriminant coordinates.

6 Remarks

We address three issues: (a) relationship between parametric and nonpara-
metric clustering; (b) distinction between clustering and compact partition-
ing; (c) non-modal groups.

6.1 Parametric versus nonparametric clustering

The most appealing feature of parametric or model-based clustering is that it
seems to offer a way of estimating the number of groups: Fit a mixture model
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SL AL CL RP MC-EI MC-VI
0.0 (0.03) 0.61 (0.07) 0.43 (0.04) 0.50 (0.06) 0.45 (0.04) 0.37 (0.04)
0.0 (0.1) 0.64 (0.05) 0.50 (0.04) 0.70 (0.06) 0.58 (0.05) 0.61 (0.05)

15 12 7 5 8 5

Table 3: Comparison of single, average, and complete linkage, runt pruning,
and two versions of model-based clustering for the olive oil data. First row:
adjusted Rand index if methods are made to generate nine clusters; second
row: adjusted Rand index for optimal partition size; third row: optimal
partition size. Numbers in parentheses are standard errors.

SL AL CL RP MC-EI MC-VI
0.0 (0.0) 0.07 (0.05) 0.28 (0.05) 0.58 (0.04) 0.62 (0.03) 0.33 (0.04)
0.0 (0.0) 0.29 (0.04) 0.36 (0.03) 0.69 (0.04) 0.63 (0.03) 0.36 (0.03)

20 20 19 7 15 8

Table 4: Comparison of single, average, and complete linkage, runt analysis,
and two versions of model-based clustering for the handwritten digit data.
First row: adjusted Rand index if methods are made to generate ten clus-
ters; second row: adjusted Rand index for optimal partition size; third row:
optimal partition size. Numbers in parentheses are standard errors.

to the sample and use a criterion such as BIC (Schwartz 1978) to estimate
the number of mixture components, which is then taken as an estimate for
the number of groups (Fraley and Raftery 1998). The conceptual problem
with this approach is that the optimal number of mixture components is not
an intrinsic property of the data density but instead depends on the family
of distributions that are being mixed. Fitting a mixture of uniforms, or a
mixture of spherical Gaussians, or a mixture of general Gaussians will result
in different estimates for the number of groups. Thus, the estimated number
of groups depends on assumptions about the group distributions that are
somewhat arbitrary and unverifiable, but can sometimes be gleaned from
plots of the data.

Nonparametric clustering is based on the premise that groups correspond
to modes of the density. While this assumption can also be questioned — see
Section 6.3 — at least the number of modes is an intrinsic property of the
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density. Model-based clustering can be used in an attempt to find modes and
estimate their number. A weakness of this approach is that mixture modeling
estimates the number of components in a mixture, which in general will be
different from the number of modes.

6.2 Clustering versus compact partitioning.

It is important to distinguish between clustering and compact partitioning
or dissection. The goal of compact partitioning is to split a set of objects
into groups that are spatially compact. The degree of compactness can for
example be measured by the total squared distance between the observations
and their closest group mean vectors, the figure of merit that is optimized by
the k-means or Lloyd algorithm (MacQueen 1967). There are applications,
such as vector quantization, where compact partitioning of the data makes
perfect sense, even when there are no distinct groups at all. Some clustering
algorithms, like complete linkage, are really better regarded as tools for com-
pact partitioning. Compact partitioning algorithms might identify groups if
they happen to be roughly spherical and well separated, but they will fail if
this is not the case, as illustrated in Section 5.2.

6.3 Non-modal groups

We have assumed thus far that groups correspond to modes of the density,
but this assumption may not hold. Most observers would agree that the data
sets shown in Figure 9 each consist of two groups. However, these groups do
not manifest themselves as modes. We are not aware of a general, automatic
solution to this problem. There appear to be two approaches.

The first is to abandon the requirement that the method be automatic.
Instead we graphically present the data to an observer and rely on the human
cognitive ability for detecting groups. A large collection of tools has been
developed for this purpose, ranging from mapping techniques like projection
pursuit (Friedman and Tukey 1974; Friedman, Stuetzle, and Schroeder 1984;
Friedman 1987) to systems like XGobi (Swayne, Cook, and Buja 1998) that
are based on high interaction motion graphics.

The second approach is to transform the data such that in the transformed
data grouping manifests itself as multimodality. The prototypical example
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for this approach is the Hough transform in computer vision (Ballard and
Brown 1982, Section 4.3).

Figure 9: Groups that do not correspond to modes.

7 Summary and future work

We presented runt pruning, a new clustering method that attempts to find
modes of a density by analyzing the MST of a sample. The method exploits
the connection between the MST and nearest neighbor density estimation. It
does not rely on assumptions about the specific form of the data density or the
geometric shapes of the clusters. Our (admittedly very limited) experiments
suggest that the price in performance paid for this generality is small.

There are a number of areas for future work. Probably the most important
and most difficult problem in nonparametric clustering is determining the
correct size of the cluster tree, i.e., estimating the number of modes. Even the
simpler problem of testing for unimodality has not found a fully satisfactory
solution in the multivariate case. Existing methods, such as the dip test
(Hartigan and Hartigan 1985), the runt test (Hartigan and Mohanty 1992),
and the map test (Rozál and Hartigan 1994), strictly speaking, test the
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hypotheses that the data are multivariate Gaussian or uniform, using a test
statistic that is sensitive against multimodal alternatives.

Absent an automatic solution to the problem of estimating the size of a
cluster tree, we have to rely on diagnostic tools that require human interac-
tion. The diagnostic plots shown in Section 5 only work if the clusters can
be linearly separated. If the clusters are highly nonlinear, as in the example
of Section 5.2, projection of the data on the Fisher discriminant direction
might not show a clear bimodality, and more powerful methods are needed.

A weakness of runt pruning is its reliance on the nearest neighbor density
estimate. One would like to use better density estimates such as k-th nearest
neighbor or (adaptive) kernel estimates (see, for example, Silverman 1986,
Section 2), or a Projection Pursuit estimate (Friedman et al. 1984; Friedman
1987). We have implemented a recursive partitioning version of Wishart’s
(1969) hierarchical mode analysis which can be used with any density esti-
mate. However, exactly computing the connected components of level sets
for kernel or projection pursuit estimates appears to be difficult. We have
had to resort to heuristics (just as Wishart did), which is an esthetic if not
practical drawback.

A simpler alternative is to combine runt pruning with Wong’s k-th near-
est neighbor clustering (Wong 1979; Wong and Lane 1983), which is a gen-
eralization of single linkage clustering using the k-th nearest neighbor den-
sity estimate. Wong’s method has three steps: (a) Construct a graph con-
necting each observation to its k nearest neighbors; (b) Assign edge weight
w(e) = 1/p̂k(xi) + 1/p̂k(xj) to an edge with endpoints xi,xj; (c) Calculate
the MST Tw of the edge weighted graph. The discussion of Section 4 suggests
forming clusters by applying runt pruning to Tw instead of simply breaking
the longest edges. We have conducted preliminary experiments with this
method, and the results appear to be somewhat but not greatly better than
those obtained by runt pruning of the MST.

Finally there is the problem of estimating cluster trees from large sam-
ples. Runt pruning consists of two steps, finding the MST and computing
the cluster tree from the MST. For the MST we currently use a simple O(n2)
algorithm (Algorithm 2 of Prim 1957) that does not require storing the inter-
point distance matrix, but instead evaluates distances as needed. On a 1.5
Ghz Pentium PC, computing the MST for a data set with 10,000 observa-
tions in 10 dimensions takes roughly a minute. There are algorithms which
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are faster, at least in theory, for example the O(n log n) algorithm of Bentley
and Friedman (1978). However, the actual performance of these algorithms
degrades rapidly with increasing dimensionality; see Nene and Nayar (1997)
for a discussion of this effect.

The time required for computing the cluster tree from the MST depends
on the data and the runt size threshold. In our experiments it tended to be
much less than the time required for finding the MST. So it appears that runt
pruning is certainly practical for data sets of size n = 104, and is applicable
for n = 105, given some patience. (Of course there is no experience regarding
its performance for such large problems.)

The articles by Cutting, Karger, Pedersen, and Tukey (1992) and Cutting,
Karger, and Pedersen (1993) contain some interesting ideas for clustering
very large data sets. The question is how such approaches can be made to
fit into the framework of estimating level sets.
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