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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION*

JEROME H. FRIEDMAN,# ERIC GROSSEf AND WERNER STUETZLES$

Abstract. We describe an adaptive procedure that approximates a function of many variables by a
sum of (univariate) spline functions s,, of selected linear combinations a,,  x of the coordinates

d(x)= ¥ sm(am-x).
1=m=M

The procedure is nonlinear in that not only the spline coefficients but also the linear combinations are
optimized for the particular problem. The sample need not lie on a regular grid, and the approximation

is affine invariant, smooth, and lends itself to graphical interpretation. Function values, derivatives, and
integrals are inexpensive to evaluate.
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1. Introduction. Multidimensional surface approximation is recognized as an
important problem for which several methodologies have been developed. The aim
is to construct an approximation ¢ (x) to a p-dimensional surface y = f(x) on the basis
of (possibly noisy) observations {(y;, x:)}1=:=.. Most existing methods, such as tensor
product splines, kernels, and thin plate splines (for a survey, see Schumaker [1976]),
are linear in that

d(x)= 1<Z< WiYi,

where the weights {w;} depend only on x and {x;}1=i=,, but not on {y;};=;=.. These
methods have the advantage that they are straightforward to compute and their theory
is tractable. In practice, however, they are limited because they cannot take advantage
of special properties of the surface. Due to the inherent sparsity of high-dimensional
sampling, procedures successful in high dimensions must be adaptive and thus non-
linear.

In this paper we describe an adaptive procedure that approximates f(x) by a sum

of (univariate) spline functions s,, of selected linear combinations a,, - x of the co-
ordinates

(1) d(x)= ¥  Sm(@m*x).

l=m=

The procedure is nonlinear in that not only the spline coefficients but also the linear
combinations are optimized for the particular problem.

2. The algorithm. The spline function s,, along a,, * x is represented as a sum of
Jm B-splines (de Boor [1978]) of order q

(2) sm(am * x) = Z Bmiij(am * x)-

1=j=jm
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The approximation ¢ (x) (given by (1) and (2)) is specified by the directions {@, }1=m=as
the knot sequences along a, -x for 1=m =M, and the B-spline coefficients
{Bmihi=m=m1s;=j,. For particular {a,.}, the knots are placed heuristically and then the
{B.m;} are determined by (linear) least squares. The residual sum of squares from this
fit is taken to be the inverse figure of merit for {a,,}1=m=n.

Following Friedman and Stuetzle [1981], the approximation is constructed in a
stepwise manner: given {a@m}i=m=m-1, find ap to optimize the figure of merit of
{@m}1=m=nm. Terminate when the figure of merit is below a user specified threshold.

3. Implementation. A difficult part of the algorithm is finding each direction a,,.
We perform a numerical search using a Rosenbrock method (Rosenbrock [1966)).
This method is easily modifiable to search over the unit sphere. We have found
empirically that each iteration of the optimizer requires approximately 3.5p function
evaluations, where p is the dimension of x. Two iterations are nearly always sufficient.
As the search usually starts far from the solution and the solution does not have to
be obtained with high precision, it does not seem likely that optimization procedures
that estimate the Hessian would do better.

For high dimensionality, the computation is dominated by the evaluations of the
object function. Since it is not crucial to find the precise optimum, considerable savings
are achieved by substituting a similar, but much less expensive figure of merit during
the search for a new direction. For this figure of merit not only the previously found
directions but also the corresponding spline coefficients are held fixed. For a given
direction, the residuals are modelled by (basically) a moving average smooth (see
Friedman and Stuetzle [1981]). The characteristic bandwidth (the fraction of observa-
tions over which averaging takes place) is taken to be inversely proportional to the
number of knots. The residual sum of squares from the smooth is the figure of merit

used for the smooth. Solving the least squares problem for the original figure of merit

requires )

olr( 2, i |

operations, while the new figure of merit can be evaluated in roughly n operations
using updating formulas for the moving average. The least squares problem has to be
solved only once for each iteration to determine the new model after a,,, has been found.

To solve the least squares problem, we form the normal equations and use a
pseudo-inverse, since the design matrix might not have full rank. The singularity which
arises from the inclusion of a constant term for each direction is remedied by simply
dropping one column per direction from the design matrix. Higher order singularities
caused, for example, by the linear terms for three co-planar directions, are not explicitly
taken care of, but are handled by the pseudo-inverse.

Our knot placement procedure is motivated by the sequential nature of the
algorithm. At each iteration, the knot positions are required for the least squares fit,
after the new direction has been found. Our model at this point is the spline fit of
the previous iteration, plus the moving average smooth along the newly found direction.
The knot placement is based on the residuals {r;} from this model. Multidimensional
structure in these residuals due to incompleteness of the model manifests itself as
high local variability in the scatterplots of r; against a,, * x;. In order to preserve the
ability of fitting this structure in further iterations, it is important to avoid accounting
for it by spurious fits along existing directions. For this reason we place fewer knots
in regions of higher local variability. Since the residuals change, the knots are replaced
along all directions at each iteration.
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The knots along a direction a,, are placed as follows: the smooth described above
is applied to {(r;, am * x:)}1=:=» and the local variability v; at each point is taken to be
the average squared residual from its local linear fit. The Winsorized local variabilities
are defined by

20 if v; >20,
- . 1~

if v; <37,

v; otherwise

1
W; =420

(where 0 = (1/n) Y, <;<n i), and then are scaled so that Y, ;- 1/w; = 1. The knots {#;}
are placed to divide the line into intervals with equal content of 1/w;:
for each [, —,——1—-——= Y L
Jm—q+ 1 e xi€ltptivg] Wi

4. Procedure parameters. The operation of the procedure is controlled primarily
by two parameters; these are the number of knots taken along each direction and the
termination threshold. Both parameters can be adjusted using graphical output pro-
duced by the program. The adequacy of the number of knots and their placement
can be judged by examination of the residuals from the final model plotted against
each a,, - x. A systematic pattern in any one of these plots indicates that either the
number of knots is too small or that the knot placement algorithm did not perform
well. Another indication that the number of knots might be insufficient is that the
procedure chooses nearly the same direction twice, thereby effectively doubling the
number of knots placed along that direction.

The value set for the termination threshold determines the number of terms
making up the model. Various criteria can be used to decide whether a particular
term should be included. In the case of noisy data, one can ask whether a term is
significantly different from zero (given all previous terms), or whether the addition of
the term reduces the predictive mean squared error of the model. Also, considerations
outside the data having to do with the problem setting can influence such a decision.
In order to judge statistical significance, it is necessary to know, by how much one
would expect an additional term to increase the figure of merit if there were no
structure in the residuals. This can be estimated with a permutation test. The residuals
(from the previous terms) are randomly permuted among the observations, thereby
guaranteeing no structure in the (permuted) data. MASA is applied to these residuals
and the increase in figure of merit noted. This process can be repeated, obtaining a
(null) distribution of the figure of merit. Either formal or informal hypothesis testing
techniques can then be used to judge whether the nonpermuted figure of merit is
significant.

The optimal number of terms with respect to prediction error can be estimated
by cross validation. The observations are randomly divided into L (typically 5-10)
subsamples. Each of the subsamples are in turn set aside and the model constructed
from the remaining observations. Each observation is set aside exactly once. The
mean squared prediction error averaged over the set aside observations is taken as
an estimate of the model mean squared error. Such an estimate can be made for
models with differing numbers of terms and that model minimizing the cross validated
mean-squared error estimate is then selected. Both permutation tests and cross
validation can be implemented in a small driver routine which calls MASA repeatedly.

5. Examples. In this section we present and discuss the results of applying the
multidimensional spline approximation method (MASA) to four examples. (A
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FORTRAN program implementing MASA is available from the authors.) The first
three examples were suggested elsewhere for testing surface approximation pro-
cedures. The function in the fourth example was studied in connection with a problem
in mathematical genetics.

The first example is taken from Friedman [1979]. In this example uniformly
distributed random points {x;|1 =i =200} were generated in the six-dimensional hyper-
cube [0, 11°. Associated with each point x; was a surface value

yi = 10 sin (7x;(1)x:(2)) +20[x;(3) — 0.5]° + 10x;(4) + 5x;(5) + 0x;(6) + &,

where the {¢;} were independent identically distributed standard normal. The inverse
figures of merit for the approximation with M =1, - - - | 4 terms were 6.71, 4.29, 1.87,
0.97. In three restarts, the figure of merit did not decrease below 0.86, so M =4 was
chosen. The four linear combinations and the corresponding spline functions are
shown in Figs. 1a-1d. (The function value is plotted on the vertical axis, a - x on the
horizontal axis. The 4+’ signs on the bottom of the graph indicate the knot positions.
A “+” sign followed by a number indicates multiple knots. For completeness, the
program parameters are also listed; see comments in the program source code for a
detailed explanation.) The spline along the first linear combination (Fig. 1a) is seen
to model the linear part of the surface. The second term in the approximation (Fig.
1b) models the additive quadratic dependence on x(3). The final two terms (Figs. 1c,
1d) model the interaction between x(1) and x(2). The L, norm of the error ||f — ¢l
was 0.57.

Although the full advantages of MASA compared to other procedures are realized
in higher dimensional or noisy settings, we applied it to two bivariate examples used
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80)
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by Franke [1979] to compare a number of interpolatory surface approximation
schemes. For both examples 100 uniformly distributed random points in the unit
square [0, 11> were generated. The function in Franke’s first example is

3 (9x —2)*+(9y —2)° (9x +1)> 9y +1
f(x,y)=0.75 exp [— 1 ]+0.75 exp[— 9 10 ]
™2 )2
+0.5 exp [~(9x 7) :(9)1 3) ] +0.2 exp [-(9x —4)*~(9y = 7)*].

Considerations similar to those in the previous example led to an approximation with
three terms. The linear combinations and corresponding spline functions are shown
in Figs. 2a-2c.
The function in Franke’s second example is
f(x, y) =s3[tanh (9y —9x)+1].

For this case the approximation used only one term, shown in Fig. 3.
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Since different random points were used in Franke’s and our tests, precise
comparisons are not possible. On the first example, MASA gave roughly an order of
magnitude larger errors than the best methods in Franke’s trials (global basis function
methods) while on the second example, MASA gave an order of magnitude smaller
errors than the best methods. These results are not surprising since the peak-shaped
basis functions of the global basis methods are especially suited for representing the
peaks of the first example, whereas the ridge-shaped basis functions of MASA are
especially suited to the second example. Unfortunately, peak-shaped basis functions
are not appropriate for moderate or higher dimensionality. The difficulty is that in
order to achieve a smooth fit, the width of the basis peaks needs to be comparable
to the distance between data points. For n uniformly distributed random points in a
p-dimensional hypercube [0, 1)°, the typical nearest neighbor distance is (1/7)"/". In
particular for n = 1000 and p = 10, this distance is 0.5, and for p =20 is 0.7. Thus
variation of the surface over distances small compared to such large interpoint distances
cannot be well approximated with these global basis functions methods.

Our final example is a 19-dimensional function encountered by Carmelli and
Cavalli [1979]. An important question is the structure of this function near its
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/89)
PARAMETERS FOR THIS RUN

08S 100 KORDER 3
NPRED 2 MAXKNO 30
ODZ 2 BANFAC .800000
MAXTRY 2 IPRINT 3
MAXPRO 1 NPRINT 1
PPCONV . 150000 PLCTF4 .9
MAXIT 1
I;‘VERA’"E SQUARED RLSIDUAL AROUND THE MEAN .972118E-62

F1G. 3

minimum. We sampled the function at 200 points uniformly distributed in a small
hypercube centered at the minimum found by numerical optimization and applied
MASA. The inverse figure of merit for the best constant fit was 13.3. The inverse
figure of merit for M =1 was 0.78. In 30 restarts, the figure of merit did not decrease
below 0.42. Figure 4 gives the linear combination and corresponding spline function.
This shows that most of the structure in the likelihood function is revealed in this one
projection. The structure certainly would not be easy to find by just looking at the
definition of the function, and we know of no other approximation method that would
yield this kind of information.

6. Discussion. MASA can be expected to work well to the extent that the surface
can be approximated by a function of the form (1). Of course in the limit M - co all
smooth surfaces can be represented by (1), but even for moderate M functions of
this form constitute a rich class.

As seen in the previous section, an advantage of using essentially one-dimensional
basis functions is the possibility of graphical interpretation. The entire model can be
represented by graphings,,(a,, - x) againsta,, + x and by specifying{a,, }1=m=n (perhaps
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80¢1)
PARAMETERS FCR THIS RUN

NOBS 209 KORDER q
NPRED 19 MAXINO 11
MODE 2 BANFAC 1.50000

R 2 IPRINT 3
MAXPR) 2 NPRING 1
PPCONV .150020 PLOTHA .0
MAXIT 2

{)\V‘ERAGE SQUARED RESIDUAL AROUND THE MEAN  13.2975

FiG. 4

graphically for p =2 or 3). Additionally the graphical output is very helpful for setting
the main procedure parameters, the number of knots along each direction and the
termination threshold. Proper termination of the algorithm can be assured by monitor-
ing at each iteration the plot of the residuals from the model of the previous iteration
along the newly found direction.

The problem of sparse sampling in high dimensions is not encountered, since
MASA is fitting one-dimensional projections of the entire sample. The sample need
not lie on a regular grid, and the approximation is affine invariant and smooth. Function
values, derivatives, and integrals are inexpensive to evaluate. In addition, since the
approximation is locally quadratic for g = 3, optimization algorithms can be expected
to converge rapidly. As only the directions, the knot positions and the B-spline

coefficients have to be stored, MASA produces a very parsimonious description of
the surface.
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