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SUMMARY

———

Two methods are proposed to characterize the individual height growth
of a child by a set of parameter values:

1)

2)

Estimation of the growth curve by smoothing splines.

Calculation of the parameters directly from the estimated curve.
Ways are proposed.to spot gross errors in the data, to complete
the measurement series by filling in missing observations, to
determine the smoothing parameter and to reduce the bias caused
by smoothing. The necessary programs have been implemented on a
CDC-6000.

Parameteriza.tion by fitting a nonlinear model.

This a.pproach has been tried often before, but common to all papers

published so far are two shortcomings:.

a) The models do not take into account that puberty stops growth
by closing the epiphyses.

b) The regression procedures do not make use of the fact, that
usually one has observed many children and so has obtained many
realizations of the same model and not only one.

A model and a fitting algorithm without these shortcomings are

proposed. An interactive program for this algorithm has been

* implemented on a DEC-10.

~ Finally, the advantages and disadvantages of the two methods are

discussed.
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ZUSAMMENFASSUNG

Zwei Methoden werden vorgeschlagen, um das individuelle Grossenwachstum
eines Kindes durch einen Satz von Parameterwerten zu charakterisieren:

1) Schitzung der Wachstumskurve durch gléttende Splines.
Berechnung der Paramster direkt aus den geschiétzten Kurven.
Verfahren zur Entdeckung von gross errors, zur Vervollsténdigung
von Messreihen durch Auffiillen fehlender Beobachtungen, zur
Bestimmng des Gldttungsparameters und zur Reduzierung des durch das
Glétten verursachten Bias werden vorgeschlagen. Die notwendigen
Programme sind auf einer CDC-6000 implementiert worden.

2) Parametrisierung durch Anpassung eines nichtlinearen Modells.
Dieses Vorgehen ist schon oft versucht worden, aber allen bis
jetzt verdffentlichten Arbeiten gemeinsam sind zwei Nachteile:

a) Die Modelle beriicksichtigen nicht, dass die Pubertdt durch
Schliessung der Epiphysenfugen das Wachstum beendet.

b) Die Regressionverfahren niitzen die Tatsache nicht aus, dass
man gewdhnlich viele Kinder beobachtet hat und so iiber viele
Realisierungen des gleichen Modells und nicht nur eine verfiigt.

Ein Modell und ein Fit-Algorithmus ohne diese Nachteile werden

vorgeschlagen. Ein interaktives Program fiir diesen Algorithmug ist
auf einer IEC-10 implementiert worden.

Schliesslich werden die Vor - und Nachteile der beiden Methoden
diskutiert. '

1. INTRODUCTION

During the years 1955-1976 a longitudinal study of human growth was
carried out by the Kinderspital Ziirich in cooperation with the
"Centre International de 1'Enfance” in Paris. 400 new-born Ziirich
children were selected. Théy were measured and interviewed at the
Kinderséita.l, half-yearly in early childhood and during puberty,
yearly, otherwise, until maturity. So for each child and each
variable a longitudinal series of observations was obtained. (See
(1] for the complete collection of questionnaires.)

The aim of this study was on one hand to provide data for a description
of the normal growth process, thus offering the possibility to detect
abnormal growth patterns. This is of practical use, as such abnorma-
lities often are indicators for diseases like chromosome defects or
disturbances in the hormonal system. On the other hand the study is
helpful in answering mainly theorectical questions in the fields of
endocrinology and developmental psychology.

How should one analyse such longitudinal data statistically ¥

I shall treat the case of height growth, but most of the ideas
immediately generalize to other variables with values on an interval
scale: The straightforward approach, considering each individual
series of measurements as an observation vector and directly applying
miltivariate methods,'for most questions make no sense: The

dimension is too high (36 observations between birth and 20 years) and
the results are hardly interpretable. The first step has to be a data
reduction: Define a set of parameters (as few as possible), which
summarize the important properties of the growth process, and find a
method, which assigns to each measurement sequence the corresponding
set of parameter values. Mualtivariate Analysis is then applied to the

parameter vectors.



8-
Two ways for performing this parameterization are suggested:

1) Curve estimation approach: Estimate the growth curve by a

smoothing procedure. Calculate parameters directly from the
estima.t_ed curve.

This will be treated in Chapter 2. Results gained by the analysis
of the so obtained parameters can be found in [2].

2) Regression approach: Fit a parametric model by least squares.

This will be the subject of Chapter 3.

Finally, in Chapter 4 the two methods are compared.
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2.1. Characteristics of Human Height Growth

(2]

8
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Figure - 1

To provide a better understanding of the following, in figure 1 a
typical human height growth velocity curve and some of the parameters

of interest are shown.

Growth velocity is highest after birth. It then decreases, first

very fast, later more slowly, until the onset of puberty, which is
associated with the adolescent growth spurt. After the end of puberty
the epiphyses are closed and no further growth is possible. The basic
pa.ra.met.ers we estimated are parameters of the velocity curve, namely:

1) - Peak height velocity PHV = maximm of the velocity curve between
9 and 16 years.
2) Age at peak height velocity APH = abscissa of maximum.

3) Minimal prespurt height velocity MHV = last local minimum before
AFH.

4) Age at minimal prespurt height velocity AMHV = abscissa of minimum.
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5) Age at minimal prespurt he_ight velocity return AMHVR = age at which,
for the first time after APH, MHV is attained again.

6) Peak height PH = PHV - MAV .
7) Pea.kbaaiB'PB=AMHVR_m

2.2. The Smoothing Procedure

4s smoothing procedure we use smoothing spline functions.

Let f be the unkmown true function, which we want to estimate, x1...xn

the abscissas, were we have observations, and u1...un the observations.

We assume that
w o f0G) + g
E(€.)s O Ai»4a...n cov(g) = 3

Def: The smoothing spline function s for X, u, £ with smoothing
parameter S is the solution of the minimum problem
} Problcm 4

j o'1= win !
T -
(u-200) = (v-2) &S
Motivation: §+'* is a measure for the smoothness of s, whereas

under the constraint

(u-20e0'5 T -2¢x)) measures the distance of s from the given points.
That means: s is the smoothest function with distance from the obser-

vations less or equal to S.

The properties of the smoothing spline functions are well known.' See,
for example, [3]. They are listed here only for the sake of completeness.

1) Problem 1 is equivalent to problem 2:
_\o"t + A(g-pe)) 2™ {e-2¢8)) = mint

in the following sense:
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Let 1(x) be the least-squares straight line through (x,u) and R its
residual sum of squares. Then for each S < R there exists a unique A
such that the solutions of problem 1 and of problem 2 are the same.

A is called Lagrange parameter.

2) In the intervals [xi,::i +1], i=1...n-1, 8 coincides with a polynominal
of degree 3. In the points X, called knots, these segments are
fitted together tyro timge differentiably.

3) Por fixed » the coefficients of the polynomials depend linearly on

-the observations . This especially means that the smoothed

ordinates y;= s(xi) depend linearly on the observations:

¥ Wur

An algorithm for the computation of s is described in Chapter 2.4.

The Role of the Smoothing Parameter S

The smoothing parameter steers the smoothness of s. Let us first

consider two examples:

1) S = 0, The spline function passes exactly through the points
(xi,ui). Thus s might be rather wiggly.

2)‘ S >» R. The spline function is the least-squares straight line.

The ;i.nfiuence of S may also be discussed in terms of bias and variance:

1) s =0. s(xi) is an unbiased estimate of f(xi), but it has the same

variance as ei .

2) S YR. s coincides with the least-squares straight line. So s(xi)
-estimates f(xi) with a emall variance, but, depending on f, the
bias may become very large.
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As a criterion for the quality of the estimate, we use as usual the

average expected squared error

. n ’ ‘x
AESE = E(2 = (2w -fexid) )
v4

Because y depends linearly on u the AESE is the sum of a bias term b and
a variance term v, where for given A resp. S the bias term depends only
on f and the variance term only on the ¢;

AESE = b+v

bs 2 Il W - gani’®

ved trace (w(x) s wT(M))

A0

For S increasing ( A decreasing) the bias component of AESE increases
If € and f were known, one
could analytically determine the optimal » . But of course this has
no practical meaning.

and the variance component decreases.

In the following we shall always assume that Z° o‘zC, where only g%
is unknown, but C is a known matrix.

How to Determine the Smoothing Parameter ?

There are a few possibilities:

1) TFor each individual series of measurements plot the points (xi,ui)
and the spline for several S. Choose that S for which the spline
looks smooth enough and for which the bias is not too large. This
may for example be done using a graphics terminal as an output
device.

This procedure has several disadvantages: It is time-consuming
(think of 200 - 400 series of measurements) and not reproducible.

-13-

2) Use an asymptotic Tesult (see |4])

Sepe = c(f):chm

. where ¢(f) — 1 as the sampling rate increases. ('I‘ﬁe sampling
rate is defined as 1/sup(x:.w_1 -xi). In our context "asymptotically"

will always mean "for increasing sampling rate").

Good choices of c(f) are between 0.8 and 1 (see [5]).
The only remaining problem is to find a reasonable estimate of «%

3) Eptimate the optimal ) or S for each individual by cross-
validation (see [5]). The cross-validation procedure may be
described as follows:

a) Choose a X.
b) Por i = 1...n define weights
w:,-(x). L S C.Y R
A=Wl (X)
Defing the i-th cross-validation residual a; by

.
d; (2= 2 w;,-(x)u.; - w

it4
Loosely speaking, di is the difference between u, and the
- ordinate at x,, estimated without using (xi,ui).
¢) Define the cross-validation sum of squares CV( X\ ) by

cvenr e o T

This procedure is repeated in order to find the A* for which
cv( ) ) is minimized. Now there are two possibilities for
proceeding:

d) Use ) as Lagrange parameter for smoothing the particular series
of measurements
or

e) Define the smoothing parameter S as c(f)-CV())

We use 3 . with some modifications (See Chapter 2.3 ).
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Reducing the Bias ("Prewhitening")

It suggests itself, to try to estimate the bias introduced by smoothing
and (partially) eliminate it.
look as follows:

Heuristically such a bias correction would

1) Assume S to be given. Determine X , get W( A ) and the smoothed
ordinates-

yi®s Z Wi (M uy
i

as well as the other polynomial coefficients of the smoothing
spline s.

2) Smooth the (xi,yi) once more with the same weight matrix.
Define
*
Yo = £ Wiy OOy
4
and call the obtained spline function s*. Use s-s* as an estimate

of the bias. Define the corrected spline function sc as

-
2= p4 (n=n") = 2Zn-2

The smoothed ordinates of s° are y = 2y¥-¥*

In Chapter 2.6 an asymptotic argument is given, that this correction
really eliminates the highest terms (in » ) of the bias.

The bias correction may also be considered as "prewhitening" :

First the large effects are found by smoothing the measurements.
Then these effects are taken out by subtraction and the residuals are
smoothed again.
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P 2.3 Data Checking, Treatment of Missing Data, Estimation of Parameters

' and not only use cross-sectional methods.

Data Checking

Before performing any analysis of the data, they have to be checked for
The reasons for such errors are mainly interchange of
rows on the questionnaires and punching errors. For error detection,
it-is necessary to make use of the longitudinal structure of the data
This can be seen looking at

gross errors.

 a simple example:
' The (cross-sectional) standard deviation of standing height in boys is

63 mn at 16 years, mean 1738 mm

A 62 mm at 17 years, mean 1759 mm

: Now think of a boy, who was measured 1700 mm at 16 years and who was
. punched 1791 instead of 1719 a@: 17 years. Of course, no cross-

secf'ibn‘aiqré;]ection rule would reveal this error, whereas a longi-

i2)

P11

tudinal one should.

We suggest cross-validation as a tool for outlier detection.

The. procedure works in the following way: -

Given & series of measurements (xi,ui).

1)' Perfoim cross-validation and obtain X* , the Lagrange parameter, for
which CV( A ) is minimal.

For i=1...n compute di( * ), the i-th cross-validation residual.

3) Apply a normal rejection rule to the di, for example consider a
..point as an outlier if the corresponding di is more than 3 median

deviations away from the median of the di’

:.n Miss, Observations

We found it useful to complete the measurement series if possible.
This leads to the same design for all individuals when smoothing the
veiooity curves; which considerably simplifies programs and reduces
computing costs.
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Moasurement series were not completed if
1) more than 3 observations were missing (out of 24)
2) 2 consecutive observations were missing

The completion procedure works as follows:

Assume (xi ,ui) missing.

1) Choose a smoothing parameter S. This may be done separately for each

series by oross-validation. Another way is, to use a smoothing
parameter according to average error variance over the sample. It

does not seem to make a great difference.

Compute the smoothing spline s for para.metér S and the given points.

2)

Set u,* = s(xi)

3) Compute a smoothing spline for parameter S though

(x1 "y Yoo .(xi ,ui*) cee (xn,un) - Define u **

less than a selected bound, goto 4, else set ui* = ui** and goto 3.

Perform bias correction. TUse uic as a pseudo-observation.

4)

In simulations this procedure showed a good performance (see Chapter 2.5).:
0f course, the Yerror" of the pseudo-observation is correlated with the
errors of near-by observations. We neglect this effect, as otherwise the

advantages of completion would get lost.

Estimation of the Parameters

We now describe the complete procedure which led to the parameters finally

1) Check the individual series of measurements for outliers.

2) Complete the series. Series which could not be completed, were not
further used.

3) TFor each series compute the raw velocities

hi (treq) = hi( £1¢)
th -ty

v (‘l{"“'éknf ) - K= 4-+- n-1

s(xi). If )(ui*-ui**)l is ;

-17-

! In.the following observe that
: A

cor (Vi Vi, ) = cor Ve, Vo) s =

5 .
var (v;)= 2.(’3'/{t,-_,,4—t") if var (h(t)) = &? y:

* .
Find X;, the Lagrange parameter which minimizes the cross-validation
: sum of squares for individual i. Set §; = s(X).
; 5) Compute (i =nmed S;, §= meddev 5;
| A .
1 6) Set
k)
a Mt p+E < S
i ®
) S¢ = 54 PR I TR
=5 M-8 > S

: 7) Smooth the raw velocities of individual i with smoothing parameter

s 40 perform bias correction and obtain spline 8. Two examples
" for smoothed curves can be found on photos 1 and 2 (&ppendix 1)

8) Estimate the parameters for individual i by the corresponding

parameters of s 5

1 The only thing special here is step 6, the winsorizing of smoothing

pa;gmeters. It is the result of a compromise: If one would assume error
variances equal for all individuals, it would be appropriate to use

X‘_as a smoothing parameter for all individuals. This is not the case.
We do not know the reason, but we assume that seasonal effects play a

i Tole here (see [6]). Such effects would lead to a higher variance in

half-year measurements for children born in spring or autumn compared
to those born in summer or winter. On the other hand, the sampling rate

1 we have seems to lie at the lower limit, where cross-validation gets

usable. Using the unmodified smoothing parameters and then visually
ingpecting the smoothed curves, some of them seemed us strongly over-
smoothed, others were not smoothed at all. However, the effect was in
the right direction. So we decided to use the compromise described
above.
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2.4, Alggithms and Routines for Spline-Smoothing and Cross-Validation

By definition, the smoothing spline function for data points
(x1 ,u1)...(xn,un), error covariance matrix S and smoothing
parameter So is the solution of the minimum problem
z

[a" = wmin !
under the constraint

(u-20) ' (w-2) & S,
Using variational caloulus, this leads to the equation for s(x) = y:

y-- 28 (MA+ 8367 ) 8L 4 u

-4 A4+ L 4
(e hs) by a s o bt Tim 4 4
A LA o
A 2 Chathy) h 4 N
A % 2 9 n: Be 4 ha hay ha hy ez
hy  20n+the) by -4 4.4 4
e ~ \\\ g 4 h3 hy he by
S N \\\ ~ ~ S <
S ~ RS
n- ~ N

he = Xiea = X4
» = 0 gives the least-squares straight line. For given S .,
A is determined by a Newton procedure.. With
- RR 5. gRT
we get

-4 2
¢*(x) = I RBT(XA+BZ8T) Bu

We will show later, that 1/S( A ) is a concave function of X .
The Newton procedure is used to find a solution of

A 4 s 0

Cross-Validation

If
¥ W

the oross-validation sum of squares CV( X ) was defined as follows:
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EIRIATRNOEII T T

1) ¢For i=1...n compute
w:,‘(k)= Wi (N) i2d
LERVWIIN Y

Define d,, the ith cross-validation Tesidual, by

| L 3
Lo (X) 57;’: Wep (M) uy - ug

2) Define
cvin) = £TE 7

3 With < = 1-wii this yields

{ Aoz A (WaalMdu, ¢ or (Wil D= g s+ W, (Mu, )

1 For smoothing splines the weight matrix is
wW(x)e I- 8T (>A+BEB") g

So we obtain for the cross-validation residuals
-5 B T(MA+BERT) B

Lo (x)= ~
Z,8( A+ BEGB) B’

For Z = diag (e eee & ) this formula has a nice interpretation:

Theorem: d,( M) =;;_i'n:° (v;,)

So di( XA ) is in this case really the difference between the observed
ordinate u; and the value of the spline at x,, when the spline has been
computed omitting the point (xi,ui) :

Eroof:
Set D = diag ( «,..... PEL ne.. ¢, ) and 2 = BD. Then we have

Yor -pesii (aA+227) 18y 4wl

2T

T . -
- -pai L (2A+ T BN, pei et ) 8w 4oy
4
— e

c
Using the Sherman-Morrison identity

- —a vt ATt
(A4yy“)‘- AT A dY AL
ll*_\/'é"g- .
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- : L
J clztet
L. £ ¢ ¢

. . P -
Yorcpa e B,
ﬁ_._ 2;1'6-‘121

‘T _4 ST an T - > . -
1 & ¢ ¢4 - ' ] . -
- -pei 3 C Bu + 2° C 2 2 ¢ Bu & G 2 2" ¢ B8

4 4 2T ¢t el
’

~-6; Z‘C Bu
A T4
S+
Frec 2¢

LT =
Linmn (u;_-\/‘:). __“_2 c eu

P ai."' c"z‘
Bi?()-A + Zt.) Z"’) 8w
8T (AA+2¥ pwTy g0

2. (2. 2¢

-4

24 z")

Using the Sherman-Morrison identity once more, this gives for the

numerator

. . - s . e
Wty gu e g5 (Cra+aaTI-2°2° ) "0 u
[
) =1 ‘7'-4
. B‘T(C—‘ 2 2 ) 8w
4= 2T gt

8T (rAt 2

g’ c’au
1- 2Tl
Analog we get for the denominator

a'Tca’

1- 2¢Tcad

TSR L ]

BT (AA s 29 )6,

So we finally obtain

(T, -a

R C B«

Lim (wi-y:) « 8 (rA+Z22V'Bu
Lindad gTc'e BT (rA+2EY'E

we

PETE dreT TRy
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‘Algorithm for Spline Computation

This. algorithm was proposed to me by Gene Golub.
able to evaluate

The aim is, to be

s8T(AA+B3BT) '8

for many different values of A without much cost.
Defining

A= RTR Z ° c‘rc r

Z= BC

we get
-1 -
T2 (ARTR +227)  2c”7

it

SBT(NA+BSET) B

CTERY(AI+RTZETRIR 72T (1)

Set

GxR Tz = RTacT

'ﬂﬁs yields
(r) = ¢T¢ (rT+66T)6CT
Using the singular value decomposition of GT

~GT= HovT  HTH- T VTivel 0 diagonal

e get

T

T _~T

@<= CTHD (AT+0*) " BHTc

and, setting
. 2 2
@y = odiag (0, /(D +)N))
SBT(AA+BEBTY B = CTHP HTCT
So if abscissas and covariance matrix remain the sa.me, we only once
perfom the operations listed here and compute C H and HTC This
is done by the routine SPLINIT.

Further on, we easily obtain

2
G (x) - I HP HTCTuN > 1 HTC Tt
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or, with vy = BTc‘Tg
S*(\) = 1@, yi®

The argument, that 1/S( A ) is concave, is the same as in [7].

The Newton Procedure for Determining X .

We want to find a solution of

Ao -4 <o
SO Yoo

We start with X\, =

aAlE ——S"(‘N) < S${o) [,,_ S (2e)
S (%,) $C o) Vso ]

S*a) = ‘Z(?A(L Ve )w

Sty - %‘[2(‘?A;;v¢)‘] 2 TV ‘Vx“%&

“ /8 4
D¢ 2 \ .
=-[z - [ .z ‘,] z E“ ‘:i.
(p;;+x) L (D)

After having determined X » We easily obtain the smoothed ordinates X.
The polynomial coefficients are then determined by computing the inter-
polating spline function for the points (x1 ,y1)...(x o7 ) This requ.i.resL
essentially a Choleski decomposition and a forward-backward substitution,
411 this is done by the routine SPLINE. ’

Algorithm for Cross-Validation

Using the. same notation as before, we get
d{ ()‘) = (CT)J. He HTC-T&
C C'); H V; H'(C‘Y)i
and
- 2
cv(n)= nc'dun

(PRV = 117.8 mn/year, PE
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Before calling the function CV, initialiaat;on has to be done by calling
31>L]:NIT Then, if S is supplied, the corresponding X is computed as
SPLINE Afterwards, the cross-validation sum of squares is evaluated

*‘”traightforwardly.

dz
There are two more subroutines in the package:

mcv, a minimization routine for minimjizing CV, and SPLINT, a function
for spline interpolation. Of course, before calling SPLINT, the spline
sodfficients have to be computed by calling SPLINE.

1.

2.5. Monte-Carlo Results

As true underlying functions for our simulations we use two curves out of
a parametric family used in (8] to parameterize human growth curves.

The family is given by the equation

QAa X
e~be (£-c0)

h(t,a.,b.,cﬁa.t,b,,,c‘)- 7T
. 1+ EE R

ﬁe choose the parameter combinations

Model 1 Model 2
a, 156.7 156.7
b, 0.24 0.28
c, . 1.18 0.48
a, 35.30 27.00
b, 1.07 0.73
c, 12.23 12.23

Hodel 1 corresponds to a growth velocity curve with very high peak
= 63.9 mm/year), Model 2 to one with very low

‘peak (PHV = 65.1 mn/year, PH = 15.9 mm/year).



Filling in Missing Observations

Three cases were considered in the simmlations:
age 9, 11, or 13.5 years.

As both curves have an APH of 12.1 years, the :

Observation missing at

cases where an observation is missing at 11 or 13.5 years are critical,

because one expects a bias here.

spurt starts.

9 years is just the age, where the

Standard deviations of simulated measurement error were 2, 4 and T mm.

30 runs per combination of model, missing observation and measurement

error were simlated.

The smoothing in the completion routine was done

2

according to a variance of measurement error of 16 mm“ in all cases.

The results are summarized in table 1.

Model

LA A B A T A B A B A B N R N B . T T Qi S G G §

Error Std
(mm/year)
2.0
2.0
2.0
4.0
4.0
4.0.
7.0
7.0
7.0
2.0
2.0
2.0
4.0
4.0
4.0
7.0
7.0
7.0

(Years)

9
11

13.5

1
13.5

11
13.5

k
13.5

1"
13.5

1
13.5 -

PABIE -~ 1

Bias
(zm)

3.0
-3.4
2.4
0.8
1.2
-0.8
0.2
2.9
-3.5
0.6
-1.8
1.6
1.8
0.5
-0.5
0.4
2.6
-0.9

55

(om

10.8
13.2
8.0
9.5
1.7
14.9
87.4
43.6
53.6
1.2
3.8
3.6
12.8
3.4
6.1
46.3
56.2
85.3
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jﬁﬁé*fbiae of the filled-in observation does not exceed 3.5 mm in absolute

v‘g_‘!l.ue. For error var:.a.nce 16 mm2 we get an excellent behaviour. For

mor variance 49 mm the behaviour is not quite as good, but still MSE
1%~within two times the error variance. The only case, where the
éompletion procedure is bad, is : Model 1 (with the high peak), error
variance 4 mm2. Here oversmoothing spoils the results : large bias

of up to 3.5 mm, MSE of two to three times the error variance. So one
might produce points identifiable as outliers. Bub of course this worst
ne is not likely to appear often in the data. We decided to run the

~msk of adding an outlier in some cases in order to make use of the

ge a.dvantages offered by having only complete series of observations.

E

Paranster Estination

wéagajn simlated height measurements with standard deviations of
2; 4 and 7 m for each of the two parameter sets. 20 runs per
combination were generated. From the simmlated height measurements
;%ir"velocities were computed. Lagrange parameters for smoothing the

'v%iocities were determined by cross-validation. No winsorizing of
Hiloothing parameters was performed.

me question we want to answer by means of these simulations is:

A:L-eﬁ the estimated parameters "valid", i.e. do they tell us something
msaningful about the population. This may be done by comparing the

gm squared errors of the parameters with the variance of the parameters
o%er the popula.tion. Of course the MSEs depend on the underlying true
curve, :Ln our case mainly on its peak height. That is why we chose as
tru.e underlying curves for our simlation one with. a very high peak, the
otliér with a low peak.

In table 2 we give for our parameters the average mean squared errors

for the two ps.rémeter combinations and the variance over the sample.
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If one accepts as a rule of thumb, that for meaningful parameters the
standard deviation over the population should be about 3 times the
standard error (square root of MSE), one can draw the following

conclusions:
For 2 mm error standard deviation we have no probleums.

For 7 mm error standard deviation the parameters are useless.
This is not astonishing, as the error variance of half-year veloocity
measurements is 392 mm2, which makes a standard deviation of nearly

20 mm/year.

4 mm standard deviation is the most interesting case, for the true
standard deviation of height measurements is about 3-4 mm. Here

the parameters PHV, APH and AMHVR are well determined, AMHV and FH
are tolerable. As was to be expected, PB and MHV are critical: FB
because AMHV enters, which itself is not very well determined, and
MHV, because the variance over the population is small compared for
example with PAV and PH. So the results based on these two parameters
have to be regarded with éome caution.

2 mm 4 mm T mm Pop Var

Par 1 Par 2 Par1 Par 2 Par 1 ©Par 2

PHV 4.5 1.15 14.6 3.15 31.7 21.4 120
APH 0.009 0.02 0.03 0.06 0.03 0.21 0.69
MEV 1.2 0.63 14.7 4.12  12.4 18.3 35
AMHV 0.17 0.05 0.19 0.14 0.27 0.55 1.34
AMHVR 0.005 0.01 0.02 0.04 0.04 0.19 0.75
PH 6.3 2.25 28.2 9.68 23.4 72.1 157
PB 0.16 0.09 0.22 0.14 0.39 0.48 0.86

TABLE - 2

1 dfooe
;
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: ngw well the smoothing procedure picks out the true curve, is illustrated
¥ by photo 3...6 (Appendix 1). Each photo shows a simulated measurement

eries (hei@t measurement error std = 4 mm), the true underlying curve

~ /(dashed) and the estimated curve (solid).

'2.6. _Asymptotics

To provide some insights into the asymptotics of curve estimation, we
first set up the problem in general. Then for a simple type of smoothing
. procedure some asymptotic properties are derived and the asymptotic
. :effect of the bias correction described in Chapter 2.2 is evaluated.
Finally, we reproduce results on the asymptotics of spline smoothing and
cross-validation given by G. Wahba in [4], [10].

General Situation

given an unknown function f, the properties of which we will specify from

-case to case. At the points

x = <A ez o h A._:‘-

We observe
W » flx)+EL

E(ei)= o cov(ﬁ;,:;J~¢"5.5‘
<

We want to estimate f(xi), i=1...n.

“The criterion for the quality of the estimate will be the average

expected squared error

n L)
ABSE= A 5 (foxi) - fexin)”
g4
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It is often convenient to assume, that one has observations all over
the real line, not only in the interval [0,1]. This simplifies the
theory by avoiding boundary effects, and in most cases has no influence
on the asymptotic behaviour of the ABSE. '

Most asymptotic theory developed so far deals with linear estimates of
the moving average type. Such an estimate is defined by a family
w(n, A ) of sequences with
-
Z wWith,n) . a
at least asymptotically (for n— e, N — o= ).
For fixed n the sequence g(n, A ) of estimated ordinates is given by
£ = us win )
(* denotes the convolution)

Let us demonstrate this at the example of rectangular weights.

Define
2 ~ 2 2L e N
W, (n, )= " bts 2
o cisewheare
Then
n n
~ bt 2% . Zn
-F‘: (n,A) = z UL;_i wi(nIX) < -X. 2 '{-.’.. -+ 2 E 8':"3
yoes "o TP L
ESS kRN

Assume f to be continuous . Then we immediately see that f:l.(n’ X)isa

congistent estimate of fi if

X 50 because 2 — o = XA Ty w0 as.
n n

N —> oo because A 2o => -’: Z iy — fo
Neglecting boundary effects, smoothing splines are linear estimates of

moving average type.
ing in a situation, where the abscissas are equidistant points on the
circle. A corresponds to the Lagrange parameter.

This may easily be seen by considering spline smooth
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Ave s Derived From a Kernel

.zﬁiie type of estimate has been treated often before in the context

f;% dens:.ty or spectrum estimation (see, for example, [9]). .
fECsl

+. X be a Lebesque integrable, two times continuously differentiable
gymmetric kernel with compact support and let K and its first bwo
'%;;atives be bounded. Define K ,(x) = AE(Ax). For x—> o K N
{:-i)ecomes more and more concentrated around O. °5° K(xYelx = 4

- o0

‘We define the weights
w. (n M) » aK,(ia) = da K(ixa)

‘For

-:"—-—-DO' T wilxn) = 4
50 .we get

f£,(n%) = 2a 1Zk(»jkzs) -,
yThis gives for the ABSE

AESE = %E§($; (n,2) —5:)*

= 2E T (XaZTKGiradu; ;£
n i ,
N = A?[)-Aizk(»j')‘A){,-__i-{.‘-_]z-o- “)“Azézkz(‘i)‘b)
A .
We approximate this by

1 o 2 .
iese = § L I AKX (flx-th L) Lt ] dx + ;z)\AI wECE) At
0

-0 -

flemma

#_Thg approximation error is of the order of magnitude o (x a*)
g,

Proof:

w

et supp(K) c¢ (-2 a]
Bigi L

Then supp(K, ) c C-%, 21

\'ﬁiu
e

gWe ‘are first interested in approximating
$

B [ ko) feg-tr1 ot by

A, -2
g =~
A

Aa T K(gra) fij

Without loss of gemerality we assume xi=0.
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Set . The first term is bounded by £ sep §o9. By simply differentiating it
4 (£) = Ak (nt) fC&)  can easily be seen that §" (x) has a bound which only depends on the
5 <

. suprema of the first two derivatives of f. If we assume f and its

T Ehe ST In. s et E-% ! % ] is first two derivatives to be bounded, we get
z O/ 3
" n 1
|_.£a>f“v“'ﬁ‘j)rwlé~";|_{ xzﬁiti(x}x)léouplﬁx(x)]ﬁ- S S -aS s0ad]| - (8D
T B ; e

This inequality is obtained Dy simply expanding g X dn.a. Naylor waries " Let us now look at the second term:

d 0. r VT
around 0 LS -81 & 14 - £5 w2141 4,- £11
The number of such intervals of length a grows with 2a/ia .

P @ s * *
So the total approximation error becomes EREE NEE N J[I-F,‘ +f, |+ vifl]
& 2 g b F]
by ra 4 r)u.f:|g‘{x7-5(>(?|l = nw.,o]-f (x)w{(x)f,_,u,a[]_'c ()4 {x)l+3|-}(x”]
| g, (Brdt - a F 9, (iar | = 2up Iay ¢ | 2= A" 3 x x » > m by x
-t .2 A 74
A »a i

The first factor is O(X\'a*) , the second is bounded, so that we
The dominating term in g, " (x) is ¥ K"Ox)fc). So finally have

. finally have
a ]
» = : . : ; 2 4 = ..
.3 " - b2 Kigxa)f, -4, ] - t) —t)-foa)dt | ol = OCN
NS -a3 i | & & owp JRIOXfOO] (2a) = O(537A%) laZ [ ?—. 128 i - 42 ] ‘_)[[jwrx (fox=t) - fo)de ] (x| = OCA)
—a -a
> EYN

-We further need the error when approximating

k at term we are really interested in:
Now we are prepared to look at one 5 PG s K i) by )\LKZA _[ W dda
What is the error when approximating

1 > % ‘ = K -
ANSE [T wliradf ;- {uji by [[xf o) fex-t) - fexrat] el Set h, = K'(:x). With the same argument a.sAbefore we have
K < ° -2 . "
2 ; - i o 2% B "
Let us use the following nomenclature: [ : |_LH)("’ &4 Kk lira)l R s plh, ()]
oa
£,000 = [ ak(nE) fex—t) ot [y (x)1 & X => 1§ h e - aZx*ira)l e 1%2 o NaTe
)
» s n
- T RGAANA) F(x, i) |
h et s ,, - So we have proved, that the total approximation error is O(k"se’)
§ ) = [ 00=-f002]
20 ~ . .
S‘ ceg % I {_: %3 -{-(x.d] We shall from now on work with IESE, but we have to keep in mind that,
- because of the approximation error, terms smaller than ©( %) have no
Then we have ) g
asymptotic meaning.
1 . s
T ko) (femerfon) e Tetx - a XT38 T w(ira) foxuw-4a)-fexa] | The first question we shall now deal with is: How do we have to
# w <

]

4 noo ] f S ¢ ) e — - choose » as a function of n in order to obtain convergence of IESE to
z - () |7 1) §G0dx - 6 2 §7C(xu) + o x<) = A X
| 3[ §ddx - a2 §(x !

K=A

t 0 at an optimal rate and under which conditions do we really obtain this

sex)ddx ~ aZ 500 |+ 1o T 0 8%k - §ixw))] ~ Tate. Questions of this type have been studied often before (see,
~ for example, [9]). :

el

z |

SGadx - 82 66 + sup | 5" Cen) ~ 50|

L N Y
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Def . Setting
@)t ot ] t . 1 2 4
We call Ir for m = O.... the m-th moment of K. e § 4 arex [ fuertt el n*
We get the following , °
e €7 j k2(e) ot
Theorem ) and making the ansatz
Let K be a symmetric, two times contimuously differentiable kernel An> € n”
with compact support and fKcb)d{=4 ., Aggume the first 1-1 moments we obtain optimal convergence rate for the IESE if
of K vanish and the 1 -th moment exists. Let £ be 1 times continuously
differentiable with f and all 1 derivatives bounded and f ‘1’ square- %T = caen™”
2 . G n
integrable. Then -to obtain optimal convergence rate of IESE one has to
choose .
) This gives
1w 1% 21+4 4
4Ht A o=
N A oo dx [ freo '] s " T v1+4
€2 [ty ot A
. [_e- 21+4
¢ [ Ca ]
Then the IESE is ' That means for the IESE
c Lt 1,7 4 7,:-*4 ——‘.:1'4 -kl ~22 d 21 21 21
ies€ = 20 S V00 dx (Jueert™e) 2o ] [6* kb erae]1®* ™. 0 337, 50 2197 IESE = 26,07 ¢, 2244 JRAIFT L 5 (peaea )

That is what was stated.

Proof':
4 oo 2 It remains to show that
gse « § [ 2akOut) (fex-t)-foeNdt)ox + e¥a, a [P () dt .

& -0

oo 1 (1) a
[ §weert 4 ou%’f) ,u]"xx — f{-‘v (x> elx [jme)tl;“]z'
n

P Ma=2e0  o

LIS

Let us first look at the bias term i
4 A o 2
by= (L[ SnKOX ) (fCx-t)-fox) ot T elx = (L Ke8r (FOe~) -£60) ol 6] dx
0 . 0 =

We have
1 i f i T i 1 N 4 o=
By simply expanding f in a Taylor series around x and observing, that (r ?«m eI U YO )ou)‘.(x s g[jm>:‘(+mcx+—-—“"‘)~ £50) e
the first 1 -1 moments of K vanish, one obtains > e An e e
q I
4 L @ 5(4) ¢ : . 4 4
PR S t t] d 8t) e [0,4] v (L)
bx.. W (1n* £[.I,,K( 1t E (x+ ™ )d ] x s .,.}‘k(t)tl{- ‘x)“tJt‘(,‘ c f1% a2 frr + (z*
-0 L4 o v
as )\,,_“) L I
g L, (D $(4)¢ 2 { 141 ‘ L, a2, (DY
S weore™f "‘*T)d*]d""" [ vodx [Jrertde] S dx = [ ket e ]° (457 oy atn
0 - " ° g
This will be proved later.
So we have
1 2 _
1EsE® — 2 (1P odx [kt ue]"s 6* 20 8 fkordx 4+ o (3127
et o

n
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II is Lebesgue-integrable. By Lebesgue's theorem it suffices to show
that IT — O pointwise. Show:
)
(,()).(c — O H-~~a.e,
Ny ~7 oo

1

fuere (g (,H.ﬁ_‘;ﬂ_‘) - f

For t fixed, the integral goes to 0 for <~ (f ‘*’ assumed to be
conti.nuoua). The result is now obtained by applying Lebesgue's

theorem once more.

Two comments on the theorem:
4

1) The approximation error is O ( X'5>) . With \»cn®> thig gives
kA 21
g-(,,'ﬁ"Ta). IESE = O(n 23%7). So the approximation error is of
. -2
smaller order of magnitude and we have AESE = O (n” 21+ ), too.

2) The theorem has no practical use, even if the sampling rate is large
enough to make the asymptotics valid, for JF‘”zu) Ax

6%  are unknown.

as well as

Correct the Bias

The smoothing procedure with bias correction may be described as follows:
1) . Compute the smoothed ordinates
;(n,x) = _K,. L
N
2) Estimate the bias by smoothing f(n, ) ) once more:
£ = K, 0 Fon™

;(n,x)ngtn‘>)-£‘(n,))
3) Define the corrected ordinates £° (n, » ) by
Fennre fmpre Bompmr = (285 - Kom Kydau

Does this procedure really reduce the bias asymptotically ?
The answer lies in the following

Tt o
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Lemma :

If K has vanishing first 1 -1 moments and existing 1 -th to 2 1-th
moment = O, then K* = (2K-K*K) has vanishing 21 -1 moments and existing
21 -th moment.

Proof:

Let n.:i denote the i-th moment of K and m:' the i-th moment of K*.
We have

my = K 13t . 2y -SSR Ken-¢) x** g4 g

21
= zmu— 5§ Keey KO (x+2) gt ofx
21
1-K
(et ). 3 (‘;") x%¢?

Because of Dyeeel 4 = 0 and the symmetrie in (x,t) this yields

. 21
maz t 2my - (M) fxeo koo 1P el ge e - 2m,y

= - () -7

In the same way we get m1*...m2"{_1 = 0.

If K has moments m, and we smooth with K, (x) = » K(X x), the bias
b, at x, approximately is

hod («)
by (o) » 2 Z, ¥ (x) my
L]

Y

So the lemma immediately yields, that the bias correction really
eliminates the highest terms in ) of the bias.
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et T

Asymptotics of Spline Smoothing and Cross-Validation In [10], G. Wahba derives her asymptotic results for a procedure

she calls "generalized cross-validation". The generalized cross-

e

The theory of spline asymptotics is somewhat involved. We will give validation sum of squares is defined as

here only the essentials and not bother about assumptions which are K ¢
- Gevin) s AEI-wONul
made only for technical reasons. i . [tvace (T-woN}*
a) Optimal choice of the Lagrange parameter » and the corresponding AESE If one looks at the formulas for W( X ), one easily sees, that
(see [4]). : %" for equi-spaced data and n large, the diagonal elements are nearly

Let £, the unknown true function, be in wgz), the vector space of equal and so

' A
functions on [0,1] with absolutely continuous 3-rd and square- Gevin= o cvien

integrable 4-th derivative. Then the AESE is minimized by choosing For the generalized cross-validation, the following asymptotic result
t/ o
2 s can be stated:
Xn = ¢, 2 Ty n
£} N
¢ ‘  let £ and its first 3 derivatives be absolutely continuous and £¢*)

square-integrable. Let » minimize the AESE of the smoothing
; spline and ) minimize B(GCV( > )), the expected value of its
) ; generalized cross-validation sum of squares. Then:

For this choice one obtains for the AESE
8/ g -

AESE = ¢y [&7) 3 [J{(»)’*"J'ﬁ . ¥/q . o(n-'/s
If f is a polynomial of degree 1 or less, X = S
There is a clear analogy to the formulas for kernel estimates.
2
The dependence on [{‘’ suggests, that the spline asymptotically
coincides with a kermel with vanishing first 3 moments.

If f is not a polynomial of degree 1 or less , e X(avon) |

b) Cross-validation (see [10]).
In Chapter 2.2 it was pointed out, that for fixed X the ordinates
y; = s(xi) of the smoothing spline depend linearly on the
observations u,:
I =W

‘The cross-validation sum of squares for homoscedastic umcorrelated s

errors was defined as

((1-wONe), N
cv({\) = %( C

R A

e

(T-w),

A

o

%

s

33
i
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2. THE REGRESSION APPROACH

3.1. Models for Human Height Growth

Using the word "model" in the title gives a somewhat optimistic picture
of what seems possible in the énalysis of the human growth brocess.

Making a model for a dynamic system usually consists of the following
essential steps:

1) Structure identification- Find a set of differential equations
(which may contain unknown parameters) describing the mechanisms
of the system.

2) Parameter identification: Find the solution of this set of
differential equations, which best approximates the observed
behaviour of the system.

Step 1 at the moment seems to be impossible, as the mechanisms steering
the growth process are to a great extent unknown. A1l approaches tried
so far omitted step 1: A parametric family of curves was chosen, not
because it was thought to be the family of solutions for differential
equations describing the growth mechanisms, but only because it was
thought to fit well to the observed data.

Two curves play a central role in the analysis of growth:

-t
1) The Gompertz curve a¢) - e °

P
2) The logistic curve L(¢)= (A+¢ )

The work so far done is summarized in the following review:

1) Burt [11]
Age range : Conception to maturity

Proposed model
3

hier= 2 ail (22 ) 4 ; gtanding height
(sA <
The first term in the sum accounts for the very fast growth during
Pregnancy, the second for growth during chlldhood, the third for
the adolescent growth spurt.

Burt's model has never been used in full generality.
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2) Deming [12]
Age range: Early childhood to maturity

Proposed model:

a4+ bat +c,logt  for early childhood

h{t)=
_f;:ig_) for the adolescent growth spurt
X2 9( ca

The question is, how and where these two components should be fitted

together.

3) Bock et al [8]
Age range: 1 year to maturity
Proposed model:

o - bx . ieht
h{ka«l(—”‘chd Villafl T B Bl ey

There is a clear lack of fit : average équared residual is 2 cm2 for
boys and.0.9cm2 for girls compared to a measurement error variance of
about 0.2 cm2.

The éuthors also make a step on the slippery path of interpretation:
They call the first component "prepubertal" and the second "adolescent".
However, there is the somewhat uncomfortable fact that they find a

large sex difference in the "prepubertal" parameters.

The same authors in a later paper [13] compare 4 additive two component
models (1ogistic + logistie, logistic + Gompertz.... ) on the basis of

average squared residual and find double logistic best.

4) Marubini et al |14]
Age range: Adolescent growth spurt
Proposed models:
hit)= P+mg(£%£—)

heeys pral(42k)

The authors compare these two models and find logistic best.

i i ? 3 irls)
to be a lack of fit (average squared :e31dual is 0.9 cm™ in g

There seems
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One has to decide where the adolescent growth spurt starts before
running the fit algorithm,

For most of the individuals there are 11 or less measurements. The
authors use run tests to :judge the qua.lity of the fit. O0f course, a

run test with 11 observa.tlons has no power at all and so will hardly detect
model bias.

5) Marubini et al [15]
Age range : Adolescent growth spurt
Proposed models

hbr= P+ a1(t5b)

hie)= P sag(zb

The authops fit these two models to the London data and find logistic
best. They also study the infiuence of the choice of "start of growth
spurt" (take-off point), which turns out to be small.

On the London data the average residual standard deviation for the
logistic model is only 4 mm in boys and 3.5 mn in girls, which is as good
as can be expected. Good fit is also obtained for leg length, sitting
height and biacromial diameter.

We are interested in a model for height growth, which covers about the
same age range as that proposed by Bock et al in [8], [13]. Reading

these papers, two questions arise:

1) Does the biological knowledge about the growth process justify a
Ywo component additive model ?

2) Searching for the best model, the authors restrict themselves to all
possible combinations of logistic and Gompertz components, Is this
restriction really necessary, or is it possible to reduce the bias
and thus get a better fit by just allowing for larger classes of
component functions ?

These two questions will be the subject of the rest of Chapter 3.
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«2. The stion of Additivi

Biological knowledge about the mechenisms of human growth is not
sufficient for a structure identification of the growth process.
Nevertheless, a model should take into account the qualitative know-
ledge available. The following facts can be found in [17], [18].

Buman growth can be thought to consist of two components :
Non-pubertal and pubertal. The non-pubertal component is that, which
is observed in childhood before the occurence of puberty. Later, only
the total effect of the two components is observable.

Effects caused by the pubertal component are the pubertal growth spurt,
full development of the primary and secondary sex characteristics,
accelerated bone maturation and epiphyse closure. The latter is
especially important for models of human height growth, as after epiphyse
closure no further growth is possible.

That the pubertal component via acceleration of bone maturation and
epiphyse closure really "switches off" the non-pubertal component, is
demonstrated by the effect of some disturbances of the hormonal system:

a) Bunuchoidism, prepubertal castration
The pubertal component is missing, no signs of puberty are observed.
Non-pubertal growth continues till long after the age of 20. Full
ossification of the bones is usually never reached.. Although the
individuals lack of pubertal growth gpurt, they grow on the average
taller than normal individuals (eunuchoid gigantism).

b) Precocious puberty ’
We use the term “precocious puberty", if some or all effects of
puberty turn up at an earlier stage of development (measured in bone
age) as usual. This may either be idiopatic or caused by diseases
like gonadotropin-producing tumors, gonadal tumors or adrenogenital
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syndrome. Cases where puberty starts at an age of less than 2 years
have been reported. These individuals are taller than normal during
their puberty, because of the pubertal growth spurt. They are smaller
than normal as adults, because non-pubertal growth has been switched

off at an early age and so has supplied only a reduced contribution
to adult height.

With this in view, let us have a look at the model proposed by Bock et al
in (8] and their results:
The model is

hit)= q,L(b,(t~c,)) +(L’a"“4)l(51(£-—cm}) g he,i@t

They neglect the switch-off effect. The following table gives the means

and standard deviations for the parameters:

al b1 cl a2 b2 c2

(mm)  (1]|years) (years) (mm)  (1|years) (years)
mean 1497 0.26 0.83 312 0.90 13.0
std 7 0.02 0.35 41 0.17 0.79 J (w=s6)
mean 1380 0.30 0.39 298 0.88 11.0 ? (3=51)
std 71 0.03 0.36 62 0.19 0.87
There is a large sex difference in the "prepubertal™ parameters a..l, Cye

It is not caused by real differences between growth of boys and girls in
childhood (these differences are known to be small), but is due to the
fact, that puberty in girls occurs earlier than in boys and so non-pubertal
growth is switched off at an earlier age. 5o, due to the neglection of
the switch-off effect, in the "prepubertal™ parameters properties of
grwoth in childhood and the timing of puberty are confounded. This
greatly limits the value of the parameterization.

A natural way to incorporate the switch-off effect in a model for
height growth velocity is the following: Set

V)= @, o, (Lzki) ?(_{C;m} + Gy OL(L‘P,L)
(=N 2 Ca

—4 5=

where ¢ is a function decreasing from 1 to 0, modelling the switch-off

effect. It is coupled in location and scale to the second component

modelling the growth spurt. s, will be a function which first decreases

1

rapidly and then is approximately constant, 8, will be bell-shaped.

In the following we will work with models of this type.

SeDe Shape-Invariant Models

All models for human height growth detailed in Chapter 3.1 with the

exception of Deming's are shape-invariant models in the sense of the

following definition:

Def:

Let t, (21,t)...tk(2k,t) be time transformations depending on the

parameters DyeeeBy- Let Sqeee8y be given functions. Let = denote

addition or multiplication. Then the parametric family of curves

)’(tf‘}ﬁ-"mklﬁ,"-.?.‘) “oq.o,(t,(p,t))o.....0 Gy Dy (b Cpu, £))

is said to be

shape-invariant. The s, are called shape-functions.

Instead of "shape-invariant family of curved' we also use the term

"shape-invariant model™ (abbreviated sIM).

For example, Burt's model is a 3 component additive SIM.

S4s 52 and 33

are logistic functions, p, = (bi,ci), ti(p_i,t) = bi(t-ci).

Shape-invariant models were first introduced by Lawton et al [19].

We shall restrict ourselves to linear time transformations as used in

Burt's model.

In principle this is not necessary.



5.4. Residual Alignment

a) The case of 1 component SIM

b)

Think we have observations generated following the model

Yig = & ”(%)-ri;s irdel N oA

8 a8 well as the parameters R = (ai’bi’ci) are unknown. We start
with a shape-function s' selected after visual inspection of the
data.

o'tx) = A(X)+a(X)

If we knew the Pi’ there would be a straightforward way to estimate
a (x):

Def: Set
Xiy e _2_*" ;b"

Yis= Yis~al o'(%di)
The pairs (xi;j’rij) are called "aligned residuals".
VWith this notation we have

Yy

= - a(xg)+ 23
al

a;
So a (x) may be estimated by applying one of the standard curve
estimation procedures to the aligned residuals.

In practice we do not have the true Bi’ but instead use the estimated
ii" This process (for given s8' estimate the b by least squares, then

estimate a correction 4 (x) for s' by applying a curve estimation procedu

to the aligned residuals) may be repeated if necessary. Such a
procedure has first been suggested in [19]. There is a clear analogy
%o our population bias correction for splines (see [2]).

2 component additive SIM

Here we have

4 2 .
Vid " @l 2 (X05) + @y (x24) $ 8y

x4 o di=ho X% - bi=bu
“9 <4 Cos
Cal 24
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There are two sets of aligned residuals: Aligned according to the
first or according to the second time scale. We also want to estimate

two corrections b, 8. Aga.i.n assuming for a moment that we k‘now the
true parameters, we get

viy = - (ani o, (x%3) v azl ay( xz,’,‘ ) +'£‘>1’
The simple way of estimating the bias functions a,, &, for example
by smoothing is not applicable here.

3.5. Finding the Best Shape-Invariant Model

As a criterion for the goodness of fit of a SIM we use the overall

‘residual sum of squares

2
Se 2 vy
4 .4 . .
Let us continue with the 2 component additive case and again assume for
the moment the true paramsters B = Cal, bai, cad, @yl byl C2l)
to be known.

We want to find the best 4, , 8, . This of course makes no sense.

We have to specify a class functions and find the best o, o,

out of this class. We can for example find the best &, 8 0ut of the
class of polynomials of degree at most k, or out of the class of spline
functions of a givén degree with pre-specified knots. It makes life

gimple, if the classes are vector spaces.

be vector spaces and let PRI AN be a basis for Z1, ZoqeeZon
Now finding the best SIM means solving the least

Let Z1, 22
‘be a basis for 22.
squares problem

® . - ' 'L_ . .
Z(’fi.j‘a'aiz d45 }45("45)'42.4'. z dre ®yy (x:)) =min! ( )
ilﬂ. a4 , tea

The fact that Z1, 22 are vector spaces is essential for making the
problem an unrestricted least squares problem. We also clearly see the
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advantage of additive SIMs: In the case of miltiplicative effgcts in the
above equation terms with d1id2€i turn up and the least squares problem .is
no longer linear.

The minimum in (*) is unique, although the solution paramsters may be
not. If the solution parameters are ill determined, this means, that
we can not decide whether a bias is attributable to an error in s,' or

1

to an error in 92'.

In practice the true parameters p; are unknown. We then have to proceed
iteratively: '

1) Start with some s?, sg and starting parameters ;p_g, 1= 1.0

k .
2) For fixed 81;, 8, correct the nonlinear parameters by performing
some steps of a nonlinear least squares algorithm,

[ wea
f.— g L= AN

(Nonlinear step)

k+1
3) Forp

» i=1...¥ solve the linear least squares problem (*) and
set ’

Kea

K KeA
2, T ny+ a4, ,

= » 4; - A,’
(Linear step)

Steps 2 and 3 are repeated.

3.6, Some Comments on Our Model

In Chapter 3.2. we suggested the model

Vig 2 Qe ”4( iac:l;«. ) q’( eé:::" ) + 22 oz(___*i';::‘. )
where ¢ is the switch-off function. It seems to be totally hopeless
to estimate a correction for ¢ with the data available to us. So ¢
is not corrected, but held fixed. In this case we can use the correciion
procedure for a 2 component additive SIM. As starting functions we use

of (x)e &%+ 4

2
(- -
D, (X) = e

¥ o
§ o0 (£) Lt
=S Tabiihintil

P(x)= 4 — -
[ aa ()t
-0

As vector spaces Z1, 22 we use spaces of cubic splines. To be precise :
for each component we may specify

1) The location FENOT of the first knot of the spline

2) The distance DELTA between the knots. The knots have to be
equi-spaced.

3) The number NKNOT of knots

All what is said in the following about the first component applies as
well to the second:

Let XieoeeX) be the prespecified knots. Z,I is the vector space of
cubic splines with support [1:1, xk] and knots X ....X,. o

This assures, that the sum of the starting shape function 84 and the
correction is a smooth curve. Z1 has dimension k-4. As a basis for

Z1 we use the k-4 B-splines Bi, i=1...k-4. The B-splines are the minimal-

1

" support splines of degree 3. B, has support [xi,x. +4]. It is defined as

i+l .3
B; (x)= _Z—‘;‘—("—x )

454 W (xgmne)
wes
X< Ky
(x—*:')+ - . .
X=Xy X W %g

The restriction, that the knots for each component have to be equi-
spaced, has been introduced for convenience. It is not a severe one,
however, for the following reason: The first component essentially
accounts for the growth in childhood, where the measurements have been
taken in one-year intervals. The second component accounts for the
growth spurt, where the measurements occured in half-year intervals.



3.7+ _The Al gorithm

1) Nonlinear Step

2)

We use an algorithm given by Nagel & Wolf in [21]. 1% is a
Marquardt derivate, very simple, and worked well in tests. The
convergence could certainly be improved by splitting off the
parameters a5y &, and then minimizing the variable projection
functional (see [22]). This was not done, because no program was
available and there was no time left to write one.

Linear Step

We have to deal with rather large linear least squares problems:

10 lmots/component, 30 individuals, 30 measurements/individual

make a least squares rroblem with 12 variables and 900 observafions.
To solve it, we use sequential Householder transformations (see
[23]). This procedure has the following advantages:

a) It is numerically sound

b) Only a small part of the design matrix has to be held in core
at a time (at least NVAR+2 rows, where NVAR is the number of
unknown variables).

¢) The design matrix has to be read only once.

d) The number of operations increases only slightly compared to
non-sequential Householder transformations.
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3.8, The Fitting Program

The most important features of the program are given below:

IEC-10 + Tektronix 4014 terminal
Fortran-10

Mode : Interactive

Length : 4000 lines without comments
Development Time :
Computer costs for development :

Computer :
Language :

2.5 man-months

70 h hook-up time, 1.5 h run

, time ~ 3000 Fr.

Utility software used : Tektronix Terminal Control System

Structure : Tree.
only a calling program.
root correspond to 10 subroutines doing the work
(description see below). Commmnication between different
branches is done via labeled COMMONs.

The root corresponds to the main program, which is
10 branches originating from the

Dimensions : Up to 30 individuals can be handled at a time.

(This restriction would be easy to remove)

Interactivity is absolutely necessary to prevent waste of computer-
and user-time and nonsense results. ’

The tree structure of the program and the commmnication between
subroutines via COMMONs is very convenient for program development,
testing and modification.
To come from a node (activity) in one main branch to a node in a
different branch, one has first to climb up the tree to the root and then

descend again.
this purpose.

However it is less convenient for use:

So it may be necessary to enter 3 or 4 commands for

The names of the 10 main subroutines and the tasks performed by them

SELCHI :

Select a random sample of individuals from the data file. To offer the
possibility of drawing disjoint samples, this is done via random
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permutations: If there are N boys and N' girls in the data file, a
random permitation of {1...N} and a random permitation of {1...N 1]
are generated. Let{p,...ng}and {p;...pl;,i denote these two permuta-
tiond. The user now specifies starting indices i, i' and sample sizes
n,n'. The data file is read sequentially and. the number of boys resp.
girls already found is counted in ¢ resp ¢'. If the individuwal last
read is a boy, it is checked whether ¢ e ipi"'pi-m} « If yes, thg boy
is selected for the sample, if no, he is digcarded. The same applies
to the girls.

START :

Find starting values for the nonlinear least squéres. The subroutine
can find starting values for two models:
model 1 (without switch-off)

Syt = q,‘,_,‘(—:'_) + ay 2 ( é;—:z )

-X
D)= @
-—X
2a(x)= &
So there is no location parameter for the first component. It would
not be identifiable. However, after a linear step the shape-functions
have changed and this is no longer true. The location parameter may be
estimated and O is taken as a starting value.

model 2 (with switch-off) see Chapter 3.6.
NLSTEP:

Perform nonlinear step (see Chapter 3.7)
COMRES :

Compute residuals (see Chapter 3.9)

LSTEP:

Perform linear step (see Chapter 3.7)
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MAPLO:

MAPIO is a calling routine for prlotting. It calls the plot routines °
- PLOCHI  plot individual curves and measurements

PLORES plot aligned residuals (one-dimensional)

PLOTTA - plot aligned residuals (two-dimensiona.l)

PLSHA  plot corrections of shape-functions.

Save current status of the program in a file with user-defined name.
REVIVE:

Read file with program status saved before calling SAVE.

éEAMOD:

Select Model. Code for model is a two-digit integer. The rightmost
digit stands for switch-off effect. O:no, 1:yes. The second digit
indicates, whether the correlation structure of the residuals shall
be taken into account for nonlinear and linear least squares. O:no,

1:yes.

Children in the sample can be set active or rassive. For computations
using data from all individuals in the sample (for example linear
step, residual plots) the non-active children are omitted.
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5.9. Residual Plots

In relation with the residual plots a small difficulty arises: As our

velocity measurements are really divided differences of measured heights,

half-year velocities are expected to have twice the random error as

whole-year velocities. This would make comparision of the residuals

difficult. So in years with two measurements the two residuals are

averaged. TFurtheron, the residuals of the four measurements in the

first year of life are averaged.

1) The one-dimensional aligned residuals plot (see photo 8-13 in

2)

Appendix 1)
The plot consists of two parts: At the top residuals aligned

according to the first time scale, at the bottom aligned according
to the second time scale.

Scales on the age-axis correspond to the average child.

Let, for example, be TJ1, 51 be the averages of by;s ¢4y over the
sample. Then the mark 'S' on the age-axis corresponds to age 5 of
a child with parameters 51, 51. The three lines (the solid one in
the middle of the two dashed ones) are running (median + standard

deviation of the median).

The two-dimensional aligned residuals plot (see photo 20)
This plot is created in the following way:

a) Define new, rescaled shape functions

o ()= a, (LA_Q‘—)

B—‘I
o () = ma (X_"_&)
.28
1 ] ] )
Let b1i’c1i’b25.’°2i resp. b1i’c1i’b2j_’c2i be the scale parameters

for individual i before resp. after rescaling the shape functions.
We choose f51, ¥qo ($2, ¥ such that

b= b =0

= 1

™l
r
£l

2

KN
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This yields

pee B, i o

b o Eabg-Bacu Cay » —S3i
hai = — =
Ca Ca

and analog for the second component.

b) We have

’
a : 2 2 t; — ba
: o ti-b R T T O Vi
X:-_ (¢3)= *i E ‘“‘1,_” x; (€3) xq o
Ca

i 1.2
The points (x? .,xij) lie on a straight line in the x -x* plane.
ij

The line is given by

¥ ’ 1
e o'“ v bai = by

7
5 Cai
€24 £ <

1 1 1
So the line for the average child ('b1 = b2 = 0, ey =6, = 1)
is just the main diagonal. On the line for each child, ages
0 and 13 are marked by long dashes, é.gea 11, 12, 14, 15 are
marked by short dashes.

c) Positive residuals correspond to & triangles, negative ones
to v triangles. The sidelength of a triangle indicates the
absolute value of a residual. Residuals with absolute values
larger than three times the median absolute value are
indicated by 4 resp. ¥ .

An example for a two-dimensional aligned residuvals plot can be found
on photo 20 (Appendix 1). The origin of the lower left coordi?atg

cross is (x1 ,x2) = (0,0), the origin of the second cross is (x ,x") =
(32,-'52). One unit on the x| (xz) -axis corresponds to one year for a

child with parameter c, =1 (c2 =1).

Interpretation of the Plot:

Let us have a look at the line for child 83.

a) The line crosses the x1-a.xis of the upper coordinate cross at an

age of about 13.5 years. As
t-b: B, => tc=ba

’
=4

this means b2 = 1%.5 years.
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b) The length of the projection of the line onto the x1-axis is 35
units. This means ¢,= 20/35 ~ 0.6.

¢) The length of the projection of the line onto the xz.-axis is 17
units, which yields ¢, = 20/17 ~ 1.2,

The parameter b, is of small importance (see Chapter 3.11).

So the two-dimensional aligned residuals plot for a child contains all the
information about the scale parameters and the quality of the fit.
Furtheron it is possible to mark the appearance of sex characteristics or
other development indicators on the line. By drawing several lines on

one plot, one can produce a condensed picture of the development of a group
of children.

210. A Comment on Regression with Non-D nal Error Covariance Matrix

Our model for the observed height growth velocities is (see Chapter 3.5):

vig= fUx;, P, da, i) + €4 Lo AN, yedn

vhere

F 05,2, da, da)o ayn, (X2b2 ) P(EZB2 )y ay ny (Xobr
Ca ca ca

gl(““rb-n‘q,az., Bq_, c,,)
K
D= cf+ Z olas 24
SwaA
o Lasd
23e ozt E, Aae 2o
Using the vector notation
Yo (Vpyeoi Vay Ll Viaees Vun )T
£5 Cfaneiiiom o .o EpaeeCan) |
8(p g, e ols)- (f(x.,ﬁ,é.,e_t‘).'.f(x,‘, ,e,e.l-,e(s)--.---~f<’<~,ﬁ‘~/‘-‘~4a‘xL»K*‘n,ﬁmd'-.‘;‘-?)T
the model can be written as

¥e gl pu,da, i) v e

Due to the definition of the "observed" velocities as divided differences
we have, under the hypotheses of homoscedastic, uncorrelated errors in
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the height measurements
03 3= p0oPD
3 x ~ a
Cov(g)=¢ ne ©ze D= diag (—2 —4 )
: < ¥4 X, -
N Nra” Xn
A '% g & ...,
P= -4 1 -4 o-
o -4 1 -4 -

and %= 2 times the height measurement error variance.

Gauss-Markov theorem suggests to estimate the unkmown parameters
21...2N,g1 ,_q,‘, by minimizing

RSS_ = (Y-8 (paoe purdhe, o)) £ (- g g, e, ol)

A computationally simpler estimate is obtained by forgetting the negative
correlation in the residuals and minimizing

T Y2
RSS = (Y-8 (frfu, de,dr) D (Y=g (puerpy, i, o))
nN

The Gauss-Markov estimate should give a better fit and smaller variance
of the estimated parameters compared to the naive estimate neglecting
the negative correlations. In practice, however, the Gauss-Markov
estimate showed some strange properties. In particular, the estimate
for ¢ based on RSSw was in some cases twice as high as the estimate
based on Bssn. The reason apparently is, that the Gauss-Markov
estimate with this error covariance matrix is very semnsitive to low-
frequency deviations of the true individual growth velocity ocurves from
the stated model. The following simple example delivers the basis for
this conjecture:

Think we have measurements XyeeeX, at times t1...tn and we set up the

model

Xi= ph+gl s~ wN(o, £29)
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Ve want to estimate/u and ¢°,
? has the eigenvalues (sece [24])

Aym A~ caa( nkT: ) KnAeee
+

The corresponding eigenvectors are

SK’ (a:n( ::: )' ru.».(.l"‘i‘*'r) ..... . o"n( NKT ))T
. " +A

we Will laber need the second GiSenvector 92. We call it b and its
components b1.¢.b .

Applying the Gauss-Markov theorem, one obtaing by straight-forward
caleculations:

S
Z- Z(97x),

17‘;-?;;
is the mJ.nimum variance linear unbiased estimate for MM
A2 A AT -4
fwm oo (xR k- 0y s o ayT

is an unbiased estimate of <*,
The naive variance estimate
s Tousp
is biased, but the bias ig only 0(1/n).

Now, think the assumed model is not true, and the data have been
generated following the model

X = M+ e by +eL

.o ig called amplitude factor of the bias.

What do we get in thig case using the Gauss-Markov estimate for our
assumed model ? The biag b does not influence /ZZ y 88

S(9'e),» 4 Sh w0

: My b

7
for symmetry reasons. Let ug now look at E( & :, )

E (-2 97 (x-2)) = (pom) st g2 B
This gives .

AL 2 A 5 )
E(6,)= %+ —_— o« e yBu* = e¥(ay — 2 dz"b"z)
(n=a) Xy (nea) 2y

We need an approximation for

n
. _ .2 LKT
pon’s= ;%i 2in” (=)

Application of the rectangle rule yields

h 2 4
2 . 2 KT i
Kzgq m ( n+a ) = nra + 0’(,,)

where O (f)= cn%  lc,l 2 20 Yn

So:
A2 2 4 C &t i
e(6,)= ¢ [4+ Pyereel = +0(y,))]
o(t - A A
: -.-g"[A-f (_n +d(;‘,_))]
22, h-4
where O(4)= ¢, lenl & 20 ¥n

n{nea)

For n=100 we have 1\, « .EE?_ & 0.002
L 4]

That means, that an amplitude factor of only 0.06 (which makes the
bias practically undetectable), is sptill enough to overestimate the
variance by a factor 2. The naive estimate is not significantly
influenced by this small bias.

3.11. Results

As we needed measurements from birth to 20 years, we had to use
recumbent length in early childhood, standing height later. Children
were excluded from the analysis, if the measurement series between
birth and 3 yea.r.s was incomplete, or if later totally more than 3 or
two consecutive observations were missing. This left us 120 usable
measurement series. To simplify computations, missing observations
were completed using the procedure described in Chapter 2.3.

Model (See Chapter 3.6) :

v(e) - “‘0‘(6-;“:‘ )?( t;':'i- ).‘.'a.gdz,(%)

Specification of knots for the linear step (in absolute scale) :

FENOT IELTA NEROT
component 1 -4.33 2.68 7
component 2 -4.72 1.07 n
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For the average child this corresponds to

FENOT IELTA
component 1 -3 3 (years)
component 2 T 1.5

3 disjoint random samples, each with 15 boys and 15 girls, were drawn
out of the 120 children available. The fit'ting prrocedure specified in
the following was applied to each of the 3 samples independently:

1) Determination of starting values for the nonlinear parameters
2) Nonlinear step (5 iterations of the NLLS-algorithm)

3) Linear step

4) Nonlinear step (5 iterations of the NLLS-algorithm)

5) Linear step

Between the steps, curves were visually inspected on the terminal
screen, mainly to be sure that the NLLS-algorithm had not converged
towards a dégenerate solution. If such a case was detected, starting
values were entered mamually and the NLIS-algorithm was run again.
Performing steps 1...5 for 30 children takes about 10 minutes CPU-time
on a DEC-10. '

5 children, one out of each sample, had to be discarded, because their
raw velocity series were totally wild. Photo 7 (Appendix 1) illustrates,
vwhat that means.

Photos 8...13 show the one-dimensional aligned residuals plots, first
a.ftér step 2, then after step 5. Qualitatively there is no difference
between the three samples. Let us first have a look at the aligned
residuals after step 2:

a) Alignment according to the first time scale and alignment according
to the second time scale yield totally different patterns. This
indicates, that it is well dei:ermined, which part of the bias is
attributable to an error in 32 and which part is attributable to
an error in sg.

b) The shape function 8, is too low between 2 and 6 years and too high

between 11 and 14 years.

e,

i
IR
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c) There is a dip before the spurt starts (sg is too ‘high between'*10,~
and 12 years). Furtheron, sg descends too rapidly at the endof o
the spurt.

Remember that the scales on the age-axis correspond to the avéra.ge
child. )

After step 5, the residuals show no pattern at all. They are nicely.
distributed in narrow bands around O.

As a quantitative measure to judge the goodness of fit we use ASRO
and ASR1: ASRO is the average squared residual based on all observations -
between birth and 20 years, ASR1 is based only on the observations

between 1 and 20 years. ASRO is mich larger than ASR1. This has two

reasons:

1) The recumbent length measurement error in the first year of life
is larger than the standing height measurement error in later
ages. (Thi.nk of the technical problems when measuring a two
year old baby).

2) The bias in the shape-function for the first year of life is not
corrected, because the distance between the knots of the spline is
too large. This is a limitation of our program, which only allows
for equi-spaced knots in each component.

Table 3 gives ASRO and ASR1 for the 3 samples after thq different steps
of the fit procedure:

Sample 1 Sample 2 Sample 3
after  ASRO 30.5 28.3 37.1
gtep 2 ASR1 23.7 21.5 27.0
after  ASRO 27.1 25.7 33.9
gtep 3  ASR1 19.9 18.4 23.4
after  ASRO. 26.1 24.5 32.1
step 4 ASR1 19.7 18.2 22.6 -
after  ASRO 25.8 24.1 31.8
gtep 5 ASR1 19.2 - 17.6 22.1

'TABLE -
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For the interpretation of ASRO, ASR1 it is important to know, that
the observations were weighted according to their theoretical
variances: If the variance of the height measurement error is ¥,
then the raw velocity vi((tj+1+tj)(2) has error variance

2 457(tj+1-tj)2 and was therefore weighted with (tj+1-tj)/2. So,

if the velocity curves were estimated bias-free, we would get
ASR=® &%, & is known to be close to 4 mm. The values of ASR1 in
table 3 indicate, that the fit between 1 year and maturity is really
good. This is confirmed by visual ingpection of the fifted curves.
4s illustration, photos 14...18 (Appendix 1) show the velocity -
measurements and the fitted curves for the first 5 children of the
first sample. The curves on each picture are

1) The non-pubertal component «, . ( “"‘:‘ )‘?(—%) (dotted)

2) The pubertal component aj »a (—%) (dashed)
3) The sum of the two components

Photo 19 shows the estimated corrections for the shape-functions:

At the top sf-s?, at the bottom sg - sg, both for the 3 samples.

The scales on the age-axis correspond to the average child. The

pattern is the same for the 3 samples. The small quantitative differences
may indicate slight overfitting.

For further use, the shape-functions estimated for the 3 gamples

were averaged. Tables 4 and 5 gives s? and sf resp. sg and sg.

-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

s?(x1)

8.39
3.72
2.00
1.37
1.14
1.05
1.02
1.01
1.00
1.00
1.00
1.00
1.00
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sf(x1)

8.40
3.74
2.05
1.44
1.23
1.15
1.10
1.04
1.00
0.98
0.98
0.99
1.00

-4.0
~3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

82 x2)
2

0.00
0.00
0.00
0.00
0.02
0.11
0.37
0.78
1.00
0.78
0.37
0.11
0.02
0.00
0.00
0.00
0.00
0.00
0.00

ag(x?)

-0.01
-0.06
-0.13
-0.20
-0.21
-0.07

0.33

0.84

" 1.02

0.72
0.36
0.22
0.18
0.11
0.06
0.05
0.04
0.02
0.01
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A Look at the Estimated Parameters

Table 6 gives means and standard errors (standard deviation of the mean)
for the estimated parameters: ‘

3 b, °4 2 2
boys mean 58,2 1.67 0.96 56.1 14.5 1.39
(§=45 stderr 0.79 0.06 0.04 1.47 0.14 0.03
girls mean 57.8 1.69 1.03  38.1  13.1 1.49

(N=42) stderr 0.95 0.08 0.05 1.80 0.13 0.05
TABIE - 6

There is a perfect coincidence between boys and girls in the non-pubertal
paranmeters 2,y b1, Cye This supports the assertion of Chapter 3.2, that
the sex differences in the prepubertal parameters found by Bock et al [8]
are due to improper choice of their model (neglection of the switch-off
effect).

The sex difference in the timing of the spurt (b2) is slightly smaller than
that found in [2] (1.4 years instead of 1.7 years). Moreover, the sample
average of b2 is considerably larger than the average APH. The difference
is 0.6 years in boys and 0.9 years in girls. This is due to the

@ifferent definition of the two paramsters: The velocity curve is the

sum of the non-pubertal component, which deéreases during the spurt due

to the switch-off effect, and the pubertal component. b2
the second component reaches its maximum, whereas APH is the age, where
the sum of the two components reaches its maximum., So it is clear, that
APH will always be smaller than b

is the age, where

20

Tablg 7 gives the correlation between the parameters for boys. For girls,
the pattern is the same. HA is the adult height, PAR is defined as a2*02
and measures the intensity of the spurt.

63~
a, b1 4 a, b2 °, HA PAR
a, 1.00 -0.70 =0.61 0.03 -0.48 -0,02 0.39 0.00
b1 1.00 0.95 ~0.18 0.19 0.03 0.19 -0.14
¢ 1.00 -0.22 0.12 0.01 0.25 -0.18
a, 1.00 -0.27 -0.34 -0.03 0.63
b2 1.00 -0.11 0.03 «0.35
c, 1.00 -0.02 0.51
HA 1.00 =0.06
TABIE -
Comments
a) The most surprising result obtained already by the spline approach
(See [2]) is confirmed: Adult height is independent of the duration
of growth (b2) and of the duration, height and intensity (cz,aa,PAR)
. of the spurt.
b) The correlation between b, and o, is extremely high in both sexes.

1 1
In good approximation we can set

by, = XCui+f x=Ay4 =03

The fitted curve for child i is then

When seen from the biological point of view, this could be interpreted
as follows: For small ages, x' (t) depends only weakly on the individual
(see, for example, the children on the two-dimensional aligned residuals
plot shown on photo 20). For t= 3 there is no such dependence at all.
Or, the other way: x1 measures the state of development of the non-
pubertal component. The development starts at x1 ==~-« , which
corresponds to the same age for all individuals. VWhether :this
interpretation is supported by biological knowledge has not yet been
checked. In the case, it would be difficult to assign a meaning to

x1, if x' (0) for one child would coincide with x (-5) for an other child.
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4. _CONCLUSIONS

Vhat are the advantages and the shortcomings of the two methods proposed
in Chapter 2 resp. 3 ? Let us first have a look at the curve estimation
approach:

1)
2)

3)

4)

1)

It is methodologically simple.

The program length is only 20% and the computer costs (measured in
CPU-time/individual) are only 10% compared to SIMs.

It is objective in the sense, that only a simple qualitative
assumption is necessary (the true underlying curve has to be smooth)
and that oniy one parameter (S resp. A ) has to be chosen. Furtheron,
it is clearly visible, how the choice of this paramster influences the
results,

Ag the parameters do not depend on model assumptions, they can be
used to judge, whether a proposed model will possibly give a good

fit or not.
advantages of the regression approach are:

It offers the possibility of really finding the curve for the
"average individual®. Using smoothing splines, this was only
approximately possible: Alignment could be done according to the
location of the growth spurt (APH), (see the definition of
"individual~type standards" in [2]), whereas, using SIMs, alignment
can be done according to location and scale of the peak as well as
location and scale of the first component. The so obtained curve
shows more details: When looking at the spline-smoothed individual
curves, we had conjectured that there was systematically a dip.in the
curve before the adolescent spurt started. However, this dip did
not show up in the individual-type mean curve, clearly because no
alignment according to duration of apuft was possible. When, using
SIMs, alignment was done according to location and scale, the dip

became "clearly visible.

S |

2)

3)
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When choosing the type of the model, qualitative knowledge about the
structure of the growth process was used (See Chapter 3.2). So
there is a coincidence be‘l;_ween parameters and characteristics of the
This is not entirely true
for the spline approach. _There is no natural way to measure the
duration of the spurt. PB was defined arbitrarily and is not well
determined.

growth process thought to be important.

By fitting SIMs, we get for each child two individual time scales.
It is not yet clear, whether these time scales are useful. This
will turn out when comparing them with the time scale defined by
bone age and when setting them in relation to the timing of the
different stages of puberty.
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APPENDIX - 1 : Photos

The numbers in brackets below each photo are the pages, where the photo

is referred to.
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Photo 3

Simulated measure-
ments, true and
estimated curve
model 1

(27)

Photo 4

Simulated measure-
ments, true and
estimated curve
model 1

(27)

Photo 5

Simlated measure-
ments, true and estimated
curve model 2

(27)
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Photo 6

Simulated measurements
true and estimated
curve model 2

(27)

Photo 7

Raw velocities
child 222

(58)

Photo 8

Aligned residuals
sample 1 ’
after step 2

(52, 58)
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Photo 9

Aligned residuals
sample 1
after step 5

(52, 58)

Photo 10

Aligned residuals
sample 2

after step 2

(52, 58)

Photo 11

Aligned residuals
sample 2

after step 5

(52, 58)
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Photo 12

Aligned residuals
sample 3

after step 2

(52, 58)

Photo 13

Aligned residuals
sample 3

after step 5

(52, 58)
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Fitted curve
child 35
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Photo 15

Fitted curve
child 45

(60)

Photo 16

Fitted curve
child 52
(60)

Photo 17

Fitted curve
child 83

(60)
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ABSTRACT

Two methods are proposed to characterize the individual height
growth of a child by a set of parameters:

1) Estimation of the growth curve by smoothing splines.
Calculation of the parameters directly from the estimated
curve.

2) Parameterization by fitting a nonlinear model. A type of
model is proposed, which takes into account the present
knowledge about the biological mechanisms of human growth.
It is shown how the fact, that one has observed many
children and so has obtained many realizations of the same
model, can be used to reduce model bias.

The necessary algorithms are given. Finally, the two methods -
are compared.
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