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Many clustering methods, such as K -means, kernel K -means, and MNcut cluster-
ing, follow the same recipe: (i) choose a measure of similarity between observations;
(ii) define a figure of merit assigning a large value to partitions of the data that put
similar observations in the same cluster; and (iii) optimize this figure of merit over par-
titions. Potts model clustering represents an interesting variation on this recipe. Blatt,
Wiseman, and Domany defined a new figure of merit for partitions that is formally
similar to the Hamiltonian of the Potts model for ferromagnetism, extensively studied
in statistical physics. For each temperature T , the Hamiltonian defines a distribution
assigning a probability to each possible configuration of the physical system or, in
the language of clustering, to each partition. Instead of searching for a single parti-
tion optimizing the Hamiltonian, they sampled a large number of partitions from this
distribution for a range of temperatures. They proposed a heuristic for choosing an
appropriate temperature and from the sample of partitions associated with this chosen
temperature, they then derived what we call a consensus clustering: two observations
are put in the same consensus cluster if they belong to the same cluster in the majority
of the random partitions. In a sense, the consensus clustering is an “average” of plau-
sible configurations, and we would expect it to be more stable (over different samples)
than the configuration optimizing the Hamiltonian.

The goal of this article is to contribute to the understanding of Potts model clus-
tering and to propose extensions and improvements: (1) We show that the Hamiltonian
used in Potts model clustering is closely related to the kernel K -means and MNCut
criteria. (2) We propose a modification of the Hamiltonian penalizing unequal cluster
sizes and show that it can be interpreted as a weighted version of the kernel K -means
criterion. (3) We introduce a new version of the Wolff algorithm to simulate configura-
tions from the distribution defined by the penalized Hamiltonian, leading to penalized
Potts model clustering. (4) We note a link between kernel based clustering methods
and nonparametric density estimation and exploit it to automatically determine locally
adaptive kernel bandwidths. (5) We propose a new simple rule for selecting a good
temperature T .

As an illustration we apply Potts model clustering to gene expression data and
compare our results to those obtained by model based clustering and a nonparametric
dendrogram sharpening method.
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1. INTRODUCTION

The goal of clustering is to identify distinct groups in a dataset and assign a group
label to each observation. Clustering is a common problem in emerging fields such as
bioinformatics and text mining. In a typical bioinformatics application we may have mi-
croarray data measuring the expression levels of thousands of genes for the same organism
under different experimental conditions. Genes with similar expression patterns across ex-
periments may have related functions. Clustering of genes can also be a first step toward
modeling and understanding gene regulatory networks (Eisen et al. 1998). In text mining,
the goal of clustering may be to partition a collection of documents, such as Web pages
returned by a search engine, into subsets representing different topics (Tantrum, Murua,
and Stuetzle 2003, 2004).

One of the most popular clustering algorithms is K -means. Let xi ∈ Rd , i = 1, . . . , n
be our data. Suppose we want to partition the data into q clusters. Let zki = 1 if xi belongs
to the kth cluster, and zero, otherwise. K -means finds cluster centers {mk}

q
k=1 and cluster

memberships zki by minimizing
∑q

k=1

∑n
i=1 zki (xi − mk)

t (xi − mk)/n. This is equivalent
to maximizing

∑n
i=1

∑n
j=1(< xi , x j > /n)

∑q
k=1 zki zk j/nk, where nk is the number of

data points forming the kth cluster, k = 1, . . . , q, and <∙, ∙> denotes the inner product in
Rd . Define weights w(i, j, {zki }) =

∑q
k=1 zki zk j/nk . The weight w(i, j, {zki }) is 1/nk′ if

xi and x j share the same label k′, and it is zero, otherwise. Using this new notation, the
K -means figure of merit is

1

n

n∑

i=1

n∑

j=1

w(i, j, {zki }) <xi , x j> . (1.1)

One can see that (a) K -means penalizes the assignment of the same label to dissimilar
data points (< xi , x j > < 0); (b) K -means favors the assignment of the same label to
very similar points (large < xi , x j >); and that (c) the effect of the weights is in part to
try to assign data points that are not very similar, but still similar (< xi , x j > > 0), to
small clusters (small nk). The K -means criterion (1.1) can be generalized by modifying
the weights w(i, j, {zki }), replacing < xi , x j > with a more general similarity measure
s(xi , x j ), or both. The criterion (1.1) then becomes

1

n

n∑

i=1

n∑

j=1

w(i, j, {zki }) s(xi , x j ) . (1.2)

We show in Section 2.1 that choosing a similarity measure derived from a Mercer ker-
nel, that is, s(xi , x j ) = k(xi , x j ) for some square-integrable symmetric positive function
k : R2 → [0, +∞), leads to the kernel K -means criterion (Girolami 2002). An addi-
tional modification of the weights results in the Multiway Normalized Cut (MNCut) cri-
terion (see the Appendix). The figure of merit proposed by Blatt, Wiseman, and Domany
(1996a,b, 1997) in their articles introducing what we call Potts model clustering fits into
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this framework by choosing weights δi j =
∑

zki zk j , leading to the criterion

1

n

n∑

i=1

n∑

j=1

s(xi , x j ) δi j . (1.3)

The similarity s(xi , x j ) between observations i and j receives the weight one if they are
assigned to the same cluster, and the weight zero, otherwise, independent of the cluster
sizes. Hence, unlike K -means (which by (a) above, penalizes the assignment of the same
label to dissimilar data points), the criterion given by Equation (1.3) favors the assignment
of the same label to similar points. A procedure based on this criterion is able to deal with
nonspherical shapes and may be able to assign the same label to objects that are far apart
(e.g., the extremes of a snake-shaped cluster) which is highly unlikely to occur in K -means.
Maximizing (1.3) is equivalent to minimizing

H({zki }) =
1

2

n∑

i=1

n∑

j=1

s(xi , x j ) −
1

2

n∑

i=1

n∑

j=1

s(xi , x j ) δi j =
1

2

n∑

i=1

n∑

j=1

(1 − δi j ) s(xi , x j ) .

(1.4)
The function H({zki }) is just another criterion measuring the quality of clustering, and
one could simply find the cluster memberships {zki } minimizing H . However, Blatt et al.
(1996a,b, 1997) pursued a different approach. They pointed out that H({zki }) has a physical
interpretation when s(∙, ∙) is positive and symmetric: it corresponds to the Hamiltonian
(Sokal 1996, Sect. 6) of a Potts model for describing ferromagnetism phenomena. The
Potts model is a probabilistic model of the system formed by the particles (data points), and
their interactions given by the similarity measure. The distribution of the system depends
on the temperature T . For each T there is a probability pT ({zki }) associated with each
configuration of the system’s labels

pT ({zki }) ∝ exp
{
−

1

T
H({zki })

}
= exp





−

1

2 T

n∑

i=1

n∑

j=1

(1 − δi j ) s(xi , x j )





. (1.5)

Note that the Potts model gives low probability to configurations assigning different labels
to similar observations. The maximum probability is achieved when all the observations are
assigned the same label (e.g., single cluster). In contrast, K -means achieves its minimum
when each observation is assigned its own label (e.g., n singleton clusters). This is another
difference between the two criteria (1.3) and (1.1). The key to understand these differences
lies in the similarity measure s(xi , x j ). If s(xi , x j ) is always positive, then the criterion
does not penalize assigning the same label to dissimilar observations. This is the case of
the Potts model but not of K -means (since s(xi , x j ) =<xi , x j> may be negative).

Blatt et al. (1996a,b, 1997) first simulated a large number M of configurations {zki }
according to the distribution (1.5) for a range of temperatures. This can be done efficiently
using the Swendsen–Wang Markov chain Monte Carlo (MCMC) algorithm (Swendsen
and Wang 1987; Wang and Swendsen 1990). They proposed a heuristic for choosing an
appropriate temperature. In a second step they then extracted what we call a consensus
clustering from the M configurations associated with the chosen temperature. The con-
sensus clustering assigns two observations to the same cluster if they belong to the same
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cluster in the majority of the randomly generated configurations. The consensus clusters
are the connected components of the graph over the observations with an edge between
any pair belonging to the same cluster in the majority of the configurations.

In a sense, the consensus clustering is an “average” of plausible configurations, and
we would expect it to be more stable (over different samples) than the configuration min-
imizing H . There is abundant statistical and machine learning literature that exploits the
idea of combining several partitions (Dimitriadou, Weingessel, and Hornik 2001; Dudoit
and Fridlyand 2003; Fern and Brodley 2003; Fred and Jain 2002; Topchy, Jain, and Punch
2005). A great advantage of consensus clustering is that there is no need to specify the
number of clusters in the data before starting a search. The number of clusters in a ran-
dom configuration is itself random and governed by the distribution (1.5), and forming the
consensus does not require any parameters—the clusters and their number are estimated
simultaneously. Another advantage is that this approach avoids the combinatorial search
for the configuration optimizing H . We also noticed in experiments where the true group
structure of the data was known that the consensus clustering tends to be closer to the truth
than the clustering found by optimizing the figure of merit.

Potts model clustering, also known as the superparamagnetic clustering method, has
been a subject of intensive research since its introduction by Blatt et al. (1996). The phys-
ical aspects of the method and its dependence on the definition of the neighbors, type of
interactions, number of possible states, and size of the dataset have been studied by Wise-
man, Blatt, and Domany (1998), and by Agrawal and Domany (2003). Ott et al. (2004)
introduced a sequential extension to deal with inhomogeneities in shape, density, and size
of clusters. Reichardt and Bornholdt (2004) introduced a spin glass Hamiltonian with a
global diversity constraint to identify probable community assignments in complex net-
works. Stanberry, Murua, and Cordes (2007) applied the method to study functional con-
nectivity patterns in fMRI data and examined the dependence of the method on neighbor-
hood structure, signal-to-noise ratio, and spatial dependence in the data. Potts model clus-
tering has been applied to different fields such as computer vision (Domany et al. 1999),
gene expression data (Getz et al. 2000; Domany 2003; Einav et al. 2005), high-dimensional
chemical data (Ott et al. 2004, 2005) and neuronal spike detection (Quiroga, Nadasdy, and
Ben-Shaul 2004).

The objective of this article is to improve and extend Potts model clustering based on
statistical methodology and machine learning techniques. More specifically, (1) we show
that the Hamiltonian used in Potts model clustering is related to the kernel K -means and
MNCut criteria. All three criteria are weighted averages of interpoint similarities. The
weights and the similarities differentiate the methods (see Section 2 and the Appendix).
(2) We propose a modification of the Hamiltonian, penalizing unequal cluster sizes, and
show that it can be interpreted as a weighted version of the kernel K -means criterion (see
Section 3). (3) We introduce a new version of the Wolff algorithm (Wolff 1989) to simulate
configurations from the distribution defined by the penalized Hamiltonian, leading to a pe-
nalized Potts model clustering (see Section 3.3). (4) We note a link between kernel-based
methods and nonparametric density estimation and exploit it to automatically determine
kernel bandwidths. While most kernel-based clustering methods, including Blatt, Wise-
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man, and Domany’s version of Potts model clustering, use kernels with fixed, predeter-
mined bandwidth over the entire feature space, our approach produces adaptive bandwidths
(Abramson 1982; Silverman 1986) (see Section 4). (5) We propose a simple rule to select a
good temperature T . Our rule is based on monitoring a series of cluster splitting measures
that follow the trajectories over temperature of the cluster sizes. We measure similarity
among the clustering partitions generated within and across temperatures by the adjusted
Rand index (Hubert and Arabie 1985) and its variance. Small variances are indicators of
stable partitions and hence, possible good partitions. Relevant cluster splitting is also mea-
sured through the variation in the upper tail of the distribution of the cluster sizes. The rule
proposed by Blatt et al. (1996a,b), namely, the variance of the size of the largest cluster, is
a special case of our rule. Our experiments in Section 6 show that our rule performs well.

We apply our proposed Potts model clustering methodology to gene expression data
and compare our results to those obtained by model-based clustering (Banfield and Raftery
1993; Celeux and Govaert 1995), and the hierarchical clustering with dendrogram sharp-
ening method introduced by McKinney (1995). The former has been shown to perform
moderately well for gene expression data (Yeung et al. 2001) when the clustering is done
over the genes. However, in many situations the clustering of interest is on the subjects; for
example, being able to differentiate among several subtypes of cancer in order to deliver
the optimal treatment. In this case, the data are high-dimensional, with dimensions on the
order of 104 genes. Potts model clustering is suitable for this kind of data since the cluster-
ing does not depend on the data dimension, but only on the similarities between the data
points, and their spatial arrangement. In general, Gaussian model-based clustering cannot
directly be applied to this type of data, since one would need many more patients than
genes in order to estimate the cluster parameters. Throughout our experiments we have
observed that Potts model clustering suggested an appropriate number of clusters for the
data.

The remainder of the article is organized as follows. In Section 2 we describe kernel
K -means and its connection to Potts model clustering. In Section 3 we study the distribu-
tion of labels for different variants of the Potts model and introduce the penalized Wolff
algorithm. Section 4 deals with the connection between kernel-based methods and kernel
density estimation and introduces methods for adaptive bandwidth selection. In Section 5
we address the problem of temperature selection for Potts model clustering. In Section 6
we present the results of a simulation performed with the goal of shedding some light on
the performance of Potts model clustering and our suggested procedure to select an ap-
propriate temperature. In this section we also apply Potts model clustering to microarray
data and illustrate our method for adaptive kernel bandwidth selection. Section 7 contains
a discussion and some ideas for future work.
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2. CONNECTIONS BETWEEN KERNEL K -MEANS AND POTTS
MODEL CLUSTERING

2.1 KERNEL K-MEANS

Instead of working directly with the original feature data vectors xi ’s, one could work
with a suitable transformation of them, say 8 : Rd → H where, in general, H is a higher
dimensional (and possible infinite-dimensional) Hilbert space. K -means in this new feature
space H corresponds to finding zki ’s and μk’s that minimize

1

n

q∑

k=1

n∑

i=1

zki D(8(xi ), μk), (2.1)

where D(∙, ∙) denotes the distance in H. The mean estimates are given by
μ̂k = n−1

k

∑n
i=1 ẑki8(xi ), k = 1, . . . , q. Let < ∙, ∙ > denote the inner product in H.

Note that

D(8(xi ), μ̂k) = < 8(xi ) − μ̂k, 8(xi ) − μ̂k >

= < 8(xi ),8(xi ) > − < 8(xi ), μ̂k >

− < μ̂k,8(xi ) > + < μ̂k, μ̂k > .

Assume that there exists a kernel function in Rd × Rd for which the inner product in H
can be expressed as < 8(xi ),8(x j ) >= k(xi , x j ). In this case K -means does not need to
know explicitly the transformation 8(∙). It only needs to know the kernel k(∙, ∙). This is the
well-known kernel K -means method (Girolami 2002; Zhang and Rudnicky 2002; Dhillon,
Guan, and Kulis 2004).

Girolami (2002) showed that Equation (2.1) can be written as

1

n

q∑

k=1

n∑

i=1

zki kii −
q∑

k=1

γk Rk, (2.2)

where ki j = k(xi , x j ), γk = nk/n is the proportion of data points falling in cluster
k, and Rk = n−2

k

∑n
i=1

∑n
j=1 zki zk j ki j , i, j = 1, . . . , n, k = 1, . . . , q. Since the first

term in (2.2) does not depend on the label assignments (note that
∑q

k=1

∑n
i=1 zki kii =

∑n
i=1(

∑q
k=1 zki )kii =

∑n
i=1 kii ), minimizing (2.1) is equivalent to maximizing

q∑

k=1

γk Rk =
1

n

n∑

i=1

q∑

k=1

zki
1

nk

n∑

j=1

zk j ki j =
1

n

n∑

i=1

n∑

j=1

ki j

q∑

k=1

zki zk j
1

nk
, (2.3)

which is exactly the criterion given by (1.2) with the weights of the K -means method. If
we assume that k(xi , x j ) = k(xi − x j ) for all i, j (e.g., Gaussian kernel), then p̂(xi |k) =
1

nk

∑n
j=1 zk j ki j can be seen as a nonparametric estimate of the conditional density score

associated with observing xi given cluster k, p(xi |k) (Silverman 1986). From now on we
will assume that the kernel k(∙, ∙) is of this form. Therefore (2.3) can be interpreted as an
average of these conditional density scores, and the goal of kernel K -means in this case
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is to maximize this average. Girolami (2002) gave a different interpretation to (2.3). In
his view, each Rk provides a measure of compactness of the corresponding kth cluster,
k = 1, . . . , q. This is derived from the convolution (reproductive-kernel) property of the
Gaussian kernel:

∫

cluster k
p(x |k)2 dx ≈

∫
p(x |k)2 dx

≈
∫

(
1

nk

n∑

i=1

zki k(x − xi ))
2 dx =

1

n2
k

n∑

i=1

n∑

j=1

zki zk j ki j = Rk .

2.2 WEIGHTED KERNEL K-MEANS

On the other hand, γk p̂(xi |k) can be seen as an estimate of the density score associated
with observing xi in cluster k. Hence,

q∑

k=1

γ 2
k Rk =

1

n

n∑

i=1

q∑

k=1

zkiγk
1

nk

n∑

j=1

zk j ki j =
1

n

n∑

i=1

q∑

k=1

zkiγk p̂(xi |k) (2.4)

can be interpreted as an average of the density scores associated with observing the data
points in the corresponding clusters. This slight modification of K -means leads to a weighted
K -means approach that penalizes the distribution of the cluster sizes. Consider weights
given by the γk’s, and the minimization of

1

n

q∑

k=1

γk

n∑

i=1

zki D(8(xi ), μk). (2.5)

A straightforward computation leads to the maximization of

q∑

k=1

γ 2
k Rk −

q∑

k=1

γ 2
k . (2.6)

The role of the last term is to penalize the nonuniform distribution of the cluster sizes,
that is, to avoid clusters that are too large or too small. In the next section we show that the
criterion given by Equation (2.4) is connected to Potts model clustering. Moreover, we also
show that (2.6) is connected to a modified (penalized) version of Potts model clustering.

2.3 POTTS MODEL CLUSTERING

Without loss of generality, assume that the observations are the vertices of a graph. So
far we have worked with a complete graph (i.e., all graph nodes are connected). In many
practical situations (e.g., images) it may be convenient to work with a reduced graph. For
example one can build a K -nearest-neighbor graph such that for each point xi there is an
edge between xi and its K nearest neighbors. If the K -nearest-neighbor graph contains
more than one connected set, then the graph can be augmented by adding edges of the
minimum-spanning graph, so that there is a path from any point to any other point in the
resulting graph.
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Let αi j = 1 if i 6= j and the points xi and x j are neighbors in the graph (i.e., there
is an edge connecting these points), and zero, otherwise. A sensible clustering criterion is
to penalize different labels between neighboring points. This leads to the minimization of
(compare with (1.4))

H({zki }) =
1

2

n∑

i=1

q∑

k=1

n∑

j=1

zki (1 − zk j )ki jαi j =
∑

αi j =1

ki j (1 − δi j ). (2.7)

Equation (2.7) is the Potts model criterion on a graph. It represents the Hamiltonian (Sokal
1996, Sect. 6) of the system, which has log-density equal to minus this quantity. If the graph
is a K -nearest-neighbor graph, the Hamiltonian only involves O(n) terms, whereas for the
complete graph in (1.4) it involves O(n2) terms. Thus, it is computationally advantageous
to work with Potts models on graphs. Although, in general, the graph depends on the inter-
point distances themselves, in many interesting situations, such as in images, the graph
neighborhood relationship is an intrinsic property of the data. Moreover, as seen in (2.8)
below, working on a graph corresponds to multiplying the weights w(i, j, {zki }) by αi j .
This holds for every method based on (1.2) not just for the Potts model clustering.

A trivial calculation shows that H({zki }) = constant − 1
2

∑n
j=1

∑n
i=1 αi j ki jδi j . The

constant in the right-hand side is independent of the labels. Therefore, maximizing the
likelihood of the Potts model (i.e., minimizing (2.7)), excluding the trivial all-in-one cluster
solution, is equivalent to maximizing

1

2

n∑

j=1

n∑

i=1

αi j ki jδi j =
1

2

n∑

j=1

q∑

k=1

n∑

i=1

zki zk j ki jαi j . (2.8)

Note that p̂potts(xi |k) = n−1
k

∑n
j=1 zk j ki jαi j is an estimate of p(xi |k). We can rewrite (2.8)

as
n

2

n∑

i=1

q∑

k=1

zki γk p̂potts (xi |k). (2.9)

Hence, Equation (2.8) is equivalent to Equation (2.4) and it can be interpreted in the same
manner.

2.4 THE CONNECTION WITH WEIGHTED K-MEANS

Adding the term (n2/2)
∑q

k=1 γ 2
k to the expression in (2.8) leads to an expression sim-

ilar to (2.6), derived from the weighted K -means criterion. We refer to this latter model as
the penalized Potts model. As in weighted K -means, the distribution of the cluster sizes are
shrunk towards the uniform distribution. It is easy to see (see Section 3.3) that both criteria
are exactly the same for the complete graph (i.e., αi j = 1 for all i, j = 1, . . . , n). When
the graph is a reduced graph (e.g., K -nearest-neighbor graph) the criteria differ. From a
computational point of view, it is advantageous to use small neighborhoods with penalized
Potts model clustering. In Sections 3.3 and 3.4, we develop an extended Potts model and a
“penalized” Wolff algorithm with the aim of optimizing this criterion.
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3. SIMULATING THE LABELING DISTRIBUTION

A great advantage of the Potts model clustering method over other kernel-based clus-
tering methods is that it can estimate the clusters and their number simultaneously. Cluster
membership is based on the proportion of times that any two observations are assigned
to the same cluster. These proportions are estimated using MCMC techniques such as the
Swendsen–Wang algorithm (Swendsen and Wang 1987), or the Wolff algorithm (Wolff
1989). For completeness, we briefly outline the procedures here.

3.1 THE SWENDSEN–WANG AND WOLFF ALGORITHMS

Perhaps the simplest way to generate samples from the Potts model is through a Gibbs
sampler (Grenander 1983; Geman and Geman 1984), also known in physics as the heat bath
algorithm (Creutz 1979), on the labels {zki }. This reduces to finding the full conditionals
of each vector (z1i , z2i , . . . , zqi ) given the current values of the remaining labels for j 6= i,
for i = 1, . . . , n. Although the conditionals are easy to obtain and work with, the sampling
is rather inefficient. For example, to assign two points, say xi and x j , to the same label may
take a full sweep of the data, let alone assigning several points to the same updated label.
Fortunately, there exists a very efficient way to generate samples from the Potts model by
model augmentation.

Let pi j = 1 − exp{−ki j }. The Potts model density is given by

p({zik}) = Z−1 exp





−
∑

αi j =1

ki j (1 − δi j )





= Z−1

∏

αi j =1

(1 − pi j ) + pi jδi j ,

where Z =
∑

{zki } exp{−H({zki })} is the normalizing constant. Following Sokal’s deriva-
tion (Sokal 1996), since the sum of any two real numbers x, y, can be written as x + y =
∑1

b=0 x(1 − b) + yb, it follows that Z =
∑

{zki }
∑

{bi j }
∏

αi j =1{(1 − pi j )(1 − bi j ) +
pi j bi jδi j }, where the {bi j } are binary 0 − 1 variables. They are said to be the bonds be-
tween the vertices of the graph. The joint density of labels and bonds is

p({zki }, {bi j }) = Z−1
∏

αi j =1

{(1 − pi j )(1 − bi j ) + pi j bi jδi j }, (3.1)

which is known as the Fortuin–Kasteleyn–Swendsen–Wang model (Sokal 1996, p. 46). The
marginal density over the labels is exactly the Potts model. The marginal over the bonds is
known as the random-cluster model. The interpretation of the bond variables in model (3.1)
is the following. The bond bi j is said to be frozen if bi j = 1, and the points xi and x j are
neighbors (αi j = 1) and have the same label (δi j = 1). Otherwise, the bond is not frozen:
bi j = 0. The bond bi j becomes frozen with probability pi j = 1 − exp{−ki j }. A set for
which any two points can be connected by a path of frozen bonds is said to be a connected
set. Only subsets containing points with the same label can form a connected set. The
Swendsen–Wang algorithm uses (3.1) to generate samples from the Potts model. This is a
Gibbs sampler with two steps:
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Step 1. Given the labels {zki }, each bond becomes frozen independently of the others
with probability pi j if αi j = 1 and δi j = 1; otherwise, the bond is set to 0.

Step 2. Given the bonds {bi j }, each connected subset is assigned the same label. The
assignment is done independently and chosen uniformly at random from the set of
labels.

The connected sets formed by frozen bonds allow for cluster splitting (Step 1). Merging is
produced by the label assignment (Step 2). In the Swendsen–Wang algorithm both merg-
ing and splitting are done in parallel, since a multitude of sites in the graph are updated
simultaneously in each iteration of the algorithm.

The Wolff algorithm (Wolff 1989) is a variant of the second step above. Instead of up-
dating all connected sets, a point in the graph is chosen uniformly at random; the associated
connected set is then updated as in the Swendsen–Wang algorithm. The advantage of this
variant is that large clusters are updated often.

3.2 THE CONSENSUS CLUSTERS

Several (simulated) samples drawn from the Potts model are collected. The clustering
is estimated by counting how many times any two given points are given the same label.
The consensus clusters are based on MCMC estimates Q̂i j of the probabilities (under the
Potts model) Qi j = p(zki = zk j for some k ∈ {1, . . . , q}) = p(δi j = 1). If Q̂i j is larger
than a certain threshold (usually 0.5), then points xi , x j are assigned to the same cluster.

3.3 PENALIZED POTTS MODEL CLUSTERING

Penalized Potts model clustering aims at maximizing (see the right-hand side of (2.8))

1

2

n∑

j=1

n∑

i=1

αi j ki jδi j −
n2

2

q∑

k=1

γ 2
k , (3.2)

which is the same as maximizing (1/2)
∑n

j=1
∑n

i=1 αi j ki jδi j −(n2/2)
∑q

k=1(γk −(1/q))2.
Hence, the penalty term tends to balance the cluster sizes. Noting that

∑n
i=1 zki = nk , we

obtain

n2
q∑

k=1

γ 2
k =

q∑

k=1

n2
k =

q∑

k=1

n∑

j=1

n∑

i=1

zki zk j =
n∑

j=1

n∑

i=1

αi j δi j +
n∑

j=1

n∑

i=1

(1 − αi j ) δi j . (3.3)

Rewriting ki j as ki j + 1, and using (3.3), the penalized criterion (3.2) can be written as

1

2

n∑

j=1

n∑

i=1

αi j ki jδi j −
1

2

n∑

j=1

n∑

i=1

(1 − αi j ) δi j . (3.4)

Therefore, penalized Potts model clustering imposes a penalty whenever nonneighboring
points are assigned the same label.
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3.4 SIMULATING THE LABELING DISTRIBUTION: THE PENALIZED WOLFF AL-
GORITHM

We have developed a variant of the Wolff algorithm to estimate the cluster structure
under the criterion (3.2). The last term in (3.4) can be seen as a penalty on the graph
formed by connecting all nonneighboring points. Hence, in a similar fashion as the bonds
were introduced into the original graph in the Swendsen–Wang algorithm, we augment the
model by introducing bonds between nonneighboring points.

Let {di j } be the set of nonneighbor bonds. di j is set to 1 (i.e., becomes frozen) with
probability qi j = 1 − e−1 only if xi and x j are not neighbors, and δi j = 0. We say that
there is a connected path between points xi and x j if there exists a path of consecutive
frozen-bond edges that starts at xi and finishes at x j . The connected path of point xi is the
set of points connected to xi by a connected path.

The penalized Wolff’s algorithm works as follows:

1. Given the labels {zki } and the nonneighbor bonds {di j }, set each bond bi j to 1 in-
dependently of other bonds with probability pi j = 1 − e−ki j if the following four
conditions hold: (i) αi j = 1, (ii) δi j = 1, (iii) there is no nonneighbor frozen-bond
between the point x j and another point in the connected path of xi , and (iv) there is
no nonneighbor frozen-bond between the point xi and another point in the connected
path of x j . Otherwise, set the bond to 0.

2. Given the labels {zki } and the bonds {bi j }, set each nonneighbor bond di j to 1 inde-
pendently of other nonneighbor bonds with probability qi j = 1−e−1 if the following
three conditions hold: (i) αi j = 0, (ii) δi j = 0, and (iii) there is no connected path
between points xi and x j . Otherwise, set the nonneighbor bond to 0.

3. Given the bonds {bi j }, {di j }, choose a point x uniformly at random. Find the associ-
ated connected subset A = A(x) and the associated set B(A) of nonneighbor points
that have a nonneighbor frozen bond with at least one of the points in the connected
subset A. Form the set C(B) of all labels associated with points in B(A) and its
complement C(B). This latter set is the set of admissible labels. Choose a label uni-
formly at random from the set of admissible labels. Assign this label to all points in
A.

The final cluster structure is estimated as explained in Section 3.2.

4. THE CONNECTION WITH DENSITY ESTIMATION

Equation (2.9) connects Potts model clustering with density estimation. The inter-
action term ki j can be thought of as the contribution of the point x j when evaluating
the kernel density at the point xi . This interpretation of Potts model clustering leads to
some improvements of the model as shown later. By analogy with kernel density esti-
mation, one could use an adaptive bandwidth in the interaction terms. Using the quick
estimate of the density at xi , p̂knn(xi ), obtained at the time the K -nearest-neighbor graph
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of the data was constructed (see the beginning of Section 2.3), we derive a localized band-
width (Breiman, Meisel, and Purcell 1977; Abramson 1982; Silverman 1986, Sect. 5.3)
λknn(xi ) ∝ exp{−0.5 (log[ p̂knn(xi )]−(1/n)

∑n
j=1 log[ p̂knn(x j )])}. Since the Potts model

uses a symmetric kernel, we symmetrize the adaptive bandwidth kernel by replacing ki j

with k(s)
i j = 0.5 {k(λ−1

knn(xi )(xi − x j )) + k(λ−1
knn(x j )(x j − xi ))}. In our experiments, this

choice of bandwidth often improved the estimation of the clustering structure in the data.
We refer to the algorithm run with these bandwidths as the adaptive Potts model clustering
algorithm.

4.1 BANDWIDTH ESTIMATION

The adaptive bandwidth given above can be used as a starting value to simultaneously
estimate the local bandwidths and the clustering. The Swendsen–Wang and Wolf penalized
algorithms are extended by a Metropolis–Hastings step (Metropolis 1953; Hastings 1970):

1. For given bandwidths {λi }, update the labels as in the Swendsen–Wang, Wolff, or
penalized-Wolff algorithm.

2. For given labels, update the bandwidths independently of each other through a
Metropolis–Hastings procedure.

In what follows we describe a Metropolis–Hastings sampler for the bandwidth with an
inverse chi-squared prior. Recall that for a given target density π(λ) and proposal density
q(λ∗|λ), the Metropolis–Hastings algorithm proceeds as follows: given the current state
λ, an update to state λ∗ is proposed with density q(λ∗|λ); the update is accepted with
probability

A(λ∗
i , λi ) = min{1, [q(λi |λ

∗
i )π(λ∗

i )]/[q(λ∗
i |λi )π(λi )]}.

In our particular case the joint density of labels and bandwidths is proportional to

π(λi ) =
∏

i

λ
−(ν+2)/2
i exp

{

−
1

2

νs2
i

λi

}

× exp





−

1

2

∑

αi j =1

k(s)
i j (λi , λ j )(1 − δi j )





,

where s2
i are the prior scales, and ν is the prior degrees of freedom. We have used the

notation k(s)
i j (λi , λ j ) to make explicit the dependency of the symmetrized kernel on both

bandwidths λi and λ j . At each location xi , consider an inverse chi-squared proposal den-
sity q(λ∗

i |λi ) with scale s2
i + (1/ν)

∑
j, αi j =1 λi k

(s)
i j (λi , λ j )(1− δi j ), and ν degrees of free-

dom. Then the acceptance ratio for the proposal is R(λ∗
i , λi ) = exp{−(1/2)

∑
j, αi j =1(1 −

δi j )[k
(s)
i j (λ∗

i , λ j ) − k(s)
i j (λi , λ j )]}. The update λ∗

i is accepted with probability A(λ∗
i , λi ) =

min{1, R(λ∗
i , λi )}.

4.2 SMOOTHING PRIORS

If bandwidths associated with nearby points are expected to be similar, then a penalty
prior on the smoothness of the bandwidths can be used. We experimented with two priors
on the log-bandwidths: a Gaussian and a Laplace-type prior. As expected, the Gaussian



ON POTTS MODEL CLUSTERING 641

prior yields smoother bandwidths, whereas the Laplace prior yields piecewise-constant
looking bandwidths (see Section 6.3).

Let τi = log λi , i = 1, . . . , n. The Gaussian prior for the bandwidths has the form

pn({τi }|{zki }) ∝ exp





−1

2σ 2

n∑

i=1

∑

αi j =1

(τi − τ j )
2δi j






× exp

{
−1

2 σ 2
0

n∑

i=1

(τi − log λknn(xi ))
2

}

.

Hence, only bandwidths of neighboring points with the same label are expected to be
similar. The variance σ 2 acts as a penalty cost. As before, bandwidth updates are gen-
erated using a Metropolis–Hastings sampler. Our proposal τ ∗

i is generated from the Gaus-
sian density with mean μi and variance σ 2

i given by μi = σ 2
i (2σ−2∑

αi j =1 τ jδi j +

σ−2
0 log λknn(xi )), σ 2

i = (2miσ
−2 + σ−2

0 )−1, where mi is the number of neighbors of
xi with the same label as xi . The acceptance ratio R2(τ

∗
i , τi ) is given by R2(τ

∗
i , τi ) =

exp{−(1/2)
∑

j, αi j =1[k(s)
i j (λ∗

i , λ j ) − k(s)
i j (λi , λ j )](1 − δi j )}.

Similarly, our Laplace-type prior has the form

p`({τi }|{zki }) ∝ exp





−1

2

n∑

i=1

∑

αi j =1

|τi − τ j |δi j





,

where 1 is the penalty cost parameter. In this case, our proposal τ ∗
i is generated from the

Laplace density with location equal to the median of the bandwidths τi and τ j ’s associated
with neighboring points with the same label as xi . Let μ̃i denote this median, and μ̃∗

i
denote the median of the bandwidths τ ∗

i and τ j ’s associated with neighboring points with
the same label as xi . The acceptance ratio R1(τ

∗
i , τi ) is given by

R1(τ
∗
i , τi ) = exp{−1[|τi − μ̃∗

i | − |τ ∗
i − μ̃i |]}

× exp





−1[

∑

j, αi j =1

(|τ ∗
i − τ j | − |τi − τ j |)δi j






× exp





−

1

2

∑

j, αi j =1

[k(s)
i j (λ∗

i , λ j ) − k(s)
i j (λi , λ j )](1 − δi j )





.

4.3 DENSITY ESTIMATION

Let λi be the median bandwidth at xi estimated from one of the procedures outlined
above. Let p(x |k) = n−1

k

∑n
i=1 zki k([x − xi ]/λi ). The density estimator at x is f̂ (x) =

∑q
k=1 γk p(x |k) = 1

n

∑n
i=1 k([x − xi ]/λi ). Section 6.3 gives an idea of how this estimate

works.
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5. TEMPERATURE SELECTION

An important parameter in the Potts model is the temperature, T . It modifies the
weights (w(i, j, {zki }) = 1/T (see (1.2)), and the Hamiltonian (H({zki })/T ). At any
given temperature, the clustering is estimated by counting how many times any two given
points are assigned the same label. As seen in Section 3.2, the label assignments are based
on the probabilities {Qi j = Qi j (T )}. It turns out that these probabilities are directly
related to the number of times any two given points occur in the same connected sub-
set, and consequently, to probabilities under the random clusters model resulting from
integrating out the labels in the joint density of labels and bonds (3.1) (Edwards and
Sokal 1988). The log-density of the random clusters model for given T is proportional to
∑

αi j =1,bi j =1 log(1 − e−ki j /T ) −
∑

αi j =1,bi j =0 ki j/T + C({bi j }) × log(q), where C({bi j })
denotes the number of connected components given the current values of the bonds. This
function favors more clusters when T is large, and fewer clusters when T is small. Hence,
T acts as a clustering smoothing parameter. By varying the temperature from low to high
values, Potts model clustering can be seen as a hierarchical splitting procedure. Thus, the
key problem is to find the “right” temperature associated with the “true” clustering. This
is a hard problem and more research is needed to solve it. The current strategy is to try
several values of T while monitoring some T -dependent statistics of the “goodness-of-
clustering.” Based on the physical model underlying the Potts model, Blatt et al. (1996a,b)
suggested monitoring the variance of the magnetization of the system. In statistical terms,
this corresponds to the variance of the size of the largest cluster. Our experiments suggest
that this is not always a good measure of splitting, since smaller clusters might split before
the larger ones. Hence, an extension of the variance of the magnetization is to monitor the
variance of the size of (possible many of) the largest clusters. The number of clusters to
monitor depends on the number of clusters one expect to observe. Peaks on these variances
indicate important splits. It is assumed that the true clustering of the data corresponds to
a temperature nearby one of these peaks. Hence, locating the peaks is crucial. In order to
get rough estimates of their location, one could quickly travel over a vast range of temper-
atures. Once the peaks are located, longer simulations could be run around them to study
the cluster structures that they yield.

5.1 CHOOSING A GOOD TEMPERATURE

Monitoring cluster splitting is a way of measuring variation in clustering or partitions
of the data. Hence, we have conceived a rule based on two approaches to measure this
variation: (a) the distribution of the size of the largest clusters (an extension of the variance
of the magnetization measure); and (b) the adjusted Rand index (Rand 1971; Milligan and
Cooper 1986; Hubert and Arabie 1985).

5.1.1 (a) The Distribution of the Size of the Largest Clusters

For any given T , let S`(T ) be the cluster size associated to the `th largest cluster found
in a partition drawn from the Potts model, ` = 1, . . . , G, S1(T ) ≥ S2(T ) ≥ ∙ ∙ ∙ ≥ SG(T ).
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G is a parameter of the procedure that depends on our prior belief on the true number of
clusters. In our experiments we set G = 6. We monitor the variance curves as a function
of temperature: Mvar(L , G, T ) =

∑G
`=L var(S`(T ))/(G − L + 1), L = 1, . . . , G − 1,

and choose a clustering associated with a temperature immediately following one of the
local maxima of these curves. Usually all the curves peak around the same temperatures,
so the choice of L is not very relevant. However, we do recommend using L > 1, since the
largest cluster is usually very large in comparison with the others, and its variance masks
the changes in the other clusters.

5.1.2 The Adjusted Rand Index

There are many known measures for comparison of partitions, such as the Folkes-
Wallace and the adjusted Rand indexes (Milligan and Cooper 1986; Hubert and Arabie
1985), that are popular in the clustering literature (Yeung et al. 2001; Tantrum et al. 2004).
The Rand index (Rand 1971) is the fraction of pairs of points that are either in the same
clusters in both partitions or in different clusters in both partitions. The adjusted Rand
index (ARI) adjusts the Rand index so that its expected value is zero when the partitions are
random. The larger the ARI, the more similar the two partitions are. Suppose that at each
temperature T , M partitions {Pm}M

m=1 are generated from the Potts model. A representative
partition is given by the consensus clustering P(T ) among the M partitions. Let rm be the
ARI between Pm and P(T ). The average of these indexes, r̄(T ), measures the similarity
among the M partitions, whereas var(r(T )) =

∑M
m=1(rm − r̄(T ))2/(M −1) measures their

instability. In principle, a good temperature T0 is a temperature for which r̄(T0) is high and
var(r(T0)) is low. We also expect that the consensus partitions associated with temperatures
in a neighborhood of T0 be similar to the consensus partition found at T0. In other words,
the system induced by the Potts model should be more or less stable at temperatures close
to T0. An important implication is that the choice of T0 should not be too critical as long
as it is chosen in the neighborhood of the optimal temperature. The similarity between two
consensus partitions P(T −1T ) and P(T ) generated at consecutive temperatures T −1T ,
and T is measured by their ARI, R(T ).

5.1.3 The Rule to Select T0

We select the first candidate temperature T ∗ located at the end of the last significant
maximum of Mvar(L , G, T ) that precedes a sharp drop in the cluster-size variation. Then
we check for temperatures near T ∗ that have high r̄(T ), low var(r(T )), and are found in a
more or less stable region of R(T ) (i.e., a plateau of R(T )). The final choice T0 is a com-
promise between all these conditions. Figure 1 illustrates the procedure. Our experiments
in the next section show that this procedure performs well.
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Figure 1. Plots of the adjusted Rand index (ARI) across temperatures, R(T ) (upper left corner), mean ARI
within temperatures, r̄(T ) (upper right corner), standard deviation of the ARI within temperatures,

√
var (r(T))

(lower right corner), and mean standard deviations,
√

Mvar (L, G = 6, T) , L = 2, . . . , 6 (lower left corner). The
vertical line corresponds to the chosen temperature T0 = 0.10. The statistics were computed for the artificially
generated dataset D2 based on 3,000 partitions kept after a burn-in period of 300.

6. EXPERIMENTAL RESULTS

6.1 PERFORMANCE ON SIMULATED DATA

In this section we report the results of a simulation carried out to study the performance
of Potts model clustering on three different artificially generated datasets and for different
values of the Swendsen–Wang simulation parameters. The datasets were: D1 consisting of
200 points in two clusters, D2 consisting of 200 points in four clusters, and D3 consisting
of 340 points in eight clusters. The data are plotted in Figure 2. The clusters are either
Gaussian clumps or uniformly scattered around arcs.

6.1.1 The Adjusted Rand Index

The goal here is to find the right combination of the burn-in and partitions kept (af-
ter the burn-in period) parameters of the Swendsen–Wang algorithm within Potts model
clustering. The burn-in parameter corresponds to the number of initial partitions gener-
ated by the algorithm that are discarded from further analysis. The partitions generated
after the burn-in are the partitions kept to compute the consensus clustering and all rel-
evant statistics. In our simulation, the burn-in and partitions-kept parameters were set to
values in {100, 300, 600, 1000, 3000}. We ran Potts model clustering on each dataset Di

(i = 1, 2, 3) with all 25 combinations of the two parameters. For each combination we
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Figure 2. The three artificially generated datasets: (left) D1 consisting of one clump and one arc; (middle) D2
consisting of two clumps and two arcs; and (right) D3 consisting of five clumps and three arcs.

measured the number of clusters associated with the partition chosen according to the pro-
cedure explained in Section 5.1, and the ARI between the true partition and the chosen
partition.

We always run Potts model clustering starting at a very cold temperature T1 (for which
no splitting is observed). After a fixed number of iterations, say M , the temperature is
switched to a warmer one T2 > T1. At T2 the initial partition is the last partition drawn at
T1. Then again after M iterations the temperature is increased to T3 with initial partition
given by the last partition drawn at T2. This procedure is repeated until reaching the last
hottest temperature Tn . Hence, for an intermediate temperature Tk , (k −1)M draws already
have been generated before the first partition at Tk is drawn. Since the grid of temperatures
at which the algorithm is run is not too coarse, the initial partition at each temperature Tk

is very likely to be a good starting partition for the Swendsen–Wang algorithm. This ob-
servation may explain the results of the simulation summarized in Figure 3. It appears that
the performance of Potts model clustering is not sensitive to the burn-in parameter. The
performance with only 100 partitions-kept is very different and much poorer than the per-
formance with at least 300 partitions-kept. The analysis of variance on the resulting ARIs
confirmed these observations. An HSD (honestly significant difference) Tukey method for
all pairwise comparisons (Tukey 1949) at a significance α = 0.01 revealed no significant
difference between the performances with 300, 600, 1000 or 3000 partitions-kept. How-
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Figure 3. The performance of Potts model clustering for the three artificial datasets {Di }
3
i=1. The figure shows

boxplots of (a) the adjusted Rand index (ARI) associated with each combination of dataset and partitions-kept
parameter; (b) the ARI associated with each value of the burn-in parameter; (c) the difference between the esti-
mated and the true number of clusters associated with each combination of dataset and partitions-kept parameter;
(d) the difference between the estimated and the true number of clusters associated with each combination of data
set and burn-in parameter.

ever the analysis of variance on the resulting difference between the square-roots of the
estimated number of clusters and the true number of clusters showed a significant interac-
tion between the data sets and the number of partitions kept. As observed in Figure 3, the
performance with at most 300 partitions-kept is worse than the performance with at least
600 partitions-kept forD3, but not for the other datasets. This indicates that the appropriate
number of partitions-kept is dependent on and increasing with the complexity of the data.

6.1.2 The Number Of Clusters

Potts model clustering yielded the correct number of clusters 55% of the time. Eighty-
eight percent of the time the estimated number of clusters was off by at most one cluster;
92% of the time it was within three clusters. Increasing the number of partitions kept in-
creased the proportion of correct estimates of the number of clusters. The proportion of
times the estimates were correct when 300 partitions were kept was 0.33; this propor-
tion increased to 0.53, 0.60, and 0.73 when the number of partition kept was increased to
600, 1000, and 3000, respectively.

In conclusion, a small burn-in and a moderate data-dependent number of partitions
kept (e.g., about 1000) were enough to obtain a good performance. Although there was no
evidence that keeping several thousands partitions would improve the ARI in a significant
way, keeping a large number of partitions would probably improve the estimation of the
number of clusters.

6.2 APPLICATIONS TO GENE EXPRESSION DATA

We applied Potts model clustering to two different gene expression data sets: the sub-
types of acute lymphoblastic leukemia data (Yeoh et al. 2002), and the yeast cell cy-
cle data (Cho et al. 1998). The points were normalized to norm one. We constructed
a 10-nearest-neighbor graph for each dataset and used a Gaussian kernel, k(xi , x j ) ∝
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Table 1. Partition matrix for the subtypes of acute lymphoblastic ALL data.

True Estimated clusters
Clusters 1 2 3 4 5 6

BCR-ABL 0 0 0 9 0 0
E2A-PBX1 18 0 0 0 0 0
Hyperploid> 50 0 14 0 28 0 0
MLL rearrangement 3 0 9 2 0 0
OTHERS 5 0 2 39 0 6
T-ALL 0 0 1 0 27 0
TEL-AML1 0 0 0 0 0 52

exp{−||xi − x j ||2/(2σ 2)} whose bandwidth σ was estimated adaptively as explained in
Section 4. The final clusters were forced to have at least five points (smaller clusters were
merged with their closest clusters). For comparison purposes we ran both the nonadaptive
(fixed bandwidth) and penalized versions of Potts model clustering, and the (nonparamet-
ric) dendrogram sharpening method (McKinney 1995; Stanberry, Nandy, and Cordes 2003)
on both datasets. We also applied model-based clustering (Banfield and Raftery 1993) to
the yeast cycle data. The same values of the burn-in and partitions-kept parameters were
used for all three versions of Potts model clustering. As Potts model clustering, the den-
drogram sharpening and model-based Gaussian clustering methods do not require prior
assumption about the number or location of clusters. The reader is referred to the articles
cited above for detailed descriptions of these methods.

The ALL data consist of oligonucleotide microarray gene expression levels of 12,558
genes for each of 360 ALL patients. Yeoh et al. (2002) divided the patients into seven diag-
nostic groups corresponding to six known leukemia subtypes (T-ALL, E2A-PBX1, BCR-
ABL, TEL-AML1, MLL rearrangement, and Hyperploid> 50 chromosomes), and one un-
known type, labeled OTHER. The data were taken from the Kent Ridge Bio-Medical Data
Set Repository, where they have been split into training and test sets. For our experiments
we selected the training set comprising 215 patients.

In view of the simulation results described in Section 6.1, 1000 partitions were kept af-
ter a burn-in period of 300. Figure 4 shows the results of the adaptive Potts model clustering
algorithm. The vertical line corresponds to the temperature T0 = 0.67 chosen according to
the procedure described in Section 5.1. A comparison of the corresponding clustering struc-
ture with that obtained in (Yeoh et al. 2002) is shown in Table 1. The rows of this matrix
represent the seven subtypes of ALL leukemia assigned by Yeoh et al. (2002). The columns
represent the six estimated clusters from the adaptive-bandwidth Potts model clustering al-
gorithm. Each cell (i, j) counts the number of points shared in the corresponding i th true
and j th estimated clusters. The associated ARI between these two partitions is 0.56. The
adaptive Potts model clustering produced clusters very similar to the seven subtypes of
ALL leukemia reported by Yeoh et al. (2002); except that Hyperploid>50, OTHERS, and
BCR-ABL appear to be difficult to separate. The partition clearly separates the E2A-PBX1
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resulting from the application of the adaptive-bandwidth Potts model clustering on the ALL data. The vertical
line corresponds to T0 = 0.67.

and MLL rearrangement subtypes from the others, which is important, since these types of
leukemia do not respond well to conventional treatments.

We applied both the nonadaptive and penalized Potts model clustering to these data
with constant bandwidth equal to the mean of the distances. Both methods yielded similar
ARI of 0.43 and 0.44 with seven and six clusters, respectively. The adaptive penalized Potts
model clustering yielded six clusters with an associated ARI of 0.53. The main difference
from the partition produced by the adaptive nonpenalized version is that OTHERS was split
among five clusters. The dendrogram sharpening method yielded a three-cluster partition
with an ARI of 0.23.

The yeast cell cycle data record the fluctuations of the expression levels of about 6,000
genes over two cell cycles comprising 17 time points. We use the five-phase subset of the
data (Cho et al. 1998). It consists of 420 genes of which 386 have been assigned to one of
five phases of the cells cycle. The clustering results should reveal five groups of genes asso-
ciated with the five phases. We ran the adaptive Potts model clustering algorithm with 500
iterations of the Swendsen–Wang algorithm: 250 partitions were kept after a burn-in period
of 250. Despite the small number of partitions kept in the analysis, Potts model clustering
was able to find a good nine-cluster partition of the data. Table 2 shows the corresponding
partition matrix. The associated ARI was slightly over 0.46. A run of the algorithm at the
same temperature, forcing the cluster size to be least 20, yielded a six-cluster partition with
an associated ARI of 0.45. Hence, it is important to have a good prior estimate of the size
of the smallest cluster. The nonadaptive Potts model clustering algorithm yielded 16 clus-
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Table 2. Partition matrix for the yeast cell cycle data.

True Estimated clusters
Clusters 1 2 3 4 5 6 7 8 9

1 51 5 6 0 0 2 0 0 3
2 16 0 117 1 0 1 0 0 0
3 5 0 34 13 10 3 5 4 2
4 2 2 0 3 5 2 17 10 12
5 4 5 0 0 0 1 1 0 44

ters with an associated ARI of 0.43. Penalized Potts model clustering yielded nine clusters
with an associated ARI of 0.45. Both the adaptive and penalized algorithms yielded sim-
ilar clustering structures for the data. Yeung et al. (2001) analyzed the labeled subset of
these data using model-based clustering based on Gaussian mixtures (Banfield and Raftery
1993). They reported four clusters with an ARI of about 0.43. The dendrogram sharpening
method yielded a four-cluster partition with an ARI of 0.45.

6.3 EXPLORING KERNEL DENSITY ESTIMATION

In this section we explore the connection between Potts model clustering and kernel
density estimation as outlined in Section 4. We compare the three different strategies of
bandwidth estimation described in Sections 4.1 and 4.2 on two one-dimensional and one
two-dimensional datasets: an artificial dataset, the galaxy data, and the Old Faithful geyser
data.

We ran Potts model clustering with bandwidth estimation using the Euclidean distance
as a measure of similarity between the points, and the Gaussian kernel. We ran the modi-
fied Swendsen–Wang Metropolis–Hastings algorithms (see Sections 4.1 and 4.2) with 600
complete iterations. The first 300 iterations were discarded from the analysis. The remain-
ing 300 iterations were used to cluster the data and to compute the cluster size variances
in the largest six clusters. The final clusters were forced to have at least five points. Unless
otherwise noted, all runs were initialized with constant bandwidth equal to the mean dis-
tance between any two points. We observed that all three bandwidth estimation algorithms
(Gamma bandwidth selection, and Gaussian and Laplace smoothing priors) selected clus-
terings at similar temperatures for these datasets. Bandwidth smoothing did not appear to
influence the clustering. The main difference was in the bandwidth estimates.

The artificial dataset was created with the purpose of comparing the kernel density
estimates with the true density of the data. The data were generated from a Gaussian
mixture with five components centered at −0.3, 0.0, 0.2, 0.8, and 1.0; and with variances
equal to 1.0, 2.0, 0.7, 0.4, 0.2, respectively. The component proportions were proportional
to 0.2, 0.1, 0.1, 0.2, 0.3. One-hundred fifty points were drawn from this distribution. Fig-
ure 5 shows the bandwidths means for the Gamma updates, the Gaussian updates with
σ 2

0 = 0.1, σ 2 = 1.0, and the Laplace updates with prior parameter 1 = 100 and
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Figure 5. Artificial dataset: Bandwidths means for different Metropolis-Hastings bandwidth updating strategies:
Gamma (top left), Gaussian with σ 2

0 = 0.1, σ 2 = 1.0 (top right), and Laplace with 1 = 100 (bottom left) and
1 = 10, 000 (bottom right).

1 = 10000. The associated kernel density estimators as well as the true density and the
adaptive bandwidth kernel density estimator are depicted in Figure 6. One can clearly ap-
preciate the smoothness in the bandwidths introduced by the Gaussian smoothing prior, and
the nearly piece-wise constant shape yielded by the Laplace smoothing prior. All associated
kernel density estimators look very similar to each other. They all introduce smoothness to
the estimator as compared with the one based only on the adaptive bandwidth.

The galaxy dataset provided with S-Plus version 6.2 consists of 323 measurements
of the radial velocity (in km/second) of a spiral galaxy (NGC7531) measured at points
in the area of the sky covered by it (Buta 1987; Chambers and Hastie 1992). Figure 7
shows the bandwidth medians and the associated kernel density estimators yielded by Potts
model clustering with Gamma and Gaussian penalty (σ 2 = 1.0) updates. The bandwidth
smoothness introduced by the Gaussian smoothing prior is obvious. The figures clearly
show eight to nine modes in the density estimates which correspond to the clusters found
by the Potts model algorithms.

The Old Faithful dataset provided with the S-Plus version 6.2 consists of 299 measure-
ments of the waiting time between eruptions and the duration of the eruption for the Old
Faithful geyser in Yellowstone National Park (Azzalini and Bowman 1990). The bandwidth
medians yielded by the different bandwidth update algorithms are shown in Figure 8. The
corresponding two-dimensional contours and kernel density estimates are shown in Fig-
ure 9. Note the spikes in the bandwidths near previous durations 2.0 and 4.0. These mark



ON POTTS MODEL CLUSTERING 651

tr
ue

 d
en

si
ty

-1.5 -1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

de
ns

ity

-1.5 -1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0

de
ns

ity

 Bandwidths Means

0.0

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0

de
ns

ity

 Bandwidths Means

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0

de
ns

ity

 Bandwidths Means

0.0

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0

de
ns

ity

 Bandwidths Means

Figure 6. Artificial dataset: Kernel density estimator means for different Metropolis–Hastings bandwidth up-
date strategies: True density (top left), kernel density with adaptive bandwidth (top right), Gamma (center left),
Gaussian with σ 2

0 = 0.1, σ 2 = 1.0 (center right), and Laplace with 1 = 100 (bottom left) and 1 = 10,000
(bottom right).

the boundaries between the two main clusters of points. Also note that the bandwidths tend
to increase in the “empty” region. The spikes are probably due to the sharp increase in
the density at the clusters. The Laplace smoothing prior updates yield almost piece-wise
constant bandwidths within the two main clusters and the empty region. The updates are
highly variable in the boundary regions. The contours in Figure 9 show the smoothness
introduced by the Gaussian and Laplace smoothing priors. Overall, the Laplace updates
appeared to have produced the smoothest looking kernel density estimator, although the
Gaussian updates seemed to have yielded the smoothest bandwidths.
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7. DISCUSSION

The main contribution of this article is to uncover and exploit the close connection
between Potts model clustering and kernel K -means and kernel density estimation. Inter-
preting the Hamiltonian of the Potts model in terms of the conditional densities given the
cluster labels motivates a variant of Potts model clustering that incorporates a penalty for
unequal cluster sizes. A modification of the Wolff algorithm allows us to simulate config-
urations from the distribution defined by this penalized Hamiltonian, leading to penalized
Potts model clustering. The link to kernel density estimation suggests replacing constant
bandwidth with adaptive bandwidth kernels, a generalization long recognized as advanta-
geous in the context of density estimation that also turns out to be beneficial for clustering.

There are several directions for future work: (i) To use more general penalty terms
for penalized Potts model clustering. The algorithm outlined in this article uses a con-
stant penalty (kp(xi , x j ) = 1) for nonneighbor points with the same label assignment. But
one could use a different kernel kp(xi , x j ) for interactions between nonneighbor points.
For example, we could make this penalty an increasing function of the distance. (ii) To
develop more computationally efficient ways of choosing the temperature. Our current
method requires simulating configurations at several different temperatures. It would be
more efficient if a good temperature could be discovered in a single run of the algorithm.
We think a strategy close in spirit to simulated tempering (Marinari and Parisi 1992; Geyer
and Thompson 1995) and parallel tempering (Geyer 1991) may be worth investigating.
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And (iii) to consider an extension to semisupervised learning. In semi-supervised learning
one is given the true labels for a (typically small) subset of the observations. This informa-
tion could be incorporated by assigning a large similarity to pairs of observations known
to have the same label, and a small similarity to pairs known to have different labels.

A. APPENDIX: MULTIWAY NORMALIZED CUT

The normalized cut between any two clusters k, and k ′ is defined as (Shi and Malik
2000; Meila and Xu 2003; Yu and Shi 2003)

NCut(k, k ′) =
(

1

vol (k)
+

1

vol (k′)

) n∑

i=1

n∑

j=1

zki zk′ j ki j , (A.1)

where vol (`) =
∑n

i=1
∑n

j=1 z`i ki j , ` = 1, . . . , q. The MNCut of any given partition is
then defined as

MNCut =
q∑

k=1

q∑

k′=k+1

NCut (k, k ′) =
1

2

q∑

k=1

q∑

k′=1

NCut (k, k ′) −
1

2

q∑

k=1

NCut (k, k). (A.2)

The goal of MNCut is to find the set of labels {zki } that minimize (A.2). Using (A.1), one
easily obtains

MNCut = q −
q∑

k=1

∑n
j=1

∑n
i=1 zk j zki ki j

∑n
i=1

∑n
j=1 zki ki j

= q −
q∑

k=1

wkγk Rk,

where wk = n/
∑n

j=1 p̂(x j |k). Writing
∑q

k=1 wkγk Rk as

q∑

k=1

∑n
i=1 zki p̂(xi |k)
∑n

j=1 p̂(x j |k)
=

q∑

k=1

mass assigned to cluster k given cluster k

total mass in cluster k given cluster k

one sees that MNCut tries to maximize the total mass assigned to the clusters so that the
data points assigned to the corresponding clusters account for almost all the mass asso-
ciated with the conditional densities. A straightforward calculation shows that, as in the
kernel K -means and Potts model clustering cases,

∑q
k=1 wkγk Rk is another way to write

(1.2) with weights given by

w(i, j, {zki }, k) =






0 if δi j = 0
(∑n

i=1 zki
∑n

j=1 ki j

)−1
if zki = zk j = 1





.

Hence, minimizing (A.2) is again linked to some sort of weighted K -means procedure
with cluster dependent weights wk . Indeed, it is straightforward to verify that a weighted
K -means with weights wk maximizes

∑q
k=1 wkγk(Rk − 1). Note that

∑q
k=1 wkγk =

∑q
k=1 1/m(k), where m(k) =

∑n
j=1 p̂(x j |k)/nk is the “average” mass in cluster k. The

weighted K -means with weights given by wk’s penalizes clusterings with large variations
in average masses across the clusters. Thus, unlike the weighted K -means with weights
γk’s that penalizes unequal cluster sizes, the MNCut induced weighted K -means penalizes
unequal cluster masses.
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