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Projection Pursuit Regression

JEROME H. FRIEDMAN and WERNER STUETZLE*

A new method for nonparametric multiple regression is
presented. The procedure models the regression surface
as a sum of general smooth functions of linear combi-
nations of the predictor variables in an iterative manner.
It is more general than standard stepwise and stagewise
regression procedures, does not require the definition of
a metric in the predictor space, and lends itself to graph-
ical interpretation. "

KEY WORDS: Nonparametric regression; Smoothing;
Projection pursuit; Surface approximation.

1. INTRODUCTION

In the regression problem, one is given a p-dimensional
random vector X, the components of which are called
predictor variables, and a random variable Y, which is
called the response. The aim of regression analysis is to
estimate the conditional expectation of Y given X on the
basis of a sample {(x;, y;): i = 1,2, ..., n}. Typically,
one assumes that the functional form of the regression
surface is known, reducing the problem to that of esti-
mating a set of parameters. To the extent that this model
is correct, such parametric procedures can be successful;
unfortunately, model correctness is difficult to verify in
practice, and an incorrect model can yield misleading
results. For this reason, there is a growing interest in
nonparametric methods, which make only a few very
general assumptions about the regression surface.

The most extensively studied nonparametric regression
techniques (kernel, nearest-neighbor, and spline smooth-
ing) are based on p-dimensional local averaging: the es-
timate of the regression surface at a point x, is the average
of the responses of those observations with predictors in
a neighborhood of xo. These techniques can be shown to
have desirable asymptotic properties (Stone 1977). In
high-dimensional settings, however, they do not perform
well for reasonable sample sizes. The reason is the in-
herent sparsity of high-dimensional samples. This is il-
lustrated by the following simple example: let X be uni-
formly distributed over the unit hypercube in R'®, and
consider local averaging over hypercubical neighbor-
hoods. If the dimensions of the neighborhood are chosen
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to cover 10 percent of the range of each coordinate, then
it will (on the average) contain only (.1)'° of the sample,
and thus will nearly always be empty. If, on the other
hand, one adjusts the neighborhood to contain 10 percent
of the sample, it will cover (on the average) (.1)"!° = 80
percent of the range of each coordinate. This problem of
sparsity basically limits the success of direct p-dimen-
sional local averaging. In addition, these methods do not
provide any comprehensible information about the nature
of the regression surface.

The successful nonparametric regression procedures
that have been proposed are based on successive refine-
ment. A hierarchy of models of increasing complexity is
formulated. The complexity of a model is the number of
degrees of freedom used to fit it. The aim is to find the
particular model that, when estimated from the data, best
approximates the regression surface. The search usually
proceeds through the hierarchy in a stepwise manner. At
each step, the model of the subsequent level of the hi-
erarchy that best fits the data is selected. Since the sample
size limits the complexity of the models that can be used,
these procedures will be successful to the extent that the
regression surface can be approximated by models on
levels of low complexity in the hierarchy.

Applying this concept with a hierarchy of polynomial
functions of the predictors leads to the stepwise, stage-
wise, and all-subsets polynomial regression procedures.
These procedures have proven to be successful in many
applications. Unfortunately, regression surfaces occur-
ring in practice often are not represented well by low-
order polynomials (e.g., surfaces with asymptotes); use
of higher-order polynomials is limited by considerations
of sample size and computational feasibility.

A hierarchy of piecewise constant (Sonquist 1970) or
piecewise linear (Breiman and Meisel 1976; Friedman
1979) models leads to recursive partitioning regression.
These procedures basically operate as follows: for a par-
ticular predictor and a value of this predictor, the pre-
dictor space is split into two regions, one projecting to
the left and the other to the right of the value. A separate
constant or linear model is fit to the sample points lying
in each region. The particular predictor and splitting value
are chosen to minimize the residual sum of squares over
the sample. The procedure is then recursively applied to
each of the regions so obtained.

These recursive partitioning methods can be viewed as
local averaging procedures, but unlike kernel and nearest-
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neighbor procedures, the local regions are adaptively -

constructed based on the nature of the response variation.
In many situations, this results in dramatically improved
performance. However, as each split reduces the sample
over which further fitting can take place, the number of
regions, and thus the number of separate models, is
limited. v

In this paper we apply the successive refinement con-
cept in a new way that attempts to overcome the limi-
tations of polynomial regression and recursive partition-
ing. The procedure is presented in Section 2. Univariate
smoothing is discussed in Section 3; implementation spe-
cifics are considered in Section 4. In Section 5 we illus-
trate the procedure by applying it to several data sets.
The merits of this procedure, relative to other nonpara-
metric procedures, are discussed in Section 6. In Section
7 we relate projection pursuit regression to the projection
pursuit technique for cluster analysis presented by Fried-
man and Tukey (1974).

2. THE ALGORITHM

The regression surface is approximated by a sum' of
empirically determined univariate functions S, of linear
combinations of the predictors:

M
¢X) = X Sa, (0 X), (1)
m=1

where «,, - X denotes the inner product. The approxi-
mation is constructed in an iterative manner.

1. Initialize current residuals and term counter

riey, i=1...n

M < 0.
(We assume that the response is centered: >, y; = 0.)
2. Search for the next term in the model. For a given
linear combination Z = « - X, construct a smooth rep-
resentation S.(Z) of the current residuals as ordered in
ascending value of Z (see Sec. 3). Take as a figure of
merit (criterion of fit) I(ax) for this linear combination the

fraction of so far unexplained variance that is explained
by Sa:

Ia) =1 - }n: (ri = Sala - x;))?

i=1

i ri. (2)
i=1

Find the coefficient vector oy, ; that maximizes (o)
(projection pursuit) o, = max,” 'I(a), and the cor-
responding smooth S,,, . ,.

3. Termination. If the figure of merit is smaller than
a user-specified threshold, stop. (The last term is not
included in the model.) Otherwise, update the current
residuals and the term counter

ri<er — SaM+,((!M+1 ‘X)), i=1...n

MM+ 1

and go to Step 2.
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This procedure directly follows the successive refine-
ment concept outlined in the previous section: The
models at the mth level of the hierarchy are sums of m
smooth functions of arbitrary linear combinations of the
predictors. _

Standard additive models approximate the regression
surface by a sum of functions of the individual predictors.
Such models are not completely general in that they can-
not deal with interactions of predictors. Considering func-
tions of linear combinations of the predictors. removes
this limitation. For example, consider a simple interac-
tion: Y = X, X,. A standard additive model cannot rep-
resent this multiplicative dependence; however, Y can be
expressed in the form (1), with a; = (1/\/5)(1, 1), a5
= (1/V2)Q, - 1), $1(Z) = 322, $x(Z) = —1Z2 The in-
troduction of arbitrary linear combinations of predictors
allows the representation of general regression surfaces.

3. UNIVARIATE SMOOTHING

The purpose of smoothing a set of observations
{vi, 2} =1, sequenced in ascending order of z, is to produce
a decomposition y; = S(z;) + r;, where § is a smooth
function and the r; are called residuals. The degree of
smoothness of a function § can be formally defined (e.g.,
JS"(2) dz), but for the purpose of this discussion an in-
tuitive notion of smoothness will be sufficient. Many pro-
cedures for smoothing have been described (Tukey 1977;
Cleveland 1979; Gasser and Rosenblatt 1979). They are
based on the notion of local averaging:

S$@) = AVE (),
i—k=sj=si+k
with suitable adjustment for the boundaries. Here AVE
can denote the mean, median, or other ways of ‘‘aver-
aging.”’ The parameter k defines the bandwidth of the
smoother.

The assumption underlying traditional smoothing pro-
cedures is that the observed responses y; are generated
according to the model y; = f(x;) + e, € iid, E(e;) = 0,
f smooth. The resulting smooth S is then taken as an
estimate for f. Choosing too small a bandwidth will tend
to increase the variance component of the mean squared
error of the estimate, whereas too large a bandwidth may
increase the bias. The optimum bandwidth will, of course,
depend on f and the variance of €, which are generally
unknown. Formal methods for estimating the optimal
bandwidth using cross-validation have been proposed
(Wahba and Wold 1975). Often, however, the degree of
smoothing is determined experimentally. One attempts
to use as large a bandwidth as possible, subject to the
smooth not lying systematically above or below the data
in any region (oversmoothing).

Our design of a smoother is guided by the fact that the
model underlying traditional smoothing procedures is not
appropriate. Our model seeks to explain response vari-
ability by not just one smoothed sequence, but by a sum
of smooths of several sequencings of the response (as in-
duced by the several linear combinations of the predic-
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tors). High local variability encountered in a particular
sequence may be caused by smooth dependence of the
response on other linear combinations. In order to pre-
serve the ability of fitting this structure in further itera-
tions, it is important to avoid accounting for it by spurious
fits along existing directions. Consequently, we use a
variable bandwidth smoother. An average smoother
bandwidth is specified by the user. The actual bandwidth
used for local averaging at a particular value of Z can be
larger or smaller than the average bandwidth. Larger
bandwidths are used in regions of high local variability
of the response. ~ -

To reduce bias, especially at the ends of the sequence,
we smooth by locally linear, rather than locally constant,
fitting (Cleveland 1979). Furthermore, each observation
is omitted from the local average that determines its
smoothed value. This cross-validation makes the average
squared residual a more realistic indicator of variability
about the smooth (e.g., it is not possible to make the
average squared residual arbitrarily small by reducing the
bandwidth). To protect against isolated outliers, we use
running medians of three (Tukey 1977) as a first pass in
our smoother.

Our smoothing algorithm thus makes four passes over
the data:

1. Running medians of three;

2. Estimating response variability at each point by the
average squared residual of a locally linear fit with
constant bandwidth;

3. Smoothing these variance estimates by a fixed-
bandwidth moving average; and

4. Smoothing the sequence obtained by pass (1) by
locally linear fits with bandwidths determined by
the smoothed local variance estimates obtained in
pass (3).

4. IMPLEMENTATION

For a particular linear combination, the smoother
yields a residual sum of squares from the corresponding
smooth. The optimal linear combination is sought by nu-
merical optimization. Considerations governing the choice
of the optimization algorithm are that (a) the function
evaluations are expensive (each one requires several
passes over the data); (b) the search usually starts far
from the solution; and (c) the search can be restricted to
the unit sphere in R”. For these reasons we-chose a Ro-
senbrock method (Rosenbrock 1960) modified to search
on the unit sphere. The search is started at the best co-
ordinate direction. On any given search there is no guar-
antee that the global optimum will be found. If the local
optimum is not acceptable, the search is restarted at ran-
dom directions. This guards against premature termina-
tion. If the local optimum is acceptable but not identical
to the global optimum, no great harm is done because a
new search is performed in the next iteration on an object
function for which the previous optima have been deflated.

Projection pursuit regression can be implemented with
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or without readjustment of the smooths along previously
determined linear combinations when a new linear com-
bination has been found (backfitting). In the terminology
of linear regression, this would correspond to the differ-
ence between a stepwise and a stagewise procedure. We
have implemented the stepwise version.

In some situations it may be useful to restrict the search
for solution directions to the set of predictors (projection
selection) rather than allowing for linear combinations.
Although the resulting additive model cannot represent
completely general regression surfaces, it is still more
general than linear regression in allowing for general
smooth functions rather than only linear functions of the
predictors. Projection selection is computationally less
expensive than full projection pursuit and the resulting
models are often more easily interpreted. One could also
run projection selection, followed by projection pursuit,
thereby separating the additive and interactive parts of
the model. Another strategy would be to run projection
pursuit and get some easily interpreted linear combina-
tions (as in Sec. 5, second example, with X, — X5, X4,
X;) and then run projection selection on these directions
to see how much is lost. Forming a parametric model
based on these directions is another possibility.

5. EXAMPLES

In this section we present and discuss the results of
applying projection pursuit regression (PPR) to three data
sets. (A FORTRAN program implementing the PPR pro-
cedure is available from the authors on request.) For all
three examples the iteration was terminated when the
figure of merit for the next term was less than .1. The
average bandwidth of the one-dimensional smoother was
taken to be 30 percent for the first two examples and 10
percent for the third. All predictors were standardized
to have median zero and interquartile range one. (Widely
different scales can cause problems for the numerical
optimizer.)

The first example is artificially constructed to be es-
pecially simple in order to illustrate how PPR models
interactions between predictors. A sample of 200 obser-
vations was generated according to the simplest inter-
action model Y = XX, + e with (X;, X;) uniformly
distributed in (— 1, 1) x (=1, 1) and € ~ N(0, .04). Figure
la shows Y plotted against X, with the corresponding
smooth. Figure 1b shows Y plotted against the first linear
combination Z;, = ao; - X, a; = (.71, .70), found by
projection pursuit, with the corresponding smooth
Se,(a; - X). Figure lc shows the residuals r, = Y —
Sa,(a; - X) plotted against the second linear combination
Z, = ay X, o, = (.72, —.69), together with
Sa,(0 - X). Figure 1d shows the residuals r, = Y —
So,(@ - X) — Sq,(a; - X) plotted against the third linear
combination with the corresponding smooth. This pro-
jection was not accepted because the figure of merit was
below the threshold. (Note that the figure of merit, as
defined in equation (2), measures the improvement in
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Figure 1a. Y = X; Xz + €, € ~ N(0, .04), vs. Xz (Y is
plotted on the vertical axis, X on the horizontal axis.
The + symbols represent data points, numbers indi-
cate more than one data point. The smooth is repre-
sented by * symbols)
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goodness of fit.) It is evident from inspection of Figure
1d that this projection does not substantially contribute
to the model. The pure quadratic shapes of S,, and
S, together with the corresponding coefficient vectors
a, and «, reveal that PPR has essentially expressed the
model Y = X,X, in the additive form ¥ = }¥X; + X,)?
- X - X))

Figure 1b. Y vs. First Solution Linear Combination
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Figure 1c. Residuals From First Solution Smooth

vs. Second Solution Linear Combination a2 ** X, a2
= (.72, —.69)
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In the second example, PPR was applied to air pollution
data. The data (213 observations) were taken from the
contaminant and weather summary of the Bay Area Pol-
lution Control District (Technical Services Division, 993
Ellis Street, San Francisco, CA 94109). In this example
we study the relation between the amount of suspended
particulate matter (Y) and predictor variables mean wind
speed (X,), average temperature (X;), insolation (X3),

and wind direction at 4:00 a.M. (X4) and 4:00 p.

M. (Xs)

Figure 1d. Residuals From First Two Solution
Smooths vs. Third Solution Linear Combination o -

X, az = (—.016, .99)

+
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at the San Jose measuring station. Three projections were
accepted. Figures 2a through 2c show the three final
smooths (after backfitting) plotted against their corre-
sponding linear combinations. The points plotted are ob-
tained by adding the residuals from the final model to
each smooth. The first projection (Fig. 2a) shows that a
good indicator of suspended particulate matter is (stand-
ardized) temperature minus wind speed. For small values
of this indicator, the amount of pollution is seen to be
roughly constant; for higher values, there is a strong lin-
ear dependence. The second smooth (Fig. 2b) and the
corresponding direction (essentially X,) show a much
smaller pollutant dependence on 4:00 a.M. wind direc-
tion. The third projection (Fig. 2c) suggests an additional
dependence on the 4:00 p.m. wind direction, but the ef-
fect, if any, is clearly small.

In order to illustrate PPR on highly structured data,
which are common in the physical sciences, we apply it
to data taken from a particle physics experiment (Ballam
et al. 1971). This data set (500 observations) is described
in Friedman and Tukey (1974). Here we study the com-
bined energy of the three m mesons (Y) as a function of
the six other variables.

Figure 3a shows Y plotted against the first linear com-
bination and the corresponding smooth found in the first
iteration. Figures 3b through 3d show the final smooths
(after backfitting) for the first three of the nine accepted
projections. As in Figures 2a through 2c, we show the
residuals from the final model added to the final smooths.
Note the substantial change in the first smooth due to
backfitting, which readjusts for later projections. Note
also the striking nonlinearity in Figures 3c and 3d and the

Figure 2a. Air Pollution (suspended particulate mat-
ter)—First Solution Smooth S,,,, &y = (.83, —.55, .0,

821

Figure 2b. Air Pollution—Second Solution Smooth
Saz 02 = (.16,.29, .17, .91, .16), With Residuals Added
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high degree of structuring in the data expressed by the
fact that the model explains over 99 percent of the
variance.

6. DISCUSSION

Although simple in concept, projection pursuit regres-
sion overcomes many limitations of other nonparametric
regression procedures. The sparsity limitation of kernel

Figure 2c. Air Pollution—Third Solution Smooth
Sasy a3 = (.16, .21, .01, —.05, .96), With Residuals
Added
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Figure 3a. Combined Energy of Three w Mesons Es,
(particle physics data) vs. First Solution Linear Com-
bination, a4y = (.83, .54, .0, —.16, .0, .0), With Corre-
sponding Smooth Found on the First Iteration
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and nearest-neighbor techniques is not encountered since
all estimation (smoothing) is performed in a univariate
setting. PPR does not require specification of a metric in
the predictor space. Unlike recursive partitioning, PPR
does not split the sample, thereby allowing, when nec-

Figure 3b. Particle Physics Data—First Solution

Smooth S,,, ay = (.83, .54, .0, —.16, .0, .0), With Re-

siduals Added
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Figure 3c. Particle Physics Data—Second Solution

Smooth S,,, a2 = (.0, .82, —.05, .0, —.33, .46), With
Residuals Added
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essary, more complex models. In addition, interactions
of predictors are directly considered.

One can view linear regression, projection selection,
and full projection pursuit as a group of regression pro-
cedures ordered in ascending generality. Linear regres-
sion models the regression surface as a sum of linear
functions of the predictors. Projection selection allows

Figure 3d. Particle Physics Data—Third Solution
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for nonlinearity by modeling with general smooth func-
tions of the predictors. Full projection pursuit allows for
interactions by modeling with general smooth functions
of linear combinations of the predictors.

PPR is computationally quite feasible. For increasing
sample size n, dimensionality p, and number of iterations
M, the computation required to construct the model
grows as Mpn log (n).

As seen in the examples, an important feature of PPR
is that the results of each iteration can be represented
graphically, facilitating interpretation. This pictorial out-
put can be used to adjust the main parameters of the
procedure, that is, average smoother bandwidth and ter-
mination threshold.

The average bandwidth should be chosen as large as
possible, subject to the avoidance of oversmoothing. In
any projection, whether the smooth systematically de-
viates from the data is easily detected by visual inspec-
tion. Whether a particular projection affects a significant
improvement in the model can be judged subjectively by
viewing its smooth and the corresponding residuals. Lack
of a systematic tendency of the smooth indicates that
including this projection into the model would only in-
crease the variance, while not reducing the bias. One can
also employ a more formal procedure based on cross-
validation (see Stone 1981).

The PPR procedure can clearly be applied to the re-
siduals from any initial model. If the initial model does
not fit the data well, PPR will so indicate by augmenting
the model.

All stepwise procedures have difficulties modeling
regression surfaces that cannot be well represented by
models of low complexity in their hierarchy. Because
models in PPR are sums of functions, each varying only
along a single linear combination of the predictors, PPR
has difficulties modeling regression surfaces that vary
with equal strength along all possible linear combinations.

7. PROJECTION PURSUIT PROCEDURES

The idea of projection pursuit is not a new one. Inter-
preting high-dimensional data through the use of well-
chosen lower-dimensional projections is a standard pro-
cedure in multivariate data analysis. The choice of a pro-
_jection is usually guided by an appropriate figure of merit.
If the goal is to preserve interpoint distances as well as
possible, then the appropriate figure of merit is the var-
iance of the projected data, leading to projection on the
largest principal component. If the purpose is to separate
two Gaussian samples with equal covariance matrices,
the figure of merit is the error rate of a one-dimensional
classification rule in the projection, leading to linear dis-
criminant analysis. In both cases the figure of merit is
especially simple and the solution can be found by linear
algebra. In a similar spirit, Friedman and Tukey (1974)
suggest detecting clusters by searching for clustered pro-
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Jections. Their figure of merit measuring the degree of
clustering in a projection (P index) is too complex to be
optimized by linear algebra. Instead, the optimal projec-
tion was sought by numerical optimization; this was re-
ferred to as projection pursuit. As multivariate structure
often will not be completely reflected in one projection,
it is important to remove structure already discovered
(deflate previous optima of the figure of merit), allowing
the algorithm to find additional interesting projections.
Friedman and Tukey suggest splitting the data into clus-
ters, once a clustered projection has been found, and
applying the procedure to the data in each of the clusters
separately.

Projection pursuit regression follows a similar prescrip-
tion. It constructs a model of the regression surface based
on projections of the data on planes spanned by the re-
sponse Y and a linear combination « - X of the predictors.
Here the figure of merit for a projection is the fraction
of variance explained by a smooth of Y versus « - X.
Structure is removed by forming the residuals from the
smooth and substituting them for the response. The

. model at each iteration is the sum of the smooths that

were previously subtracted and thus incorporates the
structure so far found.

[Received February 1980. Revised April 1981 .]
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