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Abstract

In this report we introduce and motivate the problem of reconstructing shapes from
partial information. An appropriate mathematical abstraction capturing the notion
of a shape in three-dimensional space is a two-dimensional manifold. The concept of
the topological type of a manifold plays an important role in reconstruction, and we
present a synopsis of the pertinent definitions and results. We then discuss ways of
representing two-dimensional manifolds. Finally, we focus on the specific problem of
reconstructing a two-dimensional manifold from an unorganized collection of points
assumed to be scattered on or about the manifold, and give a survey of previous work
on this topic.



1 Introduction and Motivation

In very general terms, the class of problems we are interested in can be stated as
follows: Given partial information of an unknown “target” shape, construct, to the
extent possible, a representation of the shape. Reconstruction problems of this sort
occur in diverse scientific and engineering application domains, including:

• Surfaces from contours. In many medical studies it is common to slice biolog-
ical specimens into thin layers with a microtome. The outlines of the struc-
tures of interest are then manually digitized to create a stack of contours. The
problem is to reconstruct the three-dimensional structures from the stacks of
two-dimensional contours. Although this problem has received a good deal
of attention, there remain severe limitations with current methods. Perhaps
foremost among these is the difficulty in automatically dealing with branch-
ing structures [4, 21]. The motivation for reconstruction in this application is
typical: the reconstructed surface generally requires less storage, and is there-
fore faster to transmit, process, display, etc.; metric properties such as surface
area and volume are simpler to compute, the reconstructed surface is resolution
independent, meaning that the model can be arbitrarily zoomed, rotated and
otherwise transformed.

• Scattered data interpolation. Automobile bodies are most commonly designed
by constructing a large scale model out of wood, clay, or fiberglass. Roughly
speaking, the model is then digitized using an automated laser digitizer, and a
spline representation is constructed to interpolate to the digitized data. Once
in spline form, the surface can be efficiently edited and analyzed using cad
tools such as catia and patran. The spline model can also be used to drive
numerically controlled milling machines for the manufacture of casts, dies, and
templates.

Unfortunately, the process is currently not as general as indicated. The reason is
that the laser digitization systems operate by digitizing numerous curves lying
on the surface of the object to be digitized. Each of the curves is reported
as a sequence of points in three-dimensional space, but there is in general no
automated correspondence between the points on one curve and the points
on another. For relatively planar rectangular objects, such as the hood of an
automobile, the individual sequences can be stored in a two-dimensional array
to produce a rectangular grid of points, as was mentioned above. More complex
objects, such as a milk pitcher with a handle, cannot be covered with a single
rectangular grid, so more sophisticated algorithms are needed for establishing a
two-dimensional network of points. The digitization of objects using manually
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positioned digitizers is also made easier if explicit organization does not have
to be manually specified.

• Curve and surface sketching. Popular curve design systems, such as those found
in mechanical cad and typographic systems, require the user to interact with
the curve through a set of “handles” or “control points”. This is the case, for
instance, for systems based on Bézier or B-spline curves [6]. A more intuitive
method that has seen some investigation is to have the system construct a
Bézier or B-spline representation from a “sketch” provided by the user. In
this style of interaction the system queries the mouse while the user traces out
the desired shape, resulting in a sequence of points deemed close to the target
curve. The system then automatically smoothes the sequence and invokes a
fitting procedure to produce a spline representation (cf. Schneider [18], Plass
and Stone [16]). These procedures are based on the assumption that the input
is ordered along the curve, meaning that the user is required to sweep out the
curve in one continuous motion. Unfortunately, most users would prefer to
sketch by stroking repeatedly back and forth over the target shape. Algorithms
are therefore needed to compute ordering information from initially unordered
or partially ordered data.

With the advent of sophisticated input devices such as the “Data Glove” (a
sensor glove capable of reporting the position and orientation of the users hand
and fingers [7]), we can imagine designing complex three-dimensional objects
by sketching in three-dimensions. The user would wear a Data Glove on each
hand, and indicate the target shape by moving his hands in a region around
the desired surface. During this time the system could record a large number of
positions of the hands, thereby building up a “cloud” of points near the desired
surface. The difficult problem then is to construct a surface representation
faithful to this largely unordered collection of points.

• Fitting of object boundaries in images. An important problem in image analysis
is the detection and description of object boundaries. Application of an edge
detector to the image results in an unstructured collection of pixels thought to
be on or near the boundaries. The edge pixels then have to be partitioned into
subsets corresponding to individual objects. For later analysis it is desirable to
summarize the potentially large number of edge pixels associated with an object
by a continuous curve. This approach has for example been used by Banfield
and Raftery [2, 1] for detection and description of ice floes on satellite images.

Another closely related application is quantifying the shape of biological struc-
tures in ct or mri images. One way to accomplish this is to use a low level edge
detector to identify voxels, possibly tagged with tangent planes, thought to be
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near the boundary of the structure, then to use a reconstruction algorithm to
produce a continuous, closed surface representation. In addition to the extreme
compression factor achievable by reconstruction, the measurement of surface
areas and volumes is important here for diagnosis and treatment planning.

Diverse problems such as those listed above can be unified into a single problem space.
The resulting space possesses a number of independent dimensions, including:

• The structure of the input data. As the applications above indicate, the input
to reconstruction problems can vary widely: On one extreme, the data might
be an unstructured collection of points. On the other extreme we might be
given, in addition to the points, the edges and faces of a mesh approximating
the surface.

• The amount of noise present in the data. Interpolation problems assume that no
noise is present, whereas there is generally a non-negligible noise level in prob-
lems such as fitting object boundaries in images and curve or surface sketching.

• The density of the data. The sketching and image fitting problems typically as-
sume relatively high density data distributed around the target shape, whereas
many interpolation problems are characterized by very sparsely distributed
data.

• The uniformity of the data. The data may be distributed with varying degrees
of uniformity over the target shape.

• Knowledge of the solution space. The reconstructed model must be chosen from
some class of possible models. We call this class the solution space of the prob-
lem. For instance, in the surfaces from contours problem the reconstructed
model is intended to represent the boundary of a three-dimensional biologi-
cal volume, meaning that the reconstructed surface should be chosen from the
class of compact two-dimensional manifolds without boundary. Other problems,
such as the fitting of boundaries in images, require curves (i.e., one-dimensional
manifolds) as output. Applications requiring higher dimensional manifolds or
manifolds with boundary also exist. Different applications additionally place
different requirements on the continuity or smoothness of the reconstructed
model. Whereas positional continuity may be sufficient for medical imaging,
many engineering applications require models that are twice differentiable (i.e.,
of class C2).

A reconstruction problem can therefore be denoted by its “location” in the problem
space. The purpose of this paper is to provide some background relevant to all
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reconstruction problems involving two-dimensional shapes in three-dimensional space,
and to survey previous work on the specific problem of reconstructing a shape from
an unorganized collection of points.

The remainder of the paper is organized as follows: In section 2 we introduce two-
dimensional manifolds and give examples. Two-dimensional manifolds can be classi-
fied according to their topological type, a property that plays an important role in re-
construction. We provide a synopsis of relevant mathematical definitions and results.
In section 3 we discuss ways of representing two-dimensional manifolds, with empha-
sis on representations that appear to be useful for reconstruction. Finally, in section 4
we focus more specifically on the problem of reconstructing a two-dimensional shape
from an unorganized collection of data points, and present a survey of previous work
on this topic.

2 Topology

For the development and analysis of reconstruction procedures it is helpful to have
some understanding of the theory of two-dimensional manifolds. In particular, it is
important to appreciate the concept of the topological type of a manifold: a torus is
fundamentally different from a sphere, (or from a piece of the plane), and a recon-
struction procedure that smoothly deforms a sphere will not be successful in approx-
imating a surface that is shaped like a doughnut. On the other hand, there really is
no fundamental difference between a cube, a tetrahedron, and a sphere.

An important question to ask about a reconstruction procedure is its scope: can
it deal with manifolds of arbitrary topological type, or only with a restricted class,
such as manifolds that look like a piece of the plane? The ability of constraining a
reconstruction procedure to produce an estimate of pre-specified topological type is
also important. Often the topological type of the target is known in advance, and the
procedure should be able to use this knowledge for resolving ambiguities.

2.1 Manifolds

The following definitions and facts about manifolds can be found in standard texts
on algebraic topology, for example the book by Massey [12].

Def 2.1 A Hausdorff space M is called a n-dimensional manifold if for every x ∈ M
there is an open neighborhood W of x and a homeomorphism φW mapping W onto
the open ball Bn = {x ∈ Rn : ‖x‖ < 1} in Rn. A tuple (W,φW ) is called a chart. A
collection of charts covering M is called an atlas for M .
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Recall that a topological space M is called a Hausdorff space if for any two points of
M there are disjoint open sets, each containing just one of the two points. A mapping
f is called a homeomorphism if it is one-to-one and both f and f−1 are continuous.

Note: If M is compact, it has an atlas consisting of finitely many charts.

Examples:

• The two-sphere S2 = {x ∈ R3 : ‖x‖ = 1} is a compact two-dimensional mani-
fold.

• The torus T = {x ∈ R3 : (
√

(x2
1 + x2

2) − 2)2 + x2
3 = 1} is a compact two-

dimensional manifold.

• The Moebius strip obtained by identifying points (0, x2) and (1, 1 − x2), 0 <
x2 < 1 of the square [0, 1]× (0, 1) is a non-compact two-dimensional manifold.
We can construct a physical realization of a Moebius strip by taking a long,
narrow strip of paper and gluing the ends together with a half twist. The fact
that the x2-interval is open is important. If the interval was closed, points with
x2 = 0 or x2 = 1 would not have have open neighborhoods homeomorphic to
B, and we would have a compact manifold with boundary (see below).

• The projective plane obtained by identifying diametrically opposite points of the
two-sphere S2 is a compact two-dimensional manifold that cannot be embedded
into R3; that is, there is no subset of R3 homeomorphic to a projective plane.

Def 2.2 A Hausdorff space M is called a n-dimensional manifold with boundary if
every x ∈ M has an open neighborhood W that is either homeomorphic to Bn or
to the set Bn

+ = {x ∈ Bn : x1 ≥ 0}. The set of points that have a neighborhood
homeomorphic to Bn is called the interior of M . The set of points x that have an
open neighborhood V such that there exists a homeomorphism h : V → Bn

+ with
h(x) = 0 is called the boundary of M .

Example: M = {x ∈ R3 : ‖x‖ = 1, x3 ≥ 0} is a two-dimensional manifold with
boundary. The boundary is the circle x3 = 0, x2

1 + x2
2 = 1.

It can be shown that the boundary of a n-dimensional manifold with boundary is an
n− 1-dimensional manifold (without boundary).

Def 2.3 A n-dimensional manifold M is called smooth if for any two charts (U, φU)
and (V, φV ) with U ∩ V 6= ∅ the mapping φV ◦ φ−1

U : φU(U ∩ V ) → φV (U ∩ V ) is a
diffeomorphism.

Recall that a mapping f is called a diffeomorphism if it is a homeomorphism and
both f and f−1 are smooth (infinitely often differentiable).
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2.2 Surfaces

We have so far been intentionally avoiding the term “surface”. While it is common to
talk about “the surface of a sphere”, many so-called surface reconstruction procedures
can only cope with a restricted class of two-dimensional manifolds, namely those that
can be represented as graphs of functions over the plane; see Lancaster and Salkauskas
[11] or Bolle and Vemuri [3] for examples. (The graph of a function f : R2 → R is
defined as G(f) = {x ∈ R3 : x3 = f(x1, x2)}). Note that the graph of a continuous
function f : R2 → R is a two-dimensional manifold in R2 × R1. However, not every
two-dimensional manifold can be represented as the graph of a continuous function
on R2 or a subset thereof.

A two-dimensional manifold can consist of several separated components, each of
them a two-dimensional manifold in its own right. Also, a manifold might or might
not be compact. In the following, the term surface will be used in a specific technical
sense:

Def 2.4 A compact, connected two-dimensional manifold with boundary is called a
surface. A compact, connected two-dimensional manifold without boundary is called
a closed surface.

If we want to emphasize that a surface has non-empty boundary, we use the term
bordered surface.

2.3 Simplicial surfaces

Roughly speaking, a simplicial surface is a surface consisting of planar triangular
facets pasted together along their edges. Simplicial surfaces are important for several
reasons. First, one can show that any surface is homeomorphic to a simplicial surface.
Second, the topological type of a simplicial surface can be determined by purely
combinatorial means, and third, it is easy to create simplicial surfaces of any desired
topological type. The following presentation of simplicial surfaces follows Spanier [22]
and Hudson [10].

Def 2.5 A (finite) simplicial complex K consists of a finite set V , the vertices of K,
together with a set S of non-empty subsets of V , called the simplexes of K, such that

1. any set consisting of exactly one vertex is a simplex

2. every non-empty subset of a simplex is again a simplex.
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A simplex s containing exactly q + 1 vertices is called a q-simplex and we say that
the dimension of s is q and write dim s = q. The dimension of K, written dim K,
is the maximum dimension of its simplexes. The q-skeleton of K is the simplicial
complex Kq consisting of the simplexes of K of dimension at most q. We identify
each 0-simplex with its single element, then K0 = V . A (proper) face of a simplex s
is a non-empty (proper) subset of s; and we write s′ ≤ s to denote that s′ is a face of
s.

Example: Recall that a simple graph is a graph with the property that any two
vertices are joined by at most one edge, and which contains no loops (edges with only
one endpoint). Thus, a simplicial complex of dimension one is just a simple graph.

A simplicial map, φ : K1 → K2 is a function from the vertices of K1 to the vertices
of K2, such that for any simplex s of K1, φ(s) is a simplex of K2. Two simplicial
complexes are isomorphic if there is a simplicial map which is a bijection.

Associated to each simplicial complex K is a topological space |K|, called its topo-
logical realization:

Def 2.6 Let K be a simplicial complex. Identify the vertices {v1, v2, . . . , vn} of K
with the standard basis vectors of Rn and for each simplex s let |s| denote the convex
hull of its vertices. Then |K| = ∪s∈K |s|.

Here we are concerned with simplicial complexes whose topological realizations are
surfaces:

Def 2.7 Let K be a simpicial complex. If |K| is a surface, then |K| is called a
simplicial surface.

It is useful to have a combinatorial criterion for a simplicial complex to be a surface.
One such criterion is based on the structure of the neighborhoods of simplexes. Let
s be a simplex of K. Then

star(s; K) = {s′ ∈ K : s ≤ s′}
star(s; K) = {s′ ∈ K : s′ is a face of an element of star(s; K)}
link(s; K) = star(s; K) \ star(s; K).

Notice that link(s; K) and star(s; K) are simplicial complexes. The subset |star(s; K)| ⊂
|K| is the smallest (closed) neighborhood of |s| in |K| which is a union of simplexes;
|link(s; K)| is the boundary of |star(s; K)| and |star(s; K)| \ |link(s; K)| is an open
neighborhood of |s|.
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Prop 2.1 Let K be a simplicial complex of dimension 2. Then K is a simplicial
surface if and only if for every vertex v of K the space |link(v; K)| is homeomorphic
to either a circle (in which case v is an interior vertex of |K| or a closed interval (in
which case v is a boundary vertex of |K|).

Let K be a simplicial surface. Its boundary ∂K is the simplicial complex consisting
of the 1-simplexes of K that are each a face of only one 2-simplex, together with the
vertices of such 1-simplexes. It is not difficult to see that the topological space |∂K|
coincides with the boundary of the (topological) surface |K|.

Def 2.8 Let M be a surface. A triangulation of M is a homeomorphism φ : |K| →
M . The images under φ of the 2-simplexes, 1-simplexes, and 0-simplexes are called
triangles, edges, and vertices.

Prop 2.2 Any surface can be triangulated.

2.4 Classification of closed surfaces

Reconstruction of compact, connected one-dimensional manifolds is greatly simplified
by the fact that there are only two types — those that are homeomorphic to a circle
and those that are homeomorphic to a closed interval. For surfaces the situation is
more complicated.

To state the main results on surface classification, we have to introduce the notion of
a connected sum of surfaces. Let M1,M2 be disjoint surfaces. Their connected sum
M1]M2 is formed by cutting an open disc out of each surface and then gluing the two
surfaces together along the boundaries of the holes.

More precisely, let x1,x2 be interior points of M1 and M2, respectively. Let N1, N2

be (closed) neighborhoods of x1,x2 homeomorphic to the closed unit ball B2, and let
φ1 : N1 → B2 and φ2 : N2 → B2 denote the corresponding homeomorphisms. Set

U1 = M1\
◦
N1 and U2 = M2\

◦
N2. Define an equivalence relation “∼” on U1 ∪ U2 by

x ∼ y if φ1(x) = φ2(y). The connected sum M1]M2 is the set of equivalence classes
U1 ∪ U2mod ∼, endowed with the finest topology that makes the natural projection
of U1 ∪ U2 onto M1]M2 continuous.

It can be shown that M1]M2 is again a surface, and that its topological type does not
depend on the location of the holes.

Note: The connected sum of any surface M with the two-sphere S2 is homeomorphic
to M itself.
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Prop 2.3 (Classification theorem for closed surfaces): Any closed surface is
homeomorphic to a sphere, a connected sum of tori, or a connected sum of projective
planes.

Note: It is important that M be compact and without boundary. The former rules
out surfaces like the open disc {x ∈ R3 : x2

1 + x2
2 < 1, x3 = 0}; the latter rules out the

corresponding closed disc.

There remains the practical problem of finding the topological type of a surface. This
is usually done by first constructing a triangulation of the surface. The topological
type can then be determined from the triangulation by purely combinatorial means.

2.4.1 Euler characteristic

Given a triangulated surface, we can compute its Euler characteristic:

Def 2.9 Let v, e, f denote the number of vertices, edges, and triangles of a triangu-
lated surface M . Then the integer

χ(M) = v − e + f

is called the Euler characteristic of M .

It can be shown that the Euler characteristic of M is a property of M and does not
depend on the particular triangulation. Homeomorphic surfaces have the same Euler
characteristic.

It is easy to see that the Euler characteristic of the two-sphere is χ(S2) = 2: S2 is
homeomorphic to a tetrahedron, which has 4 triangles, 4 vertices, and 6 edges.

To find the Euler characteristic of a torus, note that a torus can be obtained by
partitioning the unit square into 9 sub-squares, each one split into two triangles, and
then identifying corresponding edges on the left and right sides of the square, and on
the bottom and top of the square. This leaves 9 vertices, 27 edges, and 18 triangles,
showing that the torus has Euler characteristic 0.

Using a similar argument as for the torus, it can be shown that the projective plane
has Euler characteristic 1.

There is a simple relationship between the Euler characteristic of two surfaces M1

and M2, and the Euler characteristic of their connected sum M1]M2. Without loss of
generality we may assume that M1 and M2 are triangulated. To form the connected
sum, we cut out the interiors of two triangles, one on each surface, and then identify
pairs of edges of these triangles, one from each surface. This reduces the number of
vertices by 3, the number of edges by 3, and the number of triangles by 2:
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Prop 2.4 χ(M1]M2) = χ(M1) + χ(M2)− 2.

Thus the Euler characteristic of the connected sum of n two-spheres is 2 (obviously),
the Euler characteristic of the connected sum of n Tori is 2 − 2n, and the Euler
characteristic of the connected sum of n projective planes is 2− n. Therefore a torus
has the same Euler characteristic as the connected sum of two projective planes.
This shows that the topological type of a surface cannot be inferred from the Euler
characteristic alone. We need to consider another topological property of surfaces,
namely orientability.

2.4.2 Orientability

We will first define orientability for simplicial surfaces. Let |K| be a simplicial surface,
with 2-simplexes s1, . . . , sn. A simplex is oriented by specifying an ordering of its
vertices. Two orderings are called equivalent if one can be obtained from the other
by an even permutation of the vertices. By orienting a 2-simplex s we define the
meaning of “walking clockwise around the edges of s”. |K| is called orientable if its
2-simplexes can be oriented in a consistent fashion. Roughly speaking, what we mean
by a consistent orientation of 2-simplexes is that the definition of “clockwise” does
not change as we cross the edge between one 2-simplex and an adjacent 2-simplex.

Here is a more precise definition. Suppose the 1-simplex e is a face of both si and
sk. The orientation of si induces an orientation of e, and so does the orientation of
sk. For the orientation of si and sk to be consistent, the two orientations induced on
e have to be opposite. This definition of “consistent orientation” immediately leads
to an algorithm for deciding whether a simplicial surface is orientable or not: Define
a graph whose vertices are the 2-simplexes s1, . . . , sn. Two vertices are connected by
an edge if the corresponding 2-simplexes share a 1-simplex as a face. Construct a
spanning tree of this graph and root the tree at some arbitrary vertex. Traverse the
tree, starting at the root, orienting each 2-simplex consistent with the orientation of
its parent. Finally, loop over all the 1-simplexes and check whether each of them is
assigned different orientations by the 2-simplexes of which it is a face. If this is the
case, the surface is orientable, otherwise it is not.

A surface is called orientable if it has an orientable triangulation. It is a nontrivial
fact that orientability is indeed a property of the surface and does not depend on the
triangulation. Like the Euler characteristic, orientability is a topological invariant:
homeomorphic surfaces are either both orientable or both non-orientable.

It is easy to see that the connected sum M1]M2 of two surfaces is orientable if and
only if both M1 and M2 are orientable. While the two-sphere S2 and the torus are
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orientable, the projective plane is not. Indeed there is a subset of the projective plane
that is homeomorphic to a Moebius strip, and a Moebius strip is non-orientable.
Because Euler characteristic as well as orientability are topological invariants, and
because of the classification theorem for closed surfaces, we have

Prop 2.5 Two closed surfaces M1 and M2 are homeomorphic if and only if their
Euler characteristics are equal and they are both orientable or both non-orientable.

2.5 Classification of bordered surfaces

Next we will consider classification of bordered surfaces. Let M be a surface with k
boundary components. Each boundary component is homeomorphic to a circle. If
we take k closed discs and glue the boundary of the i-th disc to the i-th boundary
component of M , we obtain a closed surface M?.

Prop 2.6 (Classification theorem for bordered surfaces): Two bordered sur-
faces M1 and M2 are homeomorphic if and only if they have the same number of
boundary components, and M?

1 and M?
2 are homeomorphic.

Note: If we take a (non-orientable) Moebius strip, which has a single boundary
component, and glue a disc to the boundary, we obtain a projective plane, which is
also non-orientable. M? is orientable if and only if M is orientable.

As χ(M?) = χ(M) + k, where k is the number of boundary components, we have:

Prop 2.7 Two bordered surfaces M1 and M2 are homeomorphic if they have the
same number of boundary components, the same Euler characteristic, and are both
orientable or both non-orientable.

3 Representation of surfaces

A crucial issue in the development of methods for manifold reconstruction is the choice
of a representation for the reconstructed manifold. Ideally, a representation should
allow us to represent manifolds of arbitrary topology. While this requirement might
be too stringent and not absolutely necessary (suppose we only want to reconstruct
manifolds homeomorphic to S2), at the very least we ought to be able to determine the
scope of the representation, i.e. the topological types that it can actually represent.
We also would like to be able to determine the topological type of a reconstruction.
Without this ability it would clearly be hard to place constraints on the topological
type.
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There are two kinds of representations that have been used in the context of manifold
reconstruction, implicit representation and parametric representation.

3.1 Implicit representation

Implicit representation is based on the fact that the zero-set Z(f) = f−1(0) of a
function f : R3 → R that is smooth (C∞) in a neighborhood of f−1(0) and for which
0 is a regular value is a two-dimensional manifold in R3. This is a direct result of the
implicit function theorem. Recall that a value y of a differentiable function f(x) is
called regular if the derivative of f(x) has full rank for all x ∈ f−1(y).

For example, the two-sphere S2 can be defined as the zero-set of the function f(x) =
‖x‖2 − 1. More generally, any smooth, closed surface M ⊂ R3 can be implicitly
represented as the zero-set of the associated signed distance function. Any such
surface divides R3 into two components (“inside” and “outside”), and the signed
distance function is defined as f(x) = s(x) · d2(x,M), where s(x) = 1 if x is inside,
s(x) = −1 if x is outside, and d(x,M) is the distance between x and its closest
point in M . The signed distance function is smooth in a neighborhood of M , and 0
obviously is a regular value.

Note, however, that not every surface, even if it is smooth, can be implicitly repre-
sented as the zero-set of a smooth function f whose domain is R3. It is easy to see
that the zero-set of any smooth function on R3 for which 0 is a regular value divides
R3 into at least two separated components. Therefore a surface homeomorphic to a
disc, or to a torus with a hole cut into it, cannot be represented in this way.

To implicitly represent bordered surfaces, the domain D of f cannot be R3 — it has
to be a smooth, compact submanifold of R3 with smooth boundary. Moreover, 0 has
to be a regular value of both f and f |∂D (f restricted to the boundary of D). It
can be shown that in this case Z(f) is a two-dimensional manifold (not necessarily
connected), and the boundary of Z(f) is exactly the intersection of Z(f) with the
boundary of D (see Milnor [13] for further explanation). Obviously, the domain D as
well as the function f need to be considered part of the representation.

3.2 Parametric representation

An alternative to implicit representation is parametric representation: represent M
by a pair (Λ, f), where the parameter space Λ is itself a surface, and the mapping
f : Λ → R3 is continuous, one-to-one, and f−1 is continuous on the range f(Λ) of
f. A mapping f with these properties is called a topological embedding, and it is
trivial to verify that f(Λ) ⊂ R3 is indeed a surface homeomorphic to Λ. We use the
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term parametric to stress the analogy with parameterized curves: every point on the
surface is uniquely associated with a parameter value λ ∈ Λ.

The following examples illustrate the idea:

Example 1: Let Λ be a closed disc in R2 (or, more generally, any compact, connected
region with smooth boundary), and set f1(λ1, λ2) = λ1,
f2(λ1, λ2) = λ2, and f3(λ1, λ2) = h(λ1, λ2) for some continuous function h : Λ → R.
Then f is a topological embedding, and the graph of h, G(h) = {(λ1, λ2, h(λ1, λ2)}, is
a surface homeomorphic to Λ. Note, however, that not every surface homeomorphic
to a closed disc is the graph of a continuous function over a planar domain. For a
counterexample consider M = {x ∈ S2 : x1 ≥ −0.5}. Reconstruction procedures that
represent the reconstructed manifold as the graph of a function over a planar domain
are thus quite limited, as they cannot even deal with all manifolds homeomorphic to
a disc.

Example 2: Let Λ be the two-sphere S2, and let h(θ, φ) : S2 → R denote a continu-
ous function with h(θ, φ) > 0 everywhere. Then the graph of h, i.e. the set of points
in R3 with polar coordinates (θ, φ, h(θ, φ)) is an closed surface homeomorphic to S2.

An obvious question is under which conditions a closed surface M can be represented
as the graph of a function over the sphere. To answer this question, we have to
introduce the concept of a star-shaped set: A set S is called star-shaped if there is
a point c such that for every x ∈ S the line segment (1 − λ)x + λc, 0 ≤ λ ≤ 1, lies
entirely within S.

It can be shown that a closed surface M is the graph of a function over the sphere
exactly if its inside is star-shaped relative to c = 0 and, moreover, each line segment
(1 − λ)x + λc, 0 ≤ λ ≤ 1 intersects M exactly once, namely for λ = 1. If M is
star-shaped relative to some point c 6= 0 and has the intersection property, we can
represent it as a translation of the graph of a function over the sphere. Even allowing
for translation, reconstruction methods that represent the reconstructed manifold as
the graph of a function over the sphere can handle only a subset of the surfaces that
are homeomorphic to a sphere.

Example 3: Choose Λ to be a closed disc, and let f : Λ → R3 be one-to-one
and differentiable, with the additional property that the derivative of f has rank
2 everywhere. The conditions on f guarantee that f is a topological embedding,
and therefore f(Λ) is a surface homeomorphic to Λ. Moreover, any smooth surface
homeomorphic to a closed disc can be represented in this way.

Note that all parametric representations mentioned in the examples are limited in
the topological type of the surfaces they can represent. To parametrically represent
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a surface of some arbitrary type, we first of all have to construct a parameter domain
Λ of this type. Second, we need a way of representing topological embeddings of Λ
into R3. How to do this will be the subject of a future report.

4 Previous work on surface reconstruction from

unorganized data

In this section we consider the problem of reconstructing a surface M ⊂ R3 from an
unorganized collection x1, . . . ,xn of points assumed to be scattered on or about the
surface.

Reconstruction methods can be classified according to the way in which they represent
the manifold. We will first discuss methods using implicit representation.

4.1 Reconstruction methods using implicit representation

Several authors (Pratt [17], Taubin [23], and Moore and Warren [14], among others)
have suggested reconstruction methods using implicit representations: find a smooth
function f : R3 → R such that the data points x1, . . . ,xn are close to the zero-set
Z(f). Their methods differ in the way in which f is found.

Pratt and Taubin take f to be a polynomial pa(x) in three variables, with coefficient
vector a. The goal is to find a minimizing

∑
d2(xi, Z(pa)), the sum of squared

distances from the data points to the zero-set of pa, subject to the constraint that 0
be a regular value of pa. Finding the optimal a is a difficult problem, and one has
to be satisfied with an approximate solution. The condition that 0 be a regular value
of pa is hard to verify, and in practice one only requires that ∇pa 6= 0 at the data
points x1, . . . ,xn.

There are several other problems with this approach. First, there is the problem of
finding the appropriate domain for pa. The zero-set of pa will often have parts that
are not supported by any data, and these parts have to be removed by restricting the
domain of pa. It is not obvious how this could be accomplished.

Second, it is not known how one could force Z(pa|D), the zero-set of the polynomial
on the domain D, to have a pre-specified topology. There are many scenarios where
the topological type of the surface to be reconstructed would be known, and one
should be able to make use of this knowledge in the reconstruction process. Even
determining the topological type of Z(pa|D) is difficult.

The report by Moore and Warren [14]) contains several interesting variations on the
theme of implicit reconstruction. Instead of insisting on representing the entire man-
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ifold by the zero-set of a single polynomial (of potentially high order), they construct
a piecewise representation by low order polynomials. The domain of the initial fit
is a tetrahedron T0 containing all the data points. If the total squared distance be-
tween the data points and the initial fit (or an approximation thereof) is too large,
the tetrahedron is subdivided, and the fitting procedure is recursively applied to the
sub-tetrahedra so obtained. The end result is a collection of tetrahedra T1, . . . , Tk

and associated functions f1, . . . , fk. The estimate of the piece of the surface passing
through Ti is the zero-set of fi. In general, however, these pieces will not fit together
continuously.

To achieve continuity, Moore and Warren use a technique they call free form blending.
First, the decomposition of T0 into tetrahedra is expanded into a valid triangulation.
Every vertex v of this triangulation is shared by some set of tetrahedra T1, . . . , Tk,
each one with its associated function fk. A new function value for the vertex v is
computed as weighted average of the values of the fk, with weights depending on the
number of data points on which fk was based. (If desired, derivatives can be treated
the same way). This results in a single function value for each vertex. Finally these
function values are interpolated over T0, and the estimate for the underlying surface
is taken to be the zero set of the interpolant.

As an alternative to finding a polynomial whose zero-set approximates the underlying
surface, Moore and Warren suggest using an estimate of the signed distance function.
If the domain D is chosen such that the surface M divides D into two components,
then the signed distance function is well defined. Compared to a polynomial it has
the advantage that its zero-set is guaranteed to have no spurious parts. Moore and
Warren deal with the case where the domain D is a tetrahedron and the surface
divides D into two connected subsets. However, much more complex scenarios could
occur, and it is not obvious how to extend their approach.

4.2 Reconstruction methods using parametric representation

There is a vast literature on surface reconstruction restricted to the special case of
surfaces that are graphs of functions over a planar domain. We shall not even attempt
a survey here, but instead refer the reader to the book by Lancaster and Salkauskas
[11] and the survey by Bolle and Vemuri [3].

Schudy and Ballard [19, 20] consider reconstruction of surfaces that are graphs of
functions over the sphere. Their motivating application is reconstruction of the sur-
face of the human heart from points x1, . . . ,xn on the heart’s surface. They first
transform the points into polar coordinates (θi, φi, ri) with respect to a suitably cho-
sen center c. (It is not quite clear how the center is found). The problem then is
reduced to that of estimating a function r(θ, φ) from data {(θi, φi, ri), i = 1, . . . , n}.
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Schudy and Ballard represent r(θ, φ) as a linear combination of spherical harmonics:

r(θ, φ) =
k∑

j=1

ajhj(θ, φ)

and estimate the coefficients aj by least squares:

â = argmina

n∑

i=1

(ri −
∑

j

ajhj(θi, φi))
2.

The exact definition of spherical harmonics is not important here. The important facts
are that spherical harmonics are smooth functions over S2, they can be arranged in
increasing order of spatial complexity (the higher the index, the wigglier the function),
and they form a basis of the Hilbert space of L2-functions over the sphere. The
latter property implies that any “reasonable” function over the sphere can be well
approximated by spherical harmonics.

Instead of expanding the radius r(θ, φ) into spherical harmonics, one could use other
collections of functions as a basis for the expansion. Several suggestions are presented
by Foley [8] and Nielson et al [15], who discuss interpolation and approximation of
functions over the sphere.

A reconstruction problem very similar to the one treated by Schudy and Ballard is
discussed by Brinkley [5], who proposes a way of incorporating prior knowledge about
the shape of the surface, i.e. the function r(θ, φ), into the reconstruction process.

Hastie and Stuetzle [9] and Vemuri [25, 24] discuss reconstruction of surfaces by
a topological embedding f(λ) of a planar region Λ into R3. The data points are
considered to be (possibly noisy) observations of f:

xi = f(λi) + εi,

where λi is the parameter vector corresponding to the i-th observation and εi ∈ R3 is
a noise component.

If the λi were known, the problem of estimating f could be decomposed into three
function estimation problems: Estimate the j-th coordinate function fj from the
dataset (λi1, λi2, xij), i = 1, . . . , n. This is the case considered by Vemuri. He assumes
that the data points are obtained by a laser scanner and are thus naturally arranged
in a rectangular grid {xij, i = 1, . . . , l, j = 1, . . . ,m}. The parameter vectors are
arranged in a corresponding planar grid {λij}. The spacing of the parameter grid is
a two-dimensional generalization of the chord-length parameterization. The distance
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between two vertical grid lines is taken to be proportional to the average distance
between the corresponding data points:

λi,j+1 − λi,j ∼ 1

l

l∑

i=1

‖xi,j+1 − xij‖

with the proportionality factor chosen such that λi1 = 0 and λim = 1. The distance
between horizontal grid lines is defined analogously. The precise way in which Vemuri
proposes to estimate the coordinate functions fj of the embedding is not important
here – in principle, any one of a large number of surface reconstruction procedures
(in the usual sense, z = f(x, y)) could be used.

Hastie and Stuetzle [9] suggest a method for constructing a topological embedding of
a planar region when the parameter vectors λi are unknown. In this case the λi as well
as the embedding f have to be estimated from the data. They propose an iterative
algorithm, alternating between finding parameter vectors λi for a given embedding f,
and then finding f for given λi. For given f, the λi are found by projecting the data
points xi onto the current estimate of the manifold:

λi = argminλ‖xi − f(λ)‖.

For given λi, the three coordinate functions of the embedding can be found individu-
ally by applying a function estimation procedure. The iteration is continued until it
converges.
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