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ABSTRACT

A variable span scatterplot smoother based on local linear fits is

described. Lonal cross-validation is used to estimate the optimal span

as a function o! -bscissa value. A rejection rule is suggested to make

the smoother resistant against outliers. Computationally efficient

algorithms making usi of updating formulas and corresponding FORTRAN

subroutines are presented.
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1. Introduction

A smoother is a procedure that operates on bivariate data

(xi,y1 )... (XnYn) and produces a decomposition

yi = s(xj) + ri, i=l...n. (1)

Here s is a smooth function, often simply called tFt ',,.rcoth, and the ri

are residuals, It is possible to formally define .,at constitutes a

smooth function, and to define measures of smoot ess, but for our

purposes an intuitive notion will be sufficient. .'ioothers are used to

summarize the association between the pred;:+,,F variable X and the

response Y. It was pointed out by Cleveland ( - and is a commonly

held belief, that when looking at a scatterplot th, eye is distracted by

the extreme points in the point cloud, i.e., , e fuzzy background, and

tends to miss structure in the bulk of the dip Augmentation of the

plot by a smooth is a possible remedy. More formally, smoothers can be

regarded as curve estimators; one assumes 'chat the response was generated

by adding random noise to a smooth function:

Yi = f(xi) + *i (2)

and considers the smooth s as an estimate for f.

Recently scatterplot smoothers have found u new use in multiple

nonparametric regression (Friedman and Stuetzle, 1981). Let

(xiY0)o. .(xnYn) denote the observations; xi here is a vector in RP, not

just a single number°, Assume as above that yj = f(xi) + Ei, l...n.

Projection pursuit regression constructs an estimate m for f of the form

M
m(x) = si(a .x),

i =!
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where the ai and suitably chosen unit vectors in RP. For given ai, si

(essentially) is found by smoothing the scatterplet of the residuals

i-i

rji'f = Yj-X Sk(ak.Xj) versus %1.xj. The smoother described in this
k=l

report is, up to minor modifications, the one used in the current

projection pursuit regression procedure.,

2. Basic Concepts

According to the definition above, any procedure that passes a smooth

curve thrJugh a scatterplot, for example a procedure that fits a least

squares straigh' line, would be called a smnoother. This is not quite

what we have in mind. Assume the data are generated according to (2).

We are interested in procedures That can approximate f arbitrarily

closely, given a dense enough sample, without any conditions on f apart

from f being smooth. Such procedur,,s can be baseo on local averaging.

Take s(xi) to be the averare o4 the responses ior those observations with

predictor values in a neighborhend N of xi:

s(x) = ave(ylxjxE I). (3)

Here "ave" can stand for the arithmetic mean, the median, or ir,-e

complicated ways o; averaging to be discussed below. A critical

parameter to be chosen is the SPAN, the size of the neighborhood over

which averaging takes place, It controls the smoothness )f s, The

bigger the span, the smother s will be, To obtain consistency, i.e., to

make sure that s gets arbitrarily close to f as the sampling rite

increaser one must shrink the diameter of the neighbL,'hood in such a way

that the number of ibservations in the neighborhood stil grows to



infinity. Shrinking the neighborhood makes the systematic or bias

component in the estimation error diminish, while increasing the

neighborhood sample size guarantees that the variance component of the

error goes to zero as well.

An alternative method for ninparametric curve estimation is based on

series expansions: make an ansitz for s of the form

M
S(xk) O igi(xk)

i=1

where the gi(x) can, for example, be polyno-ials or trigonometric

functions. The constants ai are then determined by fitting the series to

the data, most commonly by least squares, The role of the span is played

here by M, the number of terms included in the model, Trigonometric

functions have been used with success in cases where the signal is

naturally periodic. 1i the abscissas xi are equi-spaced, the fit is

particularly inexpensive to compute using thi Fast Fourier Transform.

Both conditions are usually not fulfilled in the case of scatterplot

smoothing, naking the method less attractiveý The use of polynomials has

the drawback that they are not well suited to represent a wide variety of

commonly encouptered functions, for example, functions with asymptotes.

There are, of course, connections between smoothing by series

expantsion and smoothing by local averaging. if the series is fitted by

least squares, the fitted values s(xi) are weighted averages of the

responses yi. Depending on the abscissas and the functions gi(x), the

weights determining s(x 1 ) might or might not be concentrated on responses

with corresponding predictor values close to x,. If they are, the series
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expansion method behaves like a local averaging method, An example of

this is least zquares fit of cubic splines which will be further

discussed in Section 9.

3. A Simple Nonresistant Smoother

The simplest example for a local averaging type smoother is the moving

average, where "ave" in equation (3) denLtes the arithmetic mean. The

size of the neighborhood is usually specified by the spa,,, the number k

of observations to be included in the averaging. We will assume k to be

odd and the abscissas xi to be in increasing order. The neighborhood can

be chosen either symmetrically, containing k/2 observations to the left

of xi and the same number to the right, or it rban be chosen to contain

the k nearest neighbors of xi, including xi. (We assume that k/2 is

computed by integer division.) There are no general results on which of

thes- two possibilities is better statistically, The nearest neighbors

approach generalizes to higher dimensions, but the choice of a symmetric

neighborhood is computationally simpler in that exactly one point enters

and one point leaves the neighborhood as one moves from observation i to

observation i+i, We will, in the following, use symmetric neighborhoods.

The boundaries, where it is not possible to keep N symmetric, nave to be

treated specially; a commonly used adjustment is to shrink the

neighborhood -o that for i=1 and i=n, one averages only over k/2+l

observations. With these conventions, the moving average smoother is

defined by

s(x ) mpan.(y) max(i-k/2, 1) i min( i+k/2,n).Fbvously, the mean does not have to be recomputed every time, It cart be
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updated, reducing the computation from nk to n. Such updating can be

done for all the smoothers we will consider, and is highly desirable

because in typical apolications k is 5% to 30% of n, and thus the savings

are substantial. The simple moving average smoother has some serious

shortcomings, One di5turbing property is that it doies not reproduce

straight lv',-s if the abscissa values are not equi-spaced, Another

disturbing feature is the bad behaviour at the boundaries, If, for

example, the slope of the underlying function f is positive at the right

boundary, the estimate for observations close to the boundary will be

biased downwards; if the slope is negative, the estimate is biased

upwards, Both problems can be alleviated by fitting a least Equares

straight line L to the observations in the neiqhborhood instead of

fitting a constant and taking the value of the line at x, as the smoothed

value, This obviously solves boý'h problems mentioned above. For the

computation, again updating formulas can be used. The slope B and

intercept a of the least squares straight line through a set of points

(xj'yl)..,(xmym) are given by

a - ym BRm

Cm
B=--

Vm

with

CM = ' x,-R,) -9
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When we want to add an observation (xmQ+,YN+¶), we can make use of the

following easily derived formulas:

Rm+1 = (mR, + XM+,) / (M+1),

= (mP. + ym.+) / (m+l),

m+ 1
CM+1 = CM + - (XM+1 - xm+0)(y.+1 " 0)

m

m+l
VM+- = VM + - (XM+l - RM+1)2,

m

Analogous formulas can obviously be used for removal of an observation

from the set.

4. Choice ••f ý •_•

The most important choice in the use of a local averaging smoother is

the choice of the span value. If the smoother is regarded as a curve

estimator, then the span controls the trade off between b'as and variance

of the estimate. We illustrate this for the case of a simple moving

average smoother. In this case, the srnooth.?d value at poirnt xi is given

by

1 i+k/2
s(xj) = - F Y•.

k i-k/2

If we assume that the errors ji are i.i1d. with experted value zero and

variance a2, then the expected squared error at point x, is

I i+k/? 1
ESE (xilk) = (f(xi) - - Y f(xj) )2 + - az' (4)

k i-k/2 k

Increasing tie span will (if dZf/jxZiO) increase the f.rst term, the bias

component of the estimation error and decrease the second term, the

___
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variance component; decreasing the span will have the opposite effect.

The span sh.iuld be chosen such that both compnents of the error are

reasonably balanced, Sta'ted more geometrically, a larger span makes the

smooth appear less wiggly by more strongly damping high frequency

components of the series (x,,yi),

We have, so far, said ,iothing useful on how to choose the span in

practice. The advice given above on balancing bias and variance is not

very helpful because both f and the variance of the random error are

unknown,

One can estimate the n,'ccnal span value in a particular situation as

that value that minimizes an estimate for the integrated siuared error

¢

I 2 (k) = j ESE(xlk) dF(x).

Using the average squared residual of the data from the smooth

I n
i2(k) = - I [y,-s(x~lk)]2

n i1I

for this purpose is not approp-iate since this is always minimized by the

span value k:1. A better estimate is provided by a method referred to as

"cross-valida' on" (M. Stolle, 1974) or "predictive sample reuse"

(Geisser, 1975) Each observation is in turn deleted and the value of

the smooth s• 1,(x,lk) at x, is calculated from the other n-i

observaticns. The cross-validated estimate of the integrated square

Serro• is

I n 1
II

I___- y x, k)2 5
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Clearly, E[IZCvj equals the expected squared error obtained by applying

the procedure to a sample of n-I observations from the same disttibution.

The cross-validated e3timate for the optimal span value is taken to be

the value kev that minimizes (5),

kcy = min"I IZcv Wk.

O(k•NJ

Model selection through cross-vafldat.on has been remarkably successful

in a wide variety of situations (see M. Stone, 1974, Geisser, 1975,

Craven and Wahba, 1957, C. Stone, 1981).

For the mo~ing average smoothers discussed in the previous section,

the deleted smooth estimates slil(xilk) are especially easy to compute;

each observation is simply deleted from the neighborhood used to compute

its local straight line fit, Again, the use of updating formulas makes

this computation very rspid. As one moves from observation i to 1+1,

exactly two observations enter the neighborhood (i and i+k/2+1) and

exactly two leave it (0+1 and i-k/2). The (deleted) residual squared

r2 (i) = (Yi - P ij (xilk)]z (6)

is computed for each observation and then averaged over all observations,

I n
jZcv (k) = - I -Iti), (7)

n i1=

For small to moderate changes in k, 12cv(k) changes very little so that

it is adequate to evaluate it for several (4 to 7) discrete values of k

in the range [0 ( k/n ý IJ. The value of k corresponding to the smallest

of these values is then used. This can be accomp!ished by maintaining

several running average smoothers - one for each span value - in the pass

over the data, thus keeping the computational cost linear in n,
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So far, we have been assuming that the span is constant over the whole

range of predictor values. This is not optimal if either the variance of

the random component or the second derivative of the underlying function

f change over the range of predictor values. A local increase in error

variance would call for an increase in span, whereas an increase in

second derivative of f would require a decrease, It is, therefore,

desirable to allow the span value to adapt to these changing conditions.

This requires that the optimal span value be choosen locally rather than

choosing a single global value, Again, the form of moving average

smoothers make this especially easy; the (deleted) residual squared (6)

-for each of the several k values- is averaged locally in a neighborhood

of each ohbervation

I i+L/2
izcv (k;xi) = - I rzc.p (xj!k) (8)

L I=i-L/2

rather than glnbally over all observations (7).. Note that (8) alsn has

the form of a simple moving average smoother and can therefore bo

computed rapidly through the use of updating formulas, The value that

minimizes (8)

kcy(xi) m= n 1  izcv(k;x,) (9)
0<k •N

is the span value used ior the ith observation,

Most often the shape of 7z,, (k;xj) near 'ts mi',imum value is shallow

and asymmetric, increasing ,ure slowly in the direction of smaller k

values, Variability in the estimate ijc2 , therefore, causes kcv to be

highly variable and biased toward smaller values. Although this has

little effect on thp qualty of the resultiing smooth in terms of expected



squared error (ESE), it does effect its aesthetic quality since, fo-

comparable ESE, the less smooth solution tends to be selected. This can

be remedied by forcing the procedure to take the smoothest solution in

these circumstances, Specifically, the largEst span value k*,, for which

i2cv(k*cv;Xi) ( (1+a) min I2,,(k;xi; (10)

O(k!N

is used for the ith observation, Here o. loosely controls an upper limnit

on the fraction of ESE that is to be sacrificed for the goal of

smoothness. Values in the range 0.05 i a 1 0.2 are reasonable.

Since the optimal span value is estimated separately for each

observation, its size c6n vary substantially over the range of predictor

values. However, since for close abscissa values the neighborhoods

overlap considerably, this variation is constrained to be smooth. The

degree of smoothness is controlled by the parameter L (8) which can be

regarded as a span for smoothing the (deleted) residuals squared from the

original smoo+hs, As with the original smoother, its optimal value can

be estimated by cross-validation, To the extent that the variation of

the ser nd der-vative of f or the variation in the random component is

comparable to the variation of f itself, this second level of cross-

validation may be beneficial. Again, updating formulas make this

relatively inexpensive. However, in most circumstances chusing a

nominal value for L (0 2n to 0.3n) is adequate.

It is imFortant to note that using cross-validated residuals as a

basis for choosing span value 15 highly senitive to lack of indeppndence

among the el (2) as ordered on x. If there is a large positivL

(negative) (,orrelation among observat ioos with similar x vaiues,
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substantial under (over) estimates will result., In situations where a

high degree of auto-correlation is suspected, the'se span selection

procedures should be used with caution,

Figure 1 illustrates the application of this smoothing algorithm to an

artificial data set. (A FORTRAN subroutine implementing Yhis algorithm

is listed in Appendix 1,) The data for this examrle consists of M=200

pairs (xi,yi) with the xi drawn randomly (lid) from a uniform

distribution in the interval [0,1). The y- are obtained from

Yj = sin[27(l-xi) 2J + xiEt

with the ci iid standard normal. The parameter ALPHA [a in (10)] was set

to 0.1 and RESPAN [L/n in (8)] was set to 0.25 (see Appendix 1). This

example simulates a situation in which both the curvature of f decreases

and the variance of the random component increases with increasing x,

Figure la is a scatterplot of the simulated data. Figure lb also shows

this scatterplot, but with the resulting smooth superiposed. The height

of the curve near the bottom indicates the sparn value chosen at each x,

The span is seen to increase with x to account for the increasing noise,

as well as to take advantage of the decreasing curvature of f. (For X )

0.7, the span has reached the largest value provided in the program,

K/N : 0.7.) Figure Ic ,s the same as Figuie lb except that the curve

Y:f(x)=sin[2n(M-x)z) is superimpostd for reference, lhe resulting smooth

is seen to estimite the underlying f reasonably well.. Note that for a

linear function y:Qx+b (zero curvature) the smoother will tend to use a

constant (maximum) span value regardless of (the variation of) the

afn, tirude of the noise.
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5. Reducina Computation by Binnina

In the previous sections, we have described a fairly intricate

scatterplot smoother. As an essential building block of projection

pursuit regression (Friedman and Stuetzle, 1981), it has performed well.

In this context, the smoother is applied to the full data set many times

in a single run. In order for such a procedure to be computationally

feasible for large data sets, it is necessary that the smoother be as

fast as possible. One possibility to increase soeed is by binniag,

Denote the observations for one particular scatterplot bs,

(xiYl)-.,(XnYn), We assume here that the observations already have

been sorted so that the xi are in increasing order. Chcose a bin size,

say m, and define new data points (ulvi)... (Un/mVn/) by

uji mean (x! i • 1 I ...xim);

vi= mean (y( -,

Then apply the smoother described above to the Cui,v 1 ). .,(Un/,Vn/m)

The smooth for predictor values xj not among ui*.,Un. can be obtained by

linear interpolation or, at the boundaries, by extrapolation.

The computing time for the smoother grows linearly in the number of

observations, and so binning reduces the run time of the smoother roughly

by a factor of m.

Figure 2 shows the results of applying the smoother to a sample of

n:500 observations generated from the same model as the data shown in

Figure 1, with the results of applying the binning procedure with m=5

superimposed. The quality of the smooth is seen to suffer very little

while the computation has been substantially reduceu.
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6. Resistanre

As for all data analytic procedures, it is highly desirable for a

scatterplot smoother to be resistant against occasional outliers in the

data. (All our analysis is conditional on the observed predictor values;

nutlier tOus means outlier in response.) The smoother described in

Sections 4 and 5 clearly is not resistant. One way to overcome this

limitation is to first screen the data with a rejection rule identifying

outliers, and then apply the smoother to the cleaned data set,

We suggest a rejection rule based on running medians. A running

median smoother with span k is defined by

s(xi) = med (0 i-k/2.,..yi+k/2)

The ends of the sequence must be treated specially, most simply by

replicating the outermost values defined above. The rejection rule makes

five passes over the data•

1) Compute a running median smooth s,

2) Replace s(xi) by s*(xi) (,btained by lnearly interpolating

between (x,.,, s(xi. 1 )) and (xi, 1 , s(xi+i)). The purpose of

this step is to ensure a morp realistic estimate of spread in

steps (3) and (4) for monotone (sub)sequences, which are

exactly reproduced by a running median.

1) Smooth the absolute residuals IrI = y, - s*xL i)i by a

running median and obtain a sequence v, ..vl of local spread

estimates v*,.

4) Smooth the speuelnce of local spread estimates by a moving
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average with span f*n and obtain smoothed spreads v*i. This

makes the spread estimates more stable. The same effect could

be achieved by increasing the span of the running medians in

Step (3); however, this would be more expensive

computationally. In the code given in Appendix 2, the

constant f is set to 0.3.

5) Flag all observations for which I r cev*, In the code, c

is set to 4.5.

Some details related to the treatment of ties have been omittcd. A

FORTRAN subroutine implementing this algorithm is listed in Appendix 2.

The span for the running medians in Steps (1) and (3) is chosen to be

increasing with the sample size n (see Table 2). A motivation for our

particular choices is given in Chapter 7. We use the same span in both

steps, although there is no inherent need to do so.

Figure 3a shows the -esult of applying the rejection rule to an

artificial data set. The true underlying function is a sine wave. The

predictors are uniformly distributed in [0,2r]; the random errors are

Gaussian with standard deviation 0.3. Outliers occur with protabil.•y

0.2; they were generated by adding a Gaussian with standard deviaticn 2.4

to the original observation., Observations flagged as outliers by the

rejection rule are marked by squares. Figure 3b shows the results of

applying the rejection rule to a real data set.

7, Resistance of Running M_,di.ns

The choice of span k 4ur the running medians in Steps ,) and (3)
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gives rise to rather interest ng questions. Somewhat vaguely stated, the

rejection rule will be able to detect extreme outliers as long as these

running medianis do not break down. We will now define precisely how we

measure the degree of resistance of a smoother, and give results on the

dependence of the resistance of a running median smoother on the span.

Assume we want to smooth a sequence of length n. Responses can be

either "good" or "bad", that is, good observations or outliers. We

define random variables bi.. .bn by bi = 0 if yj is good, bi = 1 if yi is

an outlier, Assume that Prob(bi = 1) = p and that the bi are

independent. (As noted by Mallows 1980), the latter assumption might

not always be realistic; outliers in time series sometimes uome in

bursts.) A smoothed value s, is called bad if it can be made arbitrarily

large by suitable choice of the reponse values for the bad observations,

A smoother is said to suffer a breakdown if one or more of the smoothed

values si are bad. The probability that this happens under the above

model for the b is called the breakdown probability of the smoother. It

will generally depend on p and n, A smoother with breakdown probability

(1-p)n is called nonresistant, (For a different definition of breakdown

probability, see Mallows (1980). )

We will now devise an approximate formula for the span necessary to

guarantee an tpper bound on the brLukdown probability as a function of n

and p = Prob(b,:1). For that purpose, we define new random variiules

Si,.Sn-k+1 by

i+k-1

Sb,.

I•: Z j
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A running median smoother suffers a breakdown if among any consecutive k

observations more than k/2 are bad; i.e., if max si > k/2. This

probability does not seem to be simple to evaluate, but it is easy to

obtain an upper bound in terms of the binomial probability Prob(B(K,p) )

k/2, using the Bonferroni inequality:

Prob(max si ) k/2) ý (n-k+1) Prob(B(k,p) ) k/2).

This inequality provides an estimate for the span needed to guarantee a

certain upper bound on the breakdown probability for given n and p.

Table 1 gives estimates of the necessary span k for breakdown probability

bounded by 0.05, and several values of n and p (n=25,50,100,200,400,800;

p=0.05,0.1,0.2). For a comparison, we also list the percentage of

breakdowns actually observed in thousand randomly generated Bernoulli

sequences for tne estimated value of k, and the smallest value of k

resulting in 50 or fewer breakdowns. The results show that the

Bonferroni estimate is close, especially for p=0.05 and p=O0l where

Prob(B(k,p) ) k/2) is small; this is in agreement with experience gained

in using the Bonferroni inequality in multiple comparisons, The span of

the running medians in Steps (1) and (3) of the rejection rule described

in Chapter 6 was chosen to guarantee a breakdown probability of less than

0.05 for probability p=0.l of obtaining an outlier,

Another interesting question is how fasL the span k(n) must grow as a

function of n with everything else fixed. This question has been

answered by P, Frdbs ind A, Renyi (1970).:

Theorem: If k(n) = cln n then

si
Prol) 11m max -- = a) : 1
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where a is related tc c via the equation

-1 a p
Z- n(p(1-p)) + (1-p-a) (In - - An-),

c I-a i-p

for a > c.

This theorem i. a special case of Erd6s and Renyi's theorem 2, It

can be applied to our situation as follows: Choose a = 1/2 -

Then thsre eyists ar no such that for all n ) no we have max si (

k/2 fur almost all samplfng sequences. In addition, Erdds and Renyi

show that

- If k grows slower than In n (k(n)/in n4O,), then for a'l but

finitely many values ot n, max si = k for almost all sampling

sequences., ("k cannot qrow slower than In n".)

- If k grows faster than In n (k(n)/ln n*-o@), then lim max si=kp for

almost all sampling sequences; ioe,, the strong law of large

numbers applies, ("k does not have to grow faster than In n".)

6. An 2Udating Algorithm for Runnig edijan

There is a straightforward way to compute running medians: Obtain the

median of each consecutive k-tupel by sorting it, That can be

substantially improved upon by making use oi the fact that the set of

responses defining s,, 1  is almost the same as the set of responses

defining si; only yn = Y,+k/zl has to be added, and yout = Yi-kiz has

to be deleted. The following rules are easy to verify:

- If yn si, then s,, 1  sj.

- If Yin S S, arid YoLt ) s, or if Y, 1  ( S1 arid Yout ( sý, then sI ,,

SI.
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So in the case of random data, we have to do nothing but make thase tests

half the time.

- If Yin > s9 and Yout si, then let k* denote the number of

observations in the new span that are bigger than sj. If K ( k/2,

then si+ = ii, else si+j is the smallest observation strictly bigger

than si. The analog of that is true if Yin ( si and Yout > si.

- if yin ) si and Yout = si, then define k as above. If k = k/2,

then siji is the smallest observation in the span strictly bigger

than si; else si~j is the smallest observation in the span thaf is

bigger than or equal to si. The analog of that is true if Yin < si

and You. = si,

In appendix 2, we give a FORTRAN subroutine that implements the algorithm

outlined above,

For random data, the algorithm will take O(nk) operations. It is

possible to reduce that to 0(n log k) by organizing the observations in

the span into a binary tree which is kept balanced as observations are

moved in and out (AYL-tree; see Knuth (1973), pp 451), Unfortunately,

for the range of k that we have in mind (about 20), log k is not enough

smaller than k to compensati for the increased overhsad.

S. Discusaion

Cleveland (1979) has suggested a scatterplot smoother also based on

local linear fits, It differs from the one described in this report

mainly in three respects:

- 16 does not use variable span,

- In the fit of the local straiqht line determing the smooth s(x , ) for
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predictor valu? xi, the observations ar, weighted according to their

distance from x,' observations towarus the extremes of the span

receive lower weights than observations with predictor values close

to Xi, Asymptotic calculat;ons suggest that assigning unequal

weights should reduce the error of the curve estimate, but there is

no evidence that it makes a substantial difference for sample sizes

occurring in practice. It d)Es, however, produce a smoother looking

estimate

- The procedure derives iOs resistance properties not from data

screening with a rejection rule, Instead, each of the local

straight lines is fitted, not by least squares, but by a resistart

fitting procedure.

Updating formulas cannot be used in this scheme, making it

comparatively expensive i1o terms of computing, To reduce computation,

Cleveland suggests evaluating the smooth only for every m-th predictor

value. The parameter m .iere plays a similar role as our bin size, it

woild be chosen as a fraction of k, We developed our smoothing procedure

because variable span is often important, and because the use of updating

formulas dramatically reduces computation.

Another class of procedures suggested for smoothing are procedures

based on splines. A spline function s of order k with knots at Z. .. Zk

is a function satisfying the foflowing two ronditionsci

- In each of the intervals (-c,zi),(zi,zz) *.(Zk.1-,'k),(Zk,0), sis a

polynomial o; degree 2 - 1;.

- s has n 2 continuous dt i vatives,
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One way to use spline functions in scatterpiot smoothing is to fit a

spline function with knots z,,.Zk to the data (Xj,Yl)...-,(Xn,Yn), either

by least squares or by some resistant method, The degree of smoothness

is determined by the number and position of the knots. A major

disadvantage of this method is that k+l parameters must be chosen: the

number and the positions of the knots. Usually some heuristic procedure

is used to place the knots once k has been fixed (Jupp, 1978). This

leaves the number of knots to be determined. This number plays the r, le

of the span in determining the degree of smoothing. Unfortunately, the

output of the smoother can depend on k in a very nonlinear way; it is

easy to construct examples where the addition of one more knot

substantially decreases the residual sum of squares, whereas further

knots hardly make Rny difference, This makes k more difficult to choose

than the span in a local averaging smoother, Furthermore, least squares

fit of splines is substantially slower so that choosing k through cross-

validation is usually too expenrive.

Another way is to use smoothing splines in the sense of Reinsch

(1967), A smoothing spline s of order 2A for smoothing parameter A is

the function that minimizes

[ (y,-f(xi))Z + A X f(A)Z(x)dx

among all functions f with 2 derivaties, The solution really turns out

to be a spline function of order 22 with knots xi...Xnf the name is thus

justif ed. The larger A is chosen, the smoother s becomes; thus, A here

plays the role of the span, Computation of the spline for given A

requires the solution of a banded n*ri linear system A drawhack of the
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method, as described here, is that it is impossible to .tain an

intuitive feeling for the choice cf X in a given example. So, one

usually fixes not A, but the residual sum of squares around the smooth,

The corresponding value of A then has to be found iteratively by

repeatedly solving the minimization problem. This substantially

increases the necessary amount of computation. Algorithms to determine

the optimal A by cross-validation usually require computation of the

singular value decomposition of an nxn matrix; they are expensive and

infeasible for sample sizes larger thv;i 200-300.

To summarize, the local averaging z.-oother descri1,ed in this report

has two desirable properties that set it apart om other scatterplot

smoothers: it is very fast to compute and the value of the parameter tnat

controls the amount of smoothing is optimized locally (through cross-

validation), allowing it to change over the range of predictor values,
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APPENDIX I

The following is a complete listing of a FORTRAN -ub-outine

implementing the smoothing procedure described in this paper.
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SUBROUTINE SUPSMU (N,XY,W,IPER,ALPHARESPAN,IBIN,SMO,SC)

C
C SUPER SMOOTHER (FRIEDMAN AND STUETZLE, 1982).
Cl
C CODED BY: J. H. FRIEDMAN AND W. STUETZLE
C DEPARTMENT OF STATISTICS AND
C STANFORD LINEAR ACCELERATOR CENTER
C STA.NFORD UNIVERSITY
C STANFORD CA. 94305
C
C INPUT:
C N : NUMBER OF OBSERVATIONS (X,Y - PAIRS).
C X(N) ORDERED ABSCISSA VALUES.
C Y(N) CORRESPONDING ORDINATE (RESPONSE) VALUES.,
C W(N) (OPTIONAL) WEIGHT FOR EACH (X,Y) OBSERVATION.
C W < 0 0 => ALL OBSERVATIONS HAVE EQUAL WEIGHT.
C IPER : PERIODIC VARIABLE FLAG.
C IPER=1 => X IS ORDINARY ORDERED VARIABLE.
C IPER=2 => X IS A PERIODIC (CIRCULARLY DEFINED) VA' ABLE.,
C ALPHA : FRACTIONAL SMOOTHNESS PENALITY ( SEE (LO) SECTION 4),
C RESPAN FRACTIONAL SPAN FOR RESIDUAL SMOOTHING
C C L/N, SEE (8) SECTION 4).-
c- RESPAN ,.,r. 0 => FIXED SPAN SMOOTHER WITH FRACTIONAL
4, SPAN ABS(RE-SPAN) .
C IBIN : BINNING FACTOR (M, SEE SECTION 7)..
C oUTPUT:
C SMO(N) SMOOTH11ED ORDINATE (RESPONSE) VALUES.

C SCRATCH:
C SC(3,N) : INTERNAL WORKING STORAGE.
C
C NOTE:
C ALPHA=O.I AND RESPAN=0.25 AR" REASONABLK VALUES. FOR RESPALJ > 0
C SMOOTHER OUTPUT IS COMPLEt 'ELY CROSS-VALIDATED) X(I), Y(I), AND
C W(I) ARE' NOT USED IN THE CALCULATION OF SMO(I). THEREFORE,
C THE AVEIRAGE SUIJAREI) RE.SIDUAL
C N
C A'i;R -- SUM W(1)*(Y(I)-SMO(I))**2
C2 1=1
C CAN BE USED AS A GOODNES•-.OF-FIT MLAS1IE FOR THE PURPOSIK ')F
C SELECTING oPTIMAL VALUES FOR SMOOTIIING I ARAMETEP.:-; BY
c REPEATED APPLIC'ATf ION.
c
C FOR SMALL SAMPLES (N < 40) OR IF THERE ARE SUBSTANTIAL SERIAL,
C CORRELATIONS BETWEEN OBSERATIONS (LOSE' IN X - VALUE, THEN
C A PRESPECIFIED FIXED SPAN SMOTIHER (RESPAN < )) SHOULD BE
C USED. REASONABLE SPAN VALUES ARE 0.3 .GE, ABS(RESPAN) .GE., 0.5.
C
C --------------------------------------- ---- ,---.--

DIMENSION X(N),Y(N)0W(N),SMo(N) ,SC(3,N)
"DOULALE PREC'ISION SX(5),SY(5),SXX(5),SXY(5),SUM(5),E'LW",.,
D- IMFN.•10!N I BW(5S) F, RESQUE( 5 I10) SMOQUE(5, 101))

INT1EGLI{ IN,,OU'1

DATA IBWI,,'P:.MAX /3,0,,35,
DAPT\ BIC, EPS '1 OF,), ! .E-, 3!
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IF (W(l).LT.0.0) GO TO 20
DO 10 I=1,N
SC(3,I)=W(I)

10 CONTINUE
GO TO 40

20 Do 30 I=l,N
SC(3,1I)=1.

30 CONTINUE
40 IF (X(N).GT.X(l)) GO TO 70

SX(1)=0.0
FBW( I)=sx( I)
DO 50 J=1,N
SX( i.)=SX( 1)+SC( 3,3) *Y J)

FBW(1)=FBW(1)+SC(3,J)
50 CONTINUE

A=SX(!)/FBW(I)
DO 60 J=I,N
SMO(J)=A

60 CONTINUE
RETURN

70 I=N/4
J=3* I
SCALE=X(J )-X( I)

80 IF (SCALE.GT..0.0) GO To 90
IF (J.L.TN) 3=3+1
IF (ILGT.JI) 1=1-1
SCAL-E=X(J )-X1 I)
GO TO 80

90 VSML=(EPS*SCALE)**2
IF (IBIN.LE. L) GO TO Ill)
NA -0
SX( L)=0..0
SY( I )=SX ( )
L'BW( 1)=SY(i)
DO 100 3=1,N
NL )=SX(tI)+x(Ji)*sc( i,3)

SY(1)=SY(1I)+Y(J)*SQ,(3,j)
FBW( I)=I'BW( I)+SC( 3,3)
IF (MOD(J,1131N),-NE.0) GO TO i00
NA=NA-I-
SC( 1,NAI=SX(I )/F'BW( )
Sc(2,NA)=SY(lU/lVBW(l)
SC(3,NA)=FiW( I)

SY(1)=SX(I)

loG CON11iNUE
IF~ (M0L)(N, IBIN),EQ.0)) GO '1O 13J
NA-=NA± 1
sC( 1.,NA) =SX( L /FBW' I)

~*C (3, N A)F34 I)
GO TIL- I W0

110 LNAý-N
DO 12k) 1-- ,
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sc(i,J)=x(J)
SC ( 2, J ) =Y(J)

120 CONTINUJE

11130 IBW(1)=IBW1

IDELTA=(SPNMAX*NA-IBW(1) )/4.O+0.5
DO 140 I=2,5
IBW(I )=MINO(NA/2, IBW(I-1)+IDELTA)

140 CONTrINUJE
00 150 I=1,5
EX(I)=0.0
SY( I)=sx( I)

sXX(I)=SY(I)
SXY(I )=SXX(I)
FBW(I )=:!XY(I)
SUM( I)=F3W( I)
IF (MOD(IBW(I),2).EQ.0) IBW(I)=IBW(I)+l

150 CONTINUE
IF (RESPAN.GE.0.0) GO TO 160
IB1W S= 1
IBW( 1)=0. 5*ABS(RE' PAN ) *N
IF (MOD(IBW(1) ,2) .EQ.0) IBW(l)=JBW(1)+1
IBW(S5)=-IBW( 1)
CO TO 170

160 IBWS=5
170 IF (IPER.NE.2) GO TO 220

IT=NA-I3Wý5 )+'
IH=IBW( 5)-I
DO 190 J=ITr,NA
DO 180 I=1,II3WS
IF (J.LT.NA-IBWq(I)+1) Go To 180
xlT=SC(1 ,j)
Y'r=SC(2,J)
WTr=SC (3, J)
sx'( i)=SX( i)+XT~wT
SY (I ) SY(I )+YT*WT
SXX( I)= SXX( [)+XTr*XT*WTr
sxY( £)=sxy(i)+x~r*YTr*WT
FBW ( I ),=FBW ( 1 ) +WT

180 CON'rit~uE
190 CONTINUE

DO 210 J=1,1Il
DO 200 i-zl,IBWS
IF (J-GT-Lb.AW(I)-l) Go TO 200
XT--SC( 1,J)
YT=SC( ?,J)
WTL=SC( 3, J),
SX( I)=SX(I )+XTP*WT
SY(!I)=SY(I )+YT*WT
SXX(I )=SXX( I)+XT*XT*W'T
SXY(I)=SXY( I)1XT*YlP*WTr
FBW ( 1 ) =FB1W (I1) -tWTP

200 CONTINUE
210 CONT IN U E

220 IT" 21 BW (5) -
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DO 240 J=1,IT
DO 230 1=1,IBWS
1F (J.GT.2*IBW(I)-1) GO TO 230
XT1=SC (1 ,J)
YT=SC (2, J)
WT=SC(3,J)
SX(I)=SX(I )+XT*WT
SY(I )=SY(I )+YT*WT
"sxX(I )=6XX(I )+XT*XT*WT
sxY(I )=SXY( I)+XT*YT*WT
FBW(I )=FBW(I )+WT

230 CONTINUE
240 CONTINUE
250 /\BW=MINO(10i,2*INT(0.5*RESPAN*NA+0.5)+l)

KBW02=KBW/2+1
I H=O
.JT=IH
J M=J T
DO 370 J=1,NA
RESMIN=BIG
IF (J.LT.KE3W02) GO TO 260
JT~=JT+l
,JMO =JM
JM=MOD (JM, KBW)+ 1

260 11I=MOD (Ili, KBW) +'
DO 310 I=l,1BWS
IF (113WS.NE-.5) GO TO 270

XT=SC(l,J)
YT=iSC ( 2, J)
WT=SC( 3,J)
SX (Ir)=SX (1I) -X'*WT
SY (I ) =SY( I )ýYT
sxx (I) =sxx WI ) xTr*x1i*w~i
SXY(I1)=SXY(l£)-XT*YT*WT

270 OU'r=J-1i3W( I)
IN=,J-i-IBW( LI )-I
IF ( ' IPER.NE.2).AND.(OUT.LT.1.oR.IN.G'r.NA)) GO TO 28o
1IF (our U. I) OUT=NA+OUTP
IF (£N,'.GT.NA) IN=IN-NA
x'r=sc' (I , ouTr)
YTP=SC( 2 , o(JT)
WT=SC (3, OUT)
SX'( E',=SX ( I. ) -x'rwr
SY (1I) =sy ( I) \'YjP*W~j

Sxx( I )z5xx( 1),x'r*xrp*w'r
sxy (I ýSxY (I) -XrP*YT*wTi
FiBW I )ýi'BW( I -WT'
XTr~;O('1, IN)
Y'P=SC'(2, IN)
Wr=Sc'( i, IN),

SxY I =s(I) 4xr,*y~r*
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A-BW( I)=FBw( I )-WT
280 D=SXX(l).-SX(I)**2/FBW(I)

VAR=D/FBW( I)
A=0.0
IF (VAR.GT.VSML) A=(SXY(I)-~SX(I)*SY(I)/FBW(I))/D
SM=A*SC(1,J)+(SY(I )-A*SX(I) )/FBw( I)
IF (IBWS.NE.1) GO TO 290
SMO(J )=SM
GO TO 320

290 RES=SC( 3,J )*(SC( 2,J)-SM) **2
IF (J.GT.KBW) SUM(I )=SUM(I )-RESQUE(I, Ii)
SUM( I)=SUM( I)+RES
RESQUE( I, IH)=RES
SMOQUE(t, IH)=SM
IF (VAR..LT.VSML.AND.I..LT.5) SMOQUE(I,IH)=BIG
IF (J.LT.KBWO2) GO TO 300
SUM(I)=ESUM(I )-RESQUE(I,JM)
IF (JT.G;T. 1) SUM(I)=SUM(I)+RESQUE(I,JMO)
IF (SUM(I).GT.RESMIN.OR.SMOQUE(I,JM).GE.BIG) GO TO 300
RESMIN=SUM (I)
IS=I

300 XT=SC(1,J)
YT=SC(2,J)
WT=SC( '3,,J)
Sx(lI):-SX( I)+XT*WT
SYCI )=SY(I )+YT*W~T
SXX( I)=SXX([I)+XT*XT*WT
sxy (i) =sxy (I)+xr*YT*WT
FBW( I )=BW( I)+WT

310 %coNTrINUE
320 IF (IBWS.EQ.1) GO TO 370

IF (J .GE. KBWO2) smo(JTr)=SMOQUE(IS,JM,
IF (ALPHA.LE.O.O.OR.J.LT.KBWO2.0R.IS.GL.5) GO TO 370
RESMIN= (1. 0+ALPiIA) *RES,1I1N
I=5
GO TO 340

330 IIL(1
340 IF ((-1)*((I)-(IS)).GT.0) GO TO 350

IF (SUM(I).GT.RESMIN) GO TO 330
350 1F (I.GE.5) GO TO 360

A=(RESMIN-SU.M(I))/(SUM(1+1)-SUM(I))
SMO(JT)~l=( I .OA)*SMOQUE( t,JM)+A*SMOQUE(1+1,JM)I
GO TO 370

360 SMO(JT)=SMOUUE(I,JM)
370 CONTINUE~

IF (Ii3WS.NE.5) GO rIO 440
JTr=JT+l
DO 430 J--JT,NA
III=MOD (1iii, KE3W) +1
RESMIN=-BIG

~J MMOL)(J M, KIW) #-I

SU-'~~Ui( i)-RESQUiE(I, Iii) +RESQUE( I, JMO) -kESQUE( IJM)

IF~ (,tSM(1)/.C;Tl.R'LS'-MIN.UR.,SMOQVUE(I,JM).GE.BIGý) GO TrO 38(0
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RESM.LN=SUM ( )
1S1I

380 CONTINUE
SMO(J)=SMOQUE( ISJM)
IF (ALPHA.LE.0.0.OR.IS.GE.5) GO TO 430
RESMIN= (1.0+ALPEiA) *RESMIN
I=5
GO TO 400

390 1=1+(-l)
V400 IF ((...)*((I)..(IS)).GTO0) GO TO 410

IF (sUM(I).GT.RESMIN) GO TO 390
410 IF (I.GE.5) GO TO 420IA=(RESMIN-SUM(I))/(SUM(I+1)-SUM(I))

SMO(J)=(1.O0-A)*SMOQUE(I,Jml)+A*SMOQUE(I+1,JM)
GO TO 430

420 SMO(J)=SMOQUE(I,JM)

430 CONTINUE
440 IT=NA-I

S2=SMO(l)
IF (IPER.NE,2) GO TO 450
A=S2
SMO(1)=0.25*(SMO(NA)+2.0*S2+ýSMOC 2))
GOTO460

450 SMO (I)=0. 25*(2. 0*S2+3. 0*SMO('2) ~2(3))
460 DO 470 J==2, IT

Sl=S2
* S2=SMO(J)

SMO(J)=0.25*(Sl+2.0*S2+SMO(J+1))
470 CONT IN U L

IF (IPL'-R.NE.2) GO TO 480I
SMO(NA)=0,25*(A+2.0*SMO(NA)+S2)

480 SMOCNA)=J. 25*(2.0*SMThO(NA)+3.0*S2-SI)
490 IF (iIlN-.LEJ) GO TO 550

DO 500 [L]. *NA

500 CONTINUE
xUP=SC( 1,1),-i.
J=o
DO 540 1=1 ,N!

xi=x( I)
IF (XI.L-.XUP), Go TO 530

xilow=sc ( I, J)
XUP=SC ( 1,,0+1)
YLUW:=SC ( 2,0J

IF (XLOW.NEýXCUl" Go TrO 510

GO TO 52 0
510 SLOPE=(YIJP-Yl~uWM~ xup-xlOw)
520 117' ,(J+1.1E,*( A),,ý' XUP-~X(N"
5 3U SMO ( 1) )YLOW, (X XI-XiLoW) *SLOPiE
540 C0N)NT I N GI-,
550 J~I
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560 JO-J
SY(1 )=SMO(J)
IF (W(1).LE.0.O) GO TO 570

SY(1 )=W(J)*SMO(J)
FBW(1)=W(J)

570 IF (J.GE.N) GO TO 610
580 IF (X(J+1).GT.X(J)) GO TO 610

J=J+1
IF (W(J).GT.Q.O) GO TO 590
SY(1)=SY(1)+SMO(J)
GO TO 600

590 SY(1)=SY(1)+W(J)*SMO(J)
FBW( 1)=FBW( 1)+W(J)

600 IF (J.LT.N) GO TO 580
610 IF (J.LE.JO) GO TO 630

IF (W(iL).LE.0.0) FBW(1)=J-JO+1
SY(1 )=SY(1 )/FBW(1)
DO 620 I=J0,J
SMOCI )=SY(1)

620 CONTINUE
630 J=J+1

IF (J.LJE.N) GO TO 560
RETURN
END



ftf

-32-

APPENDIX 11

The following is a complete listing of a FORTRAN subroutine

implementing the rejection rule described in this paper.



-33-

SUBROUTINE REJECT (PRED,RESPN,WEIGHT,SCRAT)
C----------------------------------------------------------
c
C REJECTION RULE FOR SMOOTHTNG (FRIEDMAN AND STUETZLE, 1982)
C
C CODED BY: J. H. FRIEDMAN AND W. STUETZLE
C DEPARTMENT OF STATISTICS AND
C STANFORD LINEAR ACCELERATOR CENTER
C STANFORD UNIVERSITY
C STANFORD, CA. 94305

C
C INPUT:
C PRED(N) :ABSCISSA VALUES IN INCREASING ORDER

RESP(N) :CORRESPONDING ORDINATE (RESPONSE) VALUES
S N :NUMBER OF OBSERVATIONS (X,Y-PAIRS)

C OUPUT:
C WEIGHT(N) :REJECTION FLAGS.
C WEIGHT(I)=0 IF OBSERVATION I IS CCNSIDERED AN OUTLIER

WEIGHT(I)=I OTHERWISE
C

C SCRATCH:
C SCRAT(N,2):INTERNAL WORKING STORAGE
C

C NOTE:
C REJECT USES SUBROUTINE RUNMED (SEE BELOW)

C -------------------------------------------------------

DIMENSION PRED(N),RESF(N),WEIGHT(N),SCRANT(N,2)
DATA FACT/4.5/
DATA RELSPA/O.i/
IF (N.GT.25) GO TO 10
I BAND=7
GO TO 50

10 IF (N.GT.100) GO TO 20
IBAND=9
GO TO 50

20 IF (N.GT.400) GO TO 30
IBAND=ll
GO TO 50

30 IF (N.GT.800) GO TO 40
IBAND=13
GO TO 50

40 IBAND=15
50 CT,-L RUNMED (RESP,WEIGHTN, IBAND)

IFIRST=IBAND/'2+I
[LAST=N-IBAND/2

DO 60 I=1,IFIRST
SCRAT( I,1 )=WEIGHT(I)

60 CONTINUE
DO 70 I=ILAST,N
SCRAT(i, 1 )=WEIGITr 1)

70 CONTINUE
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DO 90 I=IFIRST,ILAST
IM1=1-1
1p1=I+1
IF (PRED(IMl).NE.PRED(IP1)) GO TO 80

SCRAT(I,1)=0.5*(WEIGHT(IM1)+WEIGIIT(IP1))
GO TO 90

80 scRArr(i,l)=WEIGHT(IM1)+(WEIGHT(IP1).-WEIcHT(IL41))*(PRED(I)-PRFD(IMI
1) )/(PRED(IP1)-PRED(IM1))

90 CONTINUE
1=0

100 IF (1.GE.N-1) GO TO 150
I=I+1
MO=I

110 IF (PRED(I+1).GT.PRED(I)) GO TO 120
1=1+1
IF (I.LT.N) GO TO 110

120 IF (I.EQ.MO) GO TO 100
NTIE=1 -MO+1
R0O.
DO 130 J=MO,I
R=R+SCRAT(J, 1)

130 CONTINUE
R=R/NTIE
DO 14. J=MO,I
SCRAT(j, 1)=R

140 CONTINUE
GO TO 100

150 DO 160 1=1,N
WEIGHT(I)=ABS(RESP(I)-SCRAT(I, 1))

160 CONTINUE
CALL RUNMED (WE1GHT,SCRAT(1,l),NIIBAND)
IS2=N*RELSPA/2.
SUM=O.
DO 170 l=1,1S2
SUM=SUM+SCRAT (I, 1)

170 CONTINUE
ISEFF=1S2
DO 200 I=1,N
IF (I.oT.N-Ib2) GO TO 130"
SUM=SUM+SCRAT ( I+1S2, 1)
I SE F F=IS EF F+ 1

180 1F (I.LE.IS2+1) GO Tro 190
SUM=SUM-SCl~vAP(I-lS2-I, 1)

I S EFF= I S EFF- 1.
190 SCRAT(1, 2'=SUM/ISEFF
200 CONTINUE

1=0

210 IF (I-GE.N-1l) GO TO~ 260
1=1+1
MU=I

220 IF (PRED( 14I) .GT.PRED(l)) GO TO 230
1=1+1
IF (I.LT.N) GO TO ý220

230 IF (1,EQ.MO) GO TO 210
NTIE=1-MO+l



-= -

F~R=~0.

DO 240 J=MO,I
R=R+SCRAT (J, 2)

240 CONTINUE
R=R/NTIE
DO 250 J=MO,I
SCRAT (J, 2)=R

250 CONTINUE
GO TO 210

260 DO 280 I=I,N
IF (WEIGHT(I).LE.FACT*SCRAT(I,2)) GO TO 270
WEIGHT(I)=O.
GO TO 280

270 WEIGHT(I)=1.
280 CONTINUE

RETURN
END

C- -------------------------------------------------------------------
C
C

SUBROUTINE RUNMED (SEQ,SMO,N,IBAND)
C- ------------------------------------------------------------------
C
C FAST RUNNING MEDIAN FINDER (FRIEDMAN AND STUETZLE, 1982).
C
C CODED BY : J. H. FRIEDMAN AND W. STUETZLE

C DEPARTMENT OF STATISTICS AND
C STANFORD LINEAR ACCELERATOR CENTER
C STANFORD UNIVERSITY
C STANFORD, CA. 94305
C
C
C INPUT:
C SEQ(N) :RESPONSES IN ORDER OF INCREASING PREDICTOR VALUES
C N :NUMBER OF OBSERVATIONS
C IBAND :SPAN OF RUNNING MEDIANS (HAS TO BE ODD AND <=21)
C
C OUTPUT:
C SMO(N) :SMOOTHED RESPONSES
C
C NOT Z
C THE MAXIMAL SPAN CAN BE INCREASED BY INCREASING THE DIMENSION
C OF THE ARRAYS SCRAT AND ITAG
C
C---------------------------------------------------------------------------

DIMENS:ON SEQ(N),SMO(N)
DIMENSION SCRAT(21),ITAG(21)

DATA RINi/1.E20/
DO 10 I=1,IBAND
SCRAT(I) - :EQ(1)

10 CONTINUE
RMIN=SCRAT \l
IMIN2=
DO 20 1=2,IBA-ND
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IF (scRATr(i).GE.RMIN) GO TO 20
RMIN=SCRAT(I)
IMIN=I

20 CONTINUE
TEMP=SCRAT (1)
SCRAT(1 )=RMIN
SCRAT (IMIN )=TEMP
ITAG (1=) .MIN
ITAG (IMlN ) =
I=3IGO TO 40

30 I=1+1
40 IF ((I).GT.(IBAND)) GO TO 60

IF (SCRA'"(I).GE.SCRAT(I-1)) GO TO 30
TEMP=SRAT (I)
ITEMP=ITAG (I)
J=I

50 SCRAT(J)=SCRAT(J--1)
.LTAG(J)=ITAG(J-1)
J=J-l
IF (SCRANT(J-1).GT.TEMP) GO TO 530
SCRAT(J)=TEMP
ITAG(j)ý-ITEMP
GO TO 30

60 IBAND2=IBAND /2+1
RMED=SCRAT (IBAND2)
DO 70 L=1,IBAND2
SM'D(I )=RMED

70 CONTINUE
IFIRST=2
ILAST=IBAND Fl
ISMO=I)3AND2+iITMED=RMED

80 YIN=SEQ(ILAST)
YOUT=SEQ(IFIRST-1)
IF (YIN.GE.RMED) GO TO 180
IF (YOIJT.GE.RMED) GO TO 90
R-NEW=RMED
GO TO 290

90 IF (YOUT.LE.RMED) GO TO 120
KM INU S=0
RNEW=-RINF
DO 110 I=IFIRST,ILAST
S5I=SEQ(I)
IF (SI.LT.RMED) GO TO 100IGO TO 110

100 KMINUS=KMINUS+1
IF (SI.LL.RINEW) GO TO 110
RNEW=OSI

110 CONTINUE
IF (KMINUS.GFIBA!4ND2) GO TO 290
RLNEW=RM ED
GO TO 290

120 KMINUS=0

ATS -, 1N F
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RSE=-RINF
DO 160 I=IFIRST,ILAST
SI=SEQ(I)
IF (SI.LE.RMED) GO TO 130
GO TO 160

130 IF (SI.GE.RMED) GO TO 150
KMINUS=KMINUS+l
IF (SI.LE.RTS) GO TO 140
RTS =SI

140 IF (SI.LE.RSE) GO TO 160
RSE=SI
GO ýO 160

150 RSE=SI
160 CONTINUE

IF (KMINUS.1'7.IBAND2) GO TO 170
RNEW=RTS
GO TO 290

170 RNEW=RSE
GO TO 290

180 1IF (YIN.'LJE.RMED) GO TO 280
IF (YOUT.LE.RMED) GO TO 190
PNEW=RMED
GO TO 290

190 IF (you'r.GE.RMED) GO TO 220
KPLUS=0
RNEW=RINF
DO 210 I=IFIRST,ILAST
SI=SEQ(I)
IF (SI.GT.RMED)i GO TO 200
GO TO 210

200 KPLUS=KPLUS-t-
IF (SI.GE.RNEW) GO TO 210
RNEW=SI

210 CONTINUE
IF (KPLUS.GE.IBAND2) GO TO '290
RNEW =RMED
GO TO 290

220 KPLUS=O
RT B=R IN
RE3ERI
DO 260 F~IRST,ILAST
SI=SEQ (1)
IF (SI.GE.RMED) GO TO 230
GO TO 260

2.30 IF (SI.LE.RMED) GO TO 250
KPLUS=KPLUS+1
IF (Sl.GE..R'PB) GO TO 240
RTBýSI

240 IF (SI.GE..RBE), GO TO 260
RL3E=S I
GO 7O 2b0

250 RI3EzSl
260 CONTINUE'

IF (KPLU9.NE.IBAND2) GO TO 270

1 IN W "l ZT L
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GO TO 290
270 RNEW=RBE

GO TO 290
280 RNEW=RMED
290 RMED=RNEW

SMO (ISMO )=RMED
!FIRST=IFIRSTr+i
ISMO=ISMO+1
ILASr2=ILAST+l
IF (ILAST.LE.N) GO TO 80
DO 300 I-ISMO,N
SMO( I)=RMED

300 CONTINUE
RETURN
END
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Figure Captions

Figure la: Two hundred observations (points) drawn from the model
Y=sin[2w(l-X)z] + X* with ( iid standard normal.

Figure lb: The data of Figure la with the computed smooth
superimposed. The height of the bottom curve is proportional to
the span value employed at the corresponding abscissa value.

Figure Ic: Same as Figure lb with the addition of the curve
Y=sin[2v(I-X) 2 ]

Figure 2: Five hundred observations from the same model as Figure
1, with the computed smooths for both m=1 and m=5,

Figure 3a: Output of rejection rule applied to artificial dat, set.
Rejected observations are marked by squares.

Figure 3b: Output of rejection rule applied to real data set.
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TABLE I

n Pbad K %bds K

25 0.05 5 1.0 5

50 0.05 7 0.5 5

100 0.05 7 1.0 7

200 0.05 7 2.0 7

400 0.05 9 1.0 7

800 0.05 9 2.0 9

25 0.1 9 0.5 7

50 01 9 2.3 9

100 0.1 11 1.4 9

200 0.1 13 0.5 11

400 0.1 13 110 11

800 0.1 15 0.0 13

25 0.2 15 1.9 13

50 0,2 21 0,7 15

100 0.2 23 1.4 19

200 0.2 27 1.8 21

400 0.2 31 1.9 27

800 0.2 33 2.1 31

n: length of sequence

Pbad: probability of an outlier

K: Bonferroni estimate of span necessary to guarantee
breakdown probability 1 0.05

%bds- Percentage of breakdown actually observed in 1000 Mcnte
Carlo trials for span K.

K, Span necessary to guarantee breakdown probability ý 0,05
(estimated from 1000 Monte Carlo trials),
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TABLE I I

n K

•25 7

1100 9

•400 11

>800 is
)800 15

n: length of sequence

K: span of running medians in steps (1) and (3) of rejection

rule

Al
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