SMOOTHING OF SCATTERPLOTS
JEROME H. FRIEDMAN
WERNER STUETZLE
ORION 003

N

Project ORIDN

Department of Statisties Stanford I'niversity Stanford, California

by

Jerome H. Friedman
and
Werner Stuetzle
Stanford University
and
Stanford L: near Accelerator Center

ORION 003
JULY 1982

PROJECT ORION

Department of Statıstics Stanford University こtanford, California

SMOOTHING OF SCATTERPLOTS*

```
Jerome H. Friedman
Stanford Linear Accelertor Center Stanford, California
and
Werner Stuetzle
Stanford Linear Accelerator Center
and
Department of Statistics, Stanford University Stanford, California
```


ABSTRACT

Abstract

A variable span scatterplot smoother based on local linear fits is described. Lonal cross-validation is used to estimate the optimal span as a function $o f$ abscissa value. A rejection rule is suggested to make the smoother resistant against outliers. Computationally efficient algorithms making us of updating formulas and corresponding FORTRAN subroutines are presented.

*Work supported by the 'Department of Energy under coniracts DE-ACO3-76SF00515 and DE-ATO3-81-ER10843, by the Oifice of Naval Research under contract ONR NJ0014-81-K-0340, and by the U.S. Army Ressarch office under contract DAAC29-82-K-0056.

-2-

1. Introduction

A smoother is a procedure that operates on bivariate data $\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)$ and produces a decomposition

$$
\begin{equation*}
y_{i}=s\left(x_{i}\right)+r_{i}, \quad i=1 \ldots n . \tag{1}
\end{equation*}
$$

Here s is a smooth function, often simply called tre sonoth, and the r_{i} are residuals. It is possible to formally define at at constitutes a smooth function, and to define measures of smoot ess, but for our purposes an intuitive notion will be sufficient. soothers are used to summarize the association between the preiizt, variabie X and the response Y. It was pointed out by cleveland (":; and is a commonly held belief, that when looking at a scatterplot the eye is distracted by the extreme points in the point cloud, i.e., ta fuzzy background, and tends to miss structure in the bulk of the da،a. Augmentation of the plot by smooth is a possible remedy. More formally, smoothers can be regarded as curve estimators; one assumes that the response was generated by adding random noise to a smooth function:

$$
\begin{equation*}
y_{i}=f\left(x_{i}\right)+\epsilon_{i} \tag{2}
\end{equation*}
$$

and considers the smooth s as an estimate for f.

Recently scatterplot smoothers have found new use in multipie nonparametric regression (friedman and Stuetzle, 1981). Let $\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)$ denote the observations; x_{i} here is a vector in $R P$, not just a single number. Assume as above that $y_{i}=f\left(x_{i}\right)+\epsilon_{i}, 1=1 \ldots n$. Projection pursuit regression constructs an estimate m for f of the form

$$
m(x)=\sum_{i=1}^{M} s_{i}\left(a_{1}, x\right)
$$

where the α_{i} arid suitably chosen unit vectors in RP. For given α_{i}, s_{i} (essentially) is found by smoothing the scatterplet of the residuals $r_{j}^{i-1}=y_{j}-\sum_{k=1}^{i-1} s_{k}\left(\alpha_{k} \cdot x_{j}\right)$ versus α_{1}, x_{j}. The smoother described in this report is, up to minor modifications, the ore used in the current projection pursuit regression procedure.

2. Basic Concepts

According to the definition above, any procedure that passes a smooth curve thr sugh a scatterplot, for example a procedure that fits a least squares straigh! line, would be called a sinoother. This is not quite what we have in mind. Assume the data are generated according to (2). We are interested in procedures that can approximate f arbitrarily closely, given a dense enough samole, without any conditions on f apart from f being smooth. Such procedures can be based on local everaging. Take s(xi) to be the average of the responses for those observations with predictor values in a neighborhend N of X_{i} :

$$
\begin{equation*}
\left.s\left(x_{i}\right)=\operatorname{ave}: y_{j} \mid x_{j} \in 1\right) . \tag{3}
\end{equation*}
$$

Here "ave" can stand for the arithnetic mear, the median, or mire complicated ways of averaging to be discussed below. A critical parameter to be chosen is the SPAN, the size of the neighborhood over which averaging takes place. It controls the smoothness of s: The bigger the span, the smotter swill be. ro obtain consistency, i.e., to make sure that s gets arbitrarily close to f as the sampling rate increaser. one must shrink the diameter of the neighbo.hood in such a way that the number of sbservations in the neightarhood still grows to
infinity. Shrinking the neighborhood makes the systematic or bias component in the estimation error diminish, while increasing the neighborhood sample size guarantees that the variance component of the error goes to zero as well.

An alternative metrod for nonparametric curve estimation is based on series expansions: make an ansatz for s of the form

$$
s\left(x_{k}\right)=\sum_{i=1}^{M} a_{i} g_{i}\left(x_{k}\right)
$$

where the $g_{i}(x)$ can, for example, be polynomials or trigonometric functions. The constants a_{i} are then determined by fitting the series to the data, most commonly by least squares. The role of the span is played here by M, the number of terms included in the model: Trigonometric funcrions have been used with success in cases where the signal is naturally periodic. li the abscissas x_{i} are equi-spaced, the fit is particularly inexpensive to compute using the Fast fourier Transform. Both conditions are usually not fulfilled in the case of scatterplot smoothing, making the method less attractive. The use of polynomials has the drawback that they are not well suited to represent a wide variety of commoniy encourtered functions, for example, functions with asymptotes.

There are, of course, connections between smoothing by series exparision and smoothing by lacal averaging. If the series is fitted by least squarss, the fitted values $s\left(x_{i}\right)$ are weighted averages of the responses y_{i}. Depending on the abscissas and the functions $g_{i}(x)$, the weights determining $s\left(x_{1}\right)$ might or might not be concentrated on responses with corresponding predictor values close to x_{1}. If they are, the series
expansion method behaves like a local averaging method. An example of this is least squares fit of cubic splines which will be further discussed in Section 9.

3. A Simple Nonresistent Smoother

The simplest example for a local averaging type smoother is the moving average, where "ave" in equation (3) denctes the arithmetic mean. The size of the neighborhood 15 usually specified by the sparn, the number k of observations to be included in the averaging. We will assume k to be odd and the abscissas x_{i} to be in increasing order. The neighborhood can be chosen either symmetrically, containing $k / 2$ observations to the left of x_{i} and the same number to the right, or it ran be chosen to contain the k nearest neighbors of x_{i}, including x_{i}. (We assume that $k / 2$ is computed by integer division.) There are no general results on which of thes, two possibibities is better statistically. ihe nearest neighbors approach generalizes to higher dimensions, but the chorce of a symmetric neighborhood is computationaliy simpler in that exactiy one point enters and one point leaves the neighborhood as one moves from observation 1 to observation $1+i$. We will, in the following, use symnetric neighborhoods: The boundaries, where it is not possible to keep N symmetric, nave to be treated specially; a commonly used adjustiment is to shrink the neighborhood so that for $1=1$ and $i=n$, one averages oniy over $k / 2+1$ observations. With these conventions, the moving average smoother is defined by

$$
s\left(x_{i}\right)=\operatorname{mean}(y) \mid \max (1-k / 2, i) \leqslant J \leqslant \min (1+k / 2, n)
$$

obvously, the mean does not have to be recomputed every time. It can be
updated, reducing the computation from nk to n. Such updating can be done for all the smoothers we will consider, and is highly desirable because in typical apolications $k i s 5 \%$ to 30% of n, and thus the savings are substantial. The simple moving average smoother has some serious shortcomings: one disturbing property is that it does not reproduce straight liי.es if the abscissa values are not equi-spaced: Another disturbing feature is the bad behaviour at the boundaries. If, for example, the slope of the underiying function f is positive at the right boundary, the estimate for observations close to the boundary will be biased downwards; if the slope is negative, the estimate is biased upwards. Both problems can be alleviated by fitting a least squares straight line L to the observations in the neighborhood instead of fitting a constant and taking the value of the line at x, as the smoothed value. This obviously solves boch problems mentioned above. For the computation, again updating formulas can be used. The slope β and intercept af the least squares straight line through a set of points $\left(x_{1}, y_{1}\right) \ldots\left(x_{m}, y_{m}\right)$ are given by
$\alpha=\bar{y}_{m}-\beta \bar{x}_{m}$

$$
B=\frac{C_{m}}{V_{m}}
$$

with

$$
\begin{gathered}
\bar{x}_{m}=\sum x_{i} / m \\
\bar{y}_{m}=\sum u_{i} / m \\
c_{m}=\sum\left(x_{1}-\bar{x}_{m}\right)\left(y_{i}-\bar{y}_{m}\right) \\
v_{m}=\sum\left(x_{i}-\bar{x}_{m}\right)
\end{gathered}
$$

When we want to add an observation $\left(x_{m+1}, y_{m+1}\right)$, we can make use of the following easily derived formulas:

$$
\begin{aligned}
& \bar{x}_{m+1}=\left(m \bar{x}_{m}+x_{m+1}\right) /(m+1) \\
& \bar{v}_{m+1}=\left(m \bar{y}_{m}+y_{m+1}\right) /(m+1), \\
& c_{m+1}=c_{m}+\frac{m+1}{m}\left(x_{m+1}-\bar{x}_{m+1}\right)\left(y_{m+1}-\bar{v}_{m+1}\right) \\
& v_{m+1}=v_{m}+\frac{m+1}{m}\left(x_{m+1}-\bar{x}_{m+1}\right)^{2} .
\end{aligned}
$$

Analogous formulas can obviously be used for removal of an observation from the set.

4. Choice of Span

The most important choice in the use of a local averaging smoother is the chorce of the span value. If the smoother is regarded as a curve estimator, then the span controls the trade of \ddagger between bias and variance of the estimate. We lliustrate this for the case of a simple moving average smoother.: In this case, the smoothed value at point x_{i} is given by

$$
s(x,)=\frac{1}{k} \sum_{1-k / 2}^{i+k / 2} y,
$$

If we assume that the errors ϵ_{i} are 1.1 . d. with experted value zero and yariance σ^{2}, then the expected squared error at point x, is

$$
\begin{equation*}
\operatorname{ESE}\left(x_{i} \mid k\right)=\left(f\left(x_{i}\right)-\sum_{k}^{1} \sum_{1-k / 2}^{1+k / 2} f\left(x_{j}\right)\right)^{2}+\frac{1}{k} \sigma^{2} \tag{4}
\end{equation*}
$$

Increasing the span will (if $\left.d^{2} f / i x^{2} \neq 0\right)$ increase the first term, the bias component of the estimation error and decrease ine second term, the
variance component; decreasing the span will have the opposite effect. The span should be chosen such that both compnents of the error are reasonably balanced. Stated more geometrically, a larger span makes the smooth appear less wiggly by more strongly damping high frequency components of the series $(x, y i)$.

We have, so far, said rothing useful on how to chosse the span in practice. The advice given above on balancing bias and variance is not very helpful because both f and the variance of the random error are unknown:

One can estimate the rifinal span value in a particular situation as that value that minimizes an estimate for the integrated squared error

$$
I^{2}(k)=\int \operatorname{ESE}(x \mid k) d F(x) .
$$

Using the average squared residuai of the data from the smooth

$$
\hat{i}^{2}(k)=-\sum_{i=1}^{n}[y,-s(x, \mid k)]^{2}
$$

for this purpose 15 not appropriate since this is always minimized by the span value $k=1$. A better estimate is provided by a method referred to as "cross-valida: un" (M. Stone, 1974) or "predictive sample reuse" (Geisser, 1975) Each observation is in turn deleted and the value of the smooth $s_{1}, 1(x, \mid k)$ at x, is calculated from the other $n-1$ observations. The cross-validated estimate inf the integrated square erro: is

$$
\begin{equation*}
i^{2} c_{r}(k)=\frac{1}{n} \sum_{1=1}^{n}\left[y_{1} \cdots s_{1},(x, \mid k)\right]^{2} . \tag{5}
\end{equation*}
$$

Clearly, E[$\left.\hat{l}^{2} c v\right]$ equals the expected squared error obtained by applying the procedure to a sample of $n-1$ observations from the same distibution. The cross-validated estimate for the optimal span value is taken to be the value $k_{c v}$ that minimizes (5),

$$
k_{c v}=\min _{0<k S N}^{-1} \quad \hat{I}^{2} c v(k) .
$$

Model selection through c:oss-validation has been remarkably successful in a wide varioty of situations (see M. Stone, 1974, Geisser, 1975, Craven and Wahba, 1957, C. Stone, 1981).

For the moving average smoothers discussed in the previous section, the deleted smooth estimates $s(i)\left(x_{i} \mid k\right)$ are especially easy to compute; each observation is simply deleted from the neighborhood used to compute its local straight line fit. Again. the use of updating formulas makes this computation very rapid. As one moves from observation i to $1+1$, exactly two observations enter the neighborhood (i and $i+k / 2+1$) and exactly two leave it $(1+1$ and $i-k / 2)$. The (deleted) residual squared

$$
\begin{equation*}
r^{2}(i)=\left[y_{i}-e_{(i)}\left(x_{i} \mid k\right)\right]^{2} \tag{6}
\end{equation*}
$$

is computed for each observation and then averaged over all observations,

$$
\begin{equation*}
\hat{l}^{2} \operatorname{cv}(k)=\frac{1}{n} \sum_{1=1}^{n} r^{2}(i) . \tag{7}
\end{equation*}
$$

For small to moderate changes in k, $\hat{i}^{2} c y(k)$ changes very little so that it is adequate to evaluate it for several (4 to 7) discrete values of k in the range $[0<k / n \leq 1]$. The value of k corresponding to the smallest of these values is then used. This can be accomp!ished by maintaining several running average smoothers - one for each span value - in the pass over the data, thus keeping the computational cost linear in n.

So far, we have been assuming that the span is constant over the whole range of predictor values. This is not optimal if either the variance of the random component or the second derivative of the underlying function f change over the range of predictor values. A local increase in error variance would call for an increase in span, whereas an increase in second derivative of f would require a decrease: It 15 , therefore, desirable to allow the span value to adapt to these changing conditions. This requires ihat the optimal span value be choosen locally rather than choosing a single global value, Again, the form of moving average smoothers make this especially easy; the (deleted) residual squared (5) -for each of the several k values- $1 s$ averaged locally in a neightorhood of each observation

$$
\begin{equation*}
i^{2} c y\left(k ; x_{i}\right)=\frac{1}{L} \sum_{\ell=1-L / 2}^{1+L / 2} r^{2}(\ell)\left(x_{l} \mid k\right) \tag{8}
\end{equation*}
$$

rather than ginbally over all observations (7). Note that (8) alsn has the form of a simple moving average smoother and can therefore be computed rapidly through the use of updating formulas. The value that minimizes (8)

$$
\begin{equation*}
\hat{k}_{c v}\left(x_{i}\right)=\min _{0<k \leq N} \quad \hat{I}^{2} c v\left(k ; x_{1}\right) \tag{9}
\end{equation*}
$$

is the span value used for the ith observation:

Most often the shape of ${ }^{2} \mathrm{cv}\left(k_{i} x_{i}\right)$ near its mlonmun value is shallou and asymmetric, increasing mure slowly in the direction of sinaller k values: Variability in the estimate $\hat{\mathrm{I}}^{2} \mathrm{cv}$, therefore, causes $\hat{\mathrm{K}}_{\mathrm{c}}$ v to be highly yariable and biased :oward smaller values. i!though this has little effect on the qualify of the resulting smooth in terms of expected
squared eiror (ESE), it does effect its aesthetic quality since, for comparabie ESE, the less smooth solution tends to be selected. This can be remedied by forcing the procedure to take the smoothest solution in these circumstances. Epecifically, the largest span value $\hat{k}^{*} c y$ for which

$$
\begin{equation*}
\hat{I}^{2} c v^{\prime}\left(k^{*} c v i x i\right) \leq(1+\alpha) \min _{0<k \leq N} \hat{I}^{2} c v\left(k ; x_{i} ;\right. \tag{10}
\end{equation*}
$$

is used for the ith observation. Here a loosely controls an upper linit on the fraction of ESE that is to be sacrificed for the goal of smoothness. Valuss in the range $0.05 \leq a \leq 0.2$ are reasonable.

Since the optimal span value is estimated separately for each observation, its size Ean vary substantially over the range of predictor values. However, since for close abscissa values the neighborhoods overlap considerably, this variation is constrained to be smooth. The degree of smoothness is controlled by the parameter L (8) which can be regarded as a span for smoothing the (deleted) residuals squared from the original smooths: As with the original smoother, its optimal value can be estimated by cross-validation. To the extent that the variation of the ser ind der vative of f or the variation in the random component is comparable to the variation of fitself, this second level of cross validation may be beneficial. Again, updating formulas make this relatively inexpensive. However, in most circumstances chucising a nominal value for $L(02 n$ to $0.3 n)$ is adequate.

It is imfortant to note that using cross-validated residuals as a basis for choosing span value is highly sen, itive to lack of independence among the $\epsilon_{1}(2)$ as ordered on x. If there is a large positive (negative) correlation among observations with similar x vaiues,
substantial under (over) estimates will result. In situations where a high degree of auto-correlation is suspected, these span selection procedures should be used with caution.

Figure 1 illustrates the application of this smoothing algorithm to an artificial data set. (A FORTRAN subroutine implementing this algorithm is listed in Appendix 1.) The data for this examole consists of $M=200$ pairs (x_{i}, y_{i}) with the x_{i} drawn randomiy (ild) from a uniform distribution in the interval $[0,1]$. The y_{i} are obtained from

$$
y_{i}=\sin \left[2 \pi\left(1-x_{i}\right)^{2}\right]+x_{i} \in i
$$

with the ϵ; iid standard normal. The parameter ALPHA [a in (10)] was set to 0.1 and RESPAN $[L / n \ln (8)]$ was set to 0.25 (see Appendix 1). This example simulates a situation in which both the curvature of decreases ard the variance of the random component increases with increasing x. Figure la is a scatterplot of the simulated data. Figure ib also shows this scatterplot, but with the resulting smooth superimposed. The height of the curve near the botom indicates the span value chosen at each x, The span is seen to increase with x to account for the increasing noise, as well as to take advantage of the decreasing curvature of f. (For x) 0.7, the span has reached the largest value provided in the program, $k / N=0.7$.$) Figure lc is the same as figure lb except that the curve$ $y=f(x)=\sin \left[2 \pi(1-x)^{2}\right]$ is superimposed for reference. The resulting smooth 15 seen to estmate the underlying f reasonably well. Note that for a linear function $y=a x+b$ (zero curvature) the smoother will tend to use a constant (maximum) span value regaraless of (the variation of) the aminlitude of the noise.

5. Keducing Computation by Binning

$$
\begin{aligned}
& \left.u_{i}=\text { mean }\left(x_{(} ;-1\right) m+1 \ldots x_{i m}\right) ; \\
& v_{i}=\operatorname{mean}\left(y_{(}(i-1) m+1 \ldots y_{i m}\right) .
\end{aligned}
$$

Then apply the smoother described above to the $\left\{u_{1}, v_{1}\right) \ldots\left(u_{n}, m, v_{n}, m\right)$. The smooth for predictor values x; not among $u_{1} \ldots u_{n / m}$ can be obtained by linear interpolation or, at the boundaries, by extrapolation.

The computing time for lie smoother grows linearly in the number of observations, and so binning reduces the run time of the smoother roughly by a factor of m.

Figure 2 shows the results of applying the smoother to eample of $n=500$ observations generated from the same model as the data shown in figure 1, with the results of applying the binning procedure with $m=5$ superimposed. The quality of the smooth is seen to suffer very little while the computation has been substantially reduceu.

6. Resistance

As for all data analytic procedures, it is highly desirable for a scatterpiot smoother to be resistant against occasional outliers in the data. (All our analysis is conditional on the observed predictor values; nutlier thus means outlier in response.) The smoother described in Sections 4 and 5 clearly is not resistant. One way to overcome this limitation is to first screen the data with a rejection rule identifying outliers, and then apply the smoother to the cleaned data set.

We suggest a rejection rule based on running medians. A running median smoother with span k is defined by

$$
s\left(x_{i}\right)=\operatorname{med}\left(!;-k / 2 \ldots y_{i}+k / 2\right)
$$

The ends of the sequence must be treated specially, most simply by replicating the outermost values defined above. The rejection rule makes five passes over the data:

1) Compute a running median smooth s.
2) Replace $s\left(x_{i}\right)$ by $s^{*}\left(x_{1}\right)$ ubtained by linearly interpolating between $\left(x_{1}, 1, s\left(x_{i}, 1\right)\right)$ and $\left(x_{i+1}, s\left(x_{i}, 1\right)\right)$: The purpose of this step is to ensure a more realistic estimate of spread in steps (3) and (4) fur monotone (sub)sequences, which are exactly reproduced by a running median.
3) Smooth the absolute residuals $\left|r_{1}\right|=\left|y_{1}-s^{*}\left(x_{i}\right)\right|$ by a running median and obtain a sequence $v, \ldots v_{1}$ of local spread estrmates v^{*}.
4) Smooth the spquence of lucal spread estimates by a moving
```
    average with span f*n and obtain smoothed spreads v*i. This
        makes the spread estimates more stable. The same effect could
        be achieved by increasing the span of the running medians in
        Step (3); however, this would be more expensive
        computationally. In the code given in Appendix 2, the
        constant f is set to 0.3.
        5) Flag all observations for which | ri| 2c.v*i. In the code, c
        1s set to 4.5.
Some details related to the treatment of ties have been omittcd. A
FORTRAN subroutine implementing this algorithm is listed in Appendix 2.
```

The span for the running medians in Steps (1) and (3) is chosen to be increasing with the sample size n (see rable 2). A mativation for our particular choices is given in Chapter 7. We use the same span in both steps, aithough there is no inherent need to do so.

Figure 3 a shows the result of applying the rejection rule to an artificial data set. The true underlying function is a sine wave. The predictors are uniformly distributed in $[0,2 \pi]$; the random errors are Gaussian with standard deviation 0.3. Outliers ocsur with protability 0.2 ; they were generated by adding a Gaussian with standard deviation 2.4 to the original observation. Observations flagged as outliers by the rejection rule are marked by squares. Figure 3 b shows the results of applying the rejection rule to a real data set.
7. Resistance of Running Medians

The choice of span k for the running medians in Steps, ,) and (3)
gives rise to rather interest ng questions. Somewhat vagueiy stated, the rejection rule will be able to detect extreme outliers as long as these running medians do not break doun. We will now define precisely how we measure the degree of resistance of a smoother, and give results on the dependence of the resistance of a running median smoother on the span.

Abstract

Assume we want to smooth a sequence of length n. Responses can be either "good" or "bad", that is, good observations or outliers. We define random variables $b_{i} \ldots b_{n} b y b_{i}=0$ if y_{i} is good, $b_{i}=1$ if y_{i} is an outlier. Assume that $\operatorname{Prob}\left(b_{i}=1\right)=p$ and that the b_{i} are independent. (As noted by Mallows v1980), the latter assumption might not always be realistic; outliers in time series sometimes ume in bursts.) A smoothed value $s, ~ i s ~ c a l l e d ~ b a d ~ i f ~ i t ~ c a n ~ b e ~ m a d e ~ a r b i t r a r i l y ~$ large by suitable choice of the reponse values for the bad observations. A smoother is said to suffer a breakdown if one or more of the smoothed values $s i$ are bad. The probability that this happens under the above model for the b is called the breakdown probability of the smoother. It will generally depend on p and n. A smoother with breakdown probability (1-p)n is called nonresistant: (For a different definition of breakdown probability, see Mallows (1980).)

> We will now devise an approximate formula for the span necessary to guarantee an upper bound on the briakdown probability as a function of n and $p=\operatorname{prob}(b,=1)$. For that purpose, we define new random vari.dules $s_{1} \ldots s_{n-k+1}$ by

$$
s_{1}=\sum_{1}^{1+k-1} b_{1}
$$

A running median smoother suffers a breakdown if among any consecutive k observations more than $k / 2$ are bad; i.e., if $\max s i>k / 2$. This probability does not seem to be simple to evaluate, but it is easy to obtain an upper bound in terms of the binomial probability Prob!i(k,p) , $k / 2$, using the Bonferroni inequality:

```
Prob(max si > k/2) \ (n-k+1) Prob(B(k,p) >k/2).
```

This inequality provides an estimate for the span needed to guarantee a certain upper bound on the breakdown probability for given n and p. Table 1 gives estimates of the necessary span k for breakdown probability bounded by 0.05 , and several values of n and $p(n=25,50,100,200,400,800$; $p=0.05,0.1,0.21$. For a comparison, we also list the percentage of breakdowns actually observed in thousand randomly generated Bernoulli sequences for the estimated value of k, and the smallest value of k resulting in 50 or fewer breakdowns. The results show that the Bonferron estimate is close, especially for $p=0.05$ and $p=0.1$ where Prob($B(k, p)>k / 2)$ is small; this is in agreement with experience gained in using the Bonferroni inequality in multiple comparisons: The span of the running medians in steps (1) and (3) of the rejection rule described in Chapter 6 was chosen to guarantee a breakdown probability of less than 0.05 for probatility $p=0.1$ of obtaining an outiler.

Another interesting question is how fast the span $k(n)$ must grow as a function of n with everything else fixed. This question has beell answered by P. Erdös and A : Renyl (1970):

Theorem: If $k(n)=c l n n$ then

$$
\text { Prob! } \left.11 m \max _{1, \infty} \frac{s_{i}}{-1 \leq 1 \leq n-k+1}=a\right)=1 \text {, }
$$

where a is related to c via the equation

$$
\frac{-1}{c}=\ln (p(1-p))+(1-p-\alpha)\left(\ln \frac{\alpha}{1-\alpha}-\ln \frac{p}{1-p},\right.
$$

for a > c .

This theorem ו. a special case of Erdös and Renyi's theorem 2. It can be applied to our situation as follows: choose $\alpha=1 / 2-\varepsilon$. Then there exists ar n_{0} such that for all n) no we have max s_{i} (k/2 for almost all sampling sequerces. In addition, Erdös and Renyi show that

- If k grows slower than $\ln n(k(n) / \ln n \rightarrow 0$,$) , then for a'l but$ finitely many values of n, $\max s_{i}=k$ for almost ail sampling sequences. ("k cannot grow slawer than $\ln \mathrm{n}^{\circ \prime}$.)
- If k grows faster than $\ln n(k(n) / \ln n+\infty)$, then lim max $s i=k p$ for almost all sampling sequences; i.e:, the strong law of large numbers applies. (" k does not have to grow faster than $\ln n "$.)

6. An Updating Algorithm for Running Medians

There is a straightforward way to compute running medians: obtain the median of each consecutive k-tupel by sorting it: That can be substantially improved upon by making use of the fact that the set of responses defining s_{1+1} is almost the same as the set of responses defining si; only $y_{1 m}=y_{1+k / 2}$; has to be added, and yout $=y_{1} \cdot k_{1}$ has to be deleted. The following rules are easy to verify:

- If $y_{1 n}=s_{i}$, then $s_{i+1}=s_{i}$.
- If $\left.v_{1 n}\right\rangle s_{1}$ and yout s_{1} or if $y_{1 n}\left\langle s_{1}\right.$ and vout < s_{i}, then $s_{1+1}=$ \mathbf{s}_{1}.

So in the case of random data, we have to do nothing but make these tests nalf the time.

- If $\left.y_{i n}\right\rangle$ s: and yout $\left\langle s_{i}\right.$, then let k^{+}denote the number of observations in the new span that are bigger than $s i$. If $K^{+}<k / 2$, then $s_{i+1}=$ ii, else s_{i+1} is the smallest observation strictly bigger than si. The analog of that is true $1 f y_{i n}\langle s i$ and yout>si.
- If yin> s_{i} and yout $=s_{i}$, then define k^{+}as above. \quad If $k *=k / 2$, then s_{i+1} is the smaliest observation in the span strictly bigger than si; else si+1 is the smallest observation in the span that is bigger than or equal to si. The analug of that is true if y in $<s_{i}$ and $v_{\text {out }}=5$;

In appendix 2, we give a FORTRAN subroutine that implements the algorithm outlined above:

For random data, the algorithm will take $O(n k)$ operations. It is poss:ble to reduce that to $O(n \log k)$ by organizing the observations in the span into a binary tree which is kept balanced as observations are moved in and out (AVL-tree; see Knuth (1973), pp 451). Unfortunately, for the range of k that we have in mind (about 20), log k is not enough smaller than k to compensati for the increased overhead.
9. Discusision

Cleveland (1979) has suggested a scatterplot smoother also based on local linear fits. It differs from the one described in this report mainly in three respects:

- Ii does not use variable span.
- In the fit of the local strainht line determing the smooth $s\left(x_{1}\right)$ for
predictor valus x_{i}, the observations are weighted according to their distance from x_{1}. observations towarus the extremes of the span receive lower weights than observations with predictor values close to x_{i}. Asymptotic calculations suggest that assigning unequal weights should reduce the error of the curve estimate, but there is no evidence that it makes a substantial difference for sample sizes occurring in practice. It dess, however, produce a smoother looking estimate.
- The procedure derives its resistance properties not from data screening with rejection rule. Instead, each of the local straight lines is fitted, not by least squares, but by a resistart fitting procedure.

Updating formulas cannet be used in this scheme, making it comparatively expensive in terms of computing. To reduce computation, Cleveland suggests evaluating the smooth only for every m-th predictor value. The parameter m iere flays a similar role as our bin size; it would be chosen as a fraction of k. We developed our smoothing procedure because variable span is often important, and because the use of updating formulas dramatically reduces computation.

Another class of procedures suggested for smoothing are procedures based on splines. A spline function s of order: with knots at z....zk 15 a function satisfying the foilowing two ronditions:

- In each of the intervals $\left(-\infty, z_{1}\right),\left(z_{1}, z_{z}\right) \ldots\left(z_{k}=\eta_{k}\right),\left(z_{k}, \infty\right), \quad s$ is a polynomial oi degree $2-1$;
- shas \AA - 2 continuous delivatives.

One way to use spline functions in scatterplot smoothing is to fit a spline function with knots $z_{1} \ldots z_{k}$ to the data $\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)$, either by least squares or by some resistant method. The degree of smoothness is determined by the number and position of the knots. A major disadvantage of this method is that $\alpha+1$ parameters must be chosen: the number and the positions of the knots. Usually some heuristic procedure is used to place the knots once k has been fixed (Jupp, 1978). This leaves the number of knots to be determined. This number plays the rale of the span in defermining the degree of smoothing: Unfortunately, the output of the smoother can depend on k in very nonlinear way; it is easy to construct examples where the addition of one more knot substantially decreases the residual sum of squares, whereas further knots hardly make any difference. This makes k more difficult to choose than the span in local averaging smoother: furthermore, least squares fit of splines is substantially slower so that choosing k through crossvalidation is usually too experisive.

Another way is to use smoothing spiines in the sense of Reinsch (196\%): A smoothing spline s of order 2ℓ for smoothing parameter λ is the function that minimizes

$$
\sum\left(y_{1}-f\left(x_{i}\right)\right)^{2}+\lambda \int_{x_{1}}^{x_{n}} f(f) z(x) d x
$$

among all functions f with 2 derivaties. The solution really turns out to be a spline function of order 2Ω with knots $x_{1} \ldots x_{n}$; the name is thus Justified. The larger λ is chosen, the smoother s becomes; thus, λ here plays the rule of the spar. Computation of the splire for given λ requires the solution of a banded $n{ }^{*} n$ linear system A drawhack of the
method, as described here, is that it is impossible to intain an
intuitive feeling for the choice cf λ in a given example. So, one
usually fixes not λ, but the residual sum of squares around the smooth.
The corresponding value of λ then has to be found iteratively by
repeatedly solving the minimization problem. This substantially
increases the necessary amount of computation. Algorithms to determine
the optimal λ by cross-valldation usually require computation of the
singular value decomposition of an nxn matrix; they are expensive and
infeasible for sample sizes larger ina: $200-300$.

To summarize, the local averaging smoother descriled in this report has two desirable properties that set it apart $2 m$ other scatterplot smoothers: it is very fast to compute and the value of the parameter that controls the amount of smoothing is optimized locally (through crossvalidation), allowing it to change over the range of predictor values,

REFERENCES

Cleveland,W.S. (1979). "Robust locally weighted regressio and smoothing scatterplots," J. Amer. Statist. Assoc., 74, 828-836.

Erdös, P. and Renyi, A. (1970). "On a new law of large numbers." J. Anal, Math 23, 103-111.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Estimating the =orrect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik 31, 317-403.

Friedman, J. H. and Stuetzle,W. (1981). "Projection pursuit regression," J. Amer. Statist. Assoc. 76, 817-823.

Geisser. S. (1975): The predictive sample reuse method with aplications, J. Amer, Statist. Assoc: 74, 153-160.

Jupp, D. L. (1978). "Approximation to data by splines with free knots," SIAM J. Numer. Anal. 15, 328-343.

Knuth, D.E: (1973). "The art of computer programming," Vol. 3, "Sorting and searshing."

Mallows,C.L. (1980). "Some theory of nonlinear smoothers." Ann. Stat. 8. 595-715.

Reinsch, C.H. (1967). "Smoothing by spline functions N Numer. Math. 10, 177-133

Stone, C.J. (1381). Admissible selection of an accurate and parsimonious normal linear regression model. Ann. Stat. 9, 475-485.

Stone, H.M. (1974). "Cross-validatory choice and assessment uf statistical predictions." J: Roy. Statist. Soc. B-36, 111-147.

APPENDIX I

The following is a complete listing of a FORTRAN cubroutine implementing the smoothing procedure described in this paper.

SUBROUTINE SUPSMU (N,X,Y,W,IPER,ALPHA, RESPAN, IBIN,SMO,SC)

c	
C SUPER SmOOther (FRiedman and Stuetzle, 1982)	
C	
C Coded by: J. h. Friedman and w. Stuetzle	
c	department of Statistics and
c	Stanford linear accelerator center
c	STANFORD UNIVERSITY
C S'ranford Ca. 94305	
c	
C InPUT:	
	N : NUMBER OF OBSERVA'IIONS (X,Y - PAIRS).
c	$X(N)$: ORDERED ABSCISSA VALUES.
C	$\mathrm{Y}(\mathrm{N})$: CORRESYONDING ORDINATE (RESPONSE) VALUES.
c	$W(\mathrm{~N})$: (OP'PIONAL) WEIGH'T FOR EACH (X, Y) OBSERVATION.
c	
c	IPER : PERIODIC VARIABLE FLAG.
c	IPER $=1 \Rightarrow X$ IS ORDINARY ORDERED VARIABLE.
c	IPER $=2 \Rightarrow \mathrm{X}$ IS A PERIUDIC (CIRCULARLY DEFINED) VA ABLE.
C	ALPHA : FRACTIONAL SMOOTHNESS PENALITY (SEE (L0) SECTION 4).
c	RESPAN : FRACTIONAL SPAN FOR RESIDUAL SMOOTHING
C	(L/N, SEE (8) SECTION 4).
c	
¢	SPAN $=$ ABS (RESPAN $)$
	- IbIN : BINNLNG FACTOR (M, SEE SECOION 7)
C Uu'rPut:	
C	SMO(N) : SMOORHED ORDINATE (RESPONSE) VALUES.
c	- SCRATCH:
C SC($3, N$) : Internal workinu storage.	
C	
c	NOTE:
C	ALPHA=0.1 AND REESPAN=0.25 AR" REASUNABLE VALUES. FOR RESPAIN > smoother uupput is complenely cross-validated; X(I), y(i), and
c	
c	W(I) arte not usld in the calculation of smo (1). Therefore,
c	the average squared resitual.
c	- N
c	(ASR $=\operatorname{SUM} \mathrm{W}(\mathrm{I}) *(\mathrm{Y}(\mathrm{I})-\mathrm{SMO}(\mathrm{I}))^{* *} 2$
こ	$\mathrm{I}=1$
c	Can be used as a goodnessoor-mit measire for the pukpose up
c	SELECTING U'rimal values for smouthing laramertrri by
c	REpEATED AyPLICATION.
c	
c	For smali samples (N < 40) or if there are substantial serlab,
c	CORrelations berween obserations cluse in X - value, then
c	A Prespecified fixel span smuother (respan <)) Should be
c	Used. reasonable span values ake 0.3.GE. Abs (respan) : GE. 0.5.
c	
DIMENSION $X(N), Y(N), W(N), S M O(N), S C(3, N)$	
DOULLE PRECHSION SX(5),SY(5), SXX (5), SXY (5), SUM(5), F'BW(5)	
DIMENSIUN LBW(b), RESQUE (5 ,101), SMOQUE (5,191)	
INTEGEK IN, OU!	

```
    IF (Wil).LT.O.O) GO TO 20
    DO 10 I=1,N
    SC(3,I)=W(I)
40 IF (X(N).GT.X(1)) GO TO 70
    SX(1)=0.0
    FBW(1)=SX(1)
    DO 50 J=1,N
    SX(1)=SX(1)+SC(3,J)*Y(J)
    FBW(1)=FBW(1)+SC(3,J)
    CONTINUE
    A=SX(i)/FBW(1)
    DO ó0 J=1,N
    SMO(J)=A
60 CONTINUE
    RETURN
70 I=N/4
    J=3*I
    SCALE=X(J)-X(I)
80 IF (SCALE.GT.O.0) GO TO SO
    IF'(J.L.T.N) J=J +I
    LF (I.GT.I) I=I-1
    SCALE =X (J)-X(I)
    GO TU 80
90 VSML=(EPS*SC'ALE)**2
    IF (IBIN.LE.L) GO TO 1lJ
    NA=0
    SX(1):=0.0
    SY(1)=SX(1)
    FBW(1)=SY(1)
    DC 100 J=1,N
    SA(1)=SX(1)+X(J)*SC(3,J)
    SY(1)=SY(1)+Y(J)*SC(3,v)
    FBW(1)=FBW(1)+SC(3,J)
    IF (MOD(J,IBIN).NE.O) GO TO :OO
    NA=NA+1
    SC(1,NA)=SX(1)/EBW(1)
    SC(2,NA)=SY(i)/EBW(1)
    SC(3,NA)= FBW(1)
    SX(1)=0.0
    SY(1)=SX(1)
    FBW(1)=SY(1)
100 CONIINUE
    IF (MOD(N,IBIN), E(IO) GO 'IO 130
    NA=NA+1
    SC(1,NA)=SX(1)/EBW(1)
    SC(2 NA)=SY(1)/EHW(1)
    SC(3,NA)=EH⿱幺小心(1)
    GOML130
110 NA=N
    び12い1二1,N
```

```
    SC(1,J)=X(J)
    SC(2,J)=Y(J)
120 CONTINIJE
130 IBW(1)=IBW1
    IDELTA=(SPNMAX*NA-IBW(1))/4.0+0.5
    DO 140 I=2,5
    IBW(I)=MINO(NA/2,IBW(I-1)+IDELTA)
140 CONTINUE
    DO 150 I=1,5
    SX(I)=0.0
    SY(I)=SX(I)
    SXX(I)=SY(I)
    SXY(I)=SXX(I)
    FBW(I)=, XXY(I)
    SUM(I)=FBW(I)
    IF (MOD(IBW(I),2).EQ.O) IBW(I)=IBW(I)+1
150 CONTINUE
    IF (RESPAN.GE.O.0) GO TO 160
    IBWS=1
    IBW(1)=0.5*ABS(RESPAN)*NA
    IF (MOD(IBW(1),2).EQ.0) IBW(1)=IBW(1)+1
    IBW(5)=IBW(1)
    CO TO 170
160 IBWS=5
170 IF (IPER.NE. 2) GO TO 220
    IT=NA-IBW(5)+1
    IH=IBW(5)-1
    DO }190\textrm{J}=1\textrm{I},N
    DO 180 I=1,IBWS
    IF (J.LT.NA-IBW(I)+1) GO TO 180
    XT=SC(1,J)
    YT}=SC(2,J
    W'R=SC(3,J)
    SX(I)=SX(1)+XT*N'T
    SY(I)=SY(I)+YT*WT
    SXX(I)=SXX(I)+X'I*XT*W'I
    SXY(L)=SXY(I)+XT* Y'T*WT
    FBW(I)=FBW(I)+W?
180 CONTINUE
190 CONTINUE
    DO 210 J=1,1H
    DO 200 i=1, rBWS
    IF (J.CT.&BW(I)-1) GO TO 200
    XT=SC(1,J)
    YT=SC(3,J)
    W'\=SC(3,J)
    SX(I)=S*i(I)+XI'*WT
    SY(I)=SY(I)+YT*WT
    SXX(I)=SXX(I)+XT* XT*WT
    SXY(I)=SXY(I)+X'T*Y'T*W'r
    FBWW(1)=FBW(I)+W'S
200 CONIINUE
2l0 CONTINUE*
    GO '0250
220 ['1-2*1!3W(5)-1
```

```
    DO 240 J=1,IT
    DO 230 I=1,IBWS
    IF (J.GT.2*IBW(I)-1) GO TO 230
    XT=SC(1,J)
    YT}=SC(2,J
    WT=SC(3,J)
    SX(I) =SX(I)+XT*WT
    SY(I)=SY(I)+YT*WT
    SXX(I)=SXX(I)+XT*XT*WT
    SXY(I)=SXY(I)+XT*YT*WT
    FBW(I)=FBW(I)+WT
230 C.ONTINUE
240 CONTINUE
250 KBW=MINO(10i,2*INT(0.5*RESPAN*NA+0.5)+1)
    KBWO2=KBW/2+1
    IH=0
    JT=IH
    JM=JT
    DO 370 J=1,NA.
    RESMIN=BIG
    IF (J.LT.KBWO2) GO TO 260
    JT=JT+1
    JMO=JM
    JM=MOD (JM,KBW)+1
260 1H=MOD (IH,KBW)+1
    DO 310 I=1,1BWS
    IF (IBWS.NE゙.5) GO TO <70
    XT=SC(1,J)
    Y'I=SC(2,J)
    WT=SC( 3,J)
    SX'(I) =SX(I) -X'r*W'T
    SY(I)=SY(I) - Y ''* W'T
    SXX(I) =SXX(I)-X'I** XI**W'L'
    SXY(I)=SXY(I)-XT*YT*WT
    FBW (I) = FBW (I)-W'I
270 OUT=J-IBW(I)
    IN=J+IBW(I)-1
    IF (:IPER.NE.2).AND.(OUT.LT.1.OR.IN.GT.NA)) GO TO 28U
    IF (UU'.L'T.I) OU'=NA+OU'T
    IF (IN%GT.NA) IN=IN-NA
XT=SC(1,OUT)
YT=SC(2,0UT)
WT=SC(3,OUT)
SX(IN=SX(I)-XT*W'T
SY(I)=SY(I)-Y'N*W'
SXX!1)=SXX(L)-XI*X'N*W'L
SXY(I)=SXXY(L)-XT* YT*W'l'
FBW(1)=FBW(1)-W'
XT=SC(1,IN)
Y'1=SC(2,1N)
W'T=SC(3,1N)
SX(1)-SX(1)+X'1*W'G
SY(I)=SY(1)+Y'N*W'T
SXX(1)=SXX(1)+XT'*XI**WI
SXY(1)=气XY(b) + Y'1'*Y'I*W'\
```

```
    FBW(I)=FBW(I)+WT
    D=SXX(I)-SX(I)**2/FBW(I)
    VAR=D/FBW(I)
    A=0.0
    IF (VAR.GT.VSML) A=(SXY(I)-SX(I)*SY(I)/FBW(I))/D
    SM=A*SC(l,J)+(SY(I)-A*SX(I))/FBW(I)
    IF (IBWS.NE.I) GO TO 290
    SMO (J)=SM
    GO TO 320
290
    (SC}/2,J)-SM
    IF (J.GT.KBW) SUM(I)=SUM(I)-RESQUE(I,IH)
    SUM(I)=SUM(I)+RES
    RESQUE ([, IH)=RES
    SMOQUE (I, IH)=SM
    IF (VAR.LT.VSML.AND.I.LT.5) SMOQUE(I,IH)=BIG
    IF (J.LT.KBWO2) GO TO 300
    SUM(I)=SUM(I)-RESQUE (I,JM)
    IF (JT.GT.I) SUM(I)=SUM(I)+RESQUE(I,JMO)
    IF (SUM(I).GT.RESMIN.OR.SMOQUE(I,JM).GE.BIG) GO TO 300
    RESMIN=SUM(I)
    IS=I
    XT=SC(1,J)
    YT=SC(2,J)
    WT=SC(3,J)
    SX(I):=SX(I)+XT*WT
    SY(I)=SY(I)+YT*W'S
    SXX(I) =SXX(I)+XT*XT*WT
    SXY(I)=SXY(I)+X'I*YT*WT
    FBW(I)=FBW(I)+WT
3l0 CONTINUE
320 IF (IBWS.EQ.1) GO TO 370
    IF (J.GE.KBWO2) SMO(JT)=SMOQUE(IS,JM,
    IF (ALPHA.LE.0.0.OR.J.LT.KBWO2.OR.IS.GE.5) GO 'O 370
    RESMIN=(1.0+ALPHA)*RESMIN
    I=5
    GO TO 340
330 I=I+(-1)
340 IF ((-1)*((I)-(IS)).GT.0) GO TO 350
    IF (SUM(I).GT.RESMIN) GO TO 330
350 IF (I.GE.5) GO TO 360
    A=(RESMIN-SUM(I))/(SUM(I+I)-SUM(I))
    SMO(JT)=(1.O-A)*SMOQUE (I,JM)+A*SMOQUE (I +1,JM)
    GO TO 370
360 SMO(JT)=SMOQUE(I,JM)
370 CON'INUE
    IF (IBWS.NE.5) GO TO 440
    JT=JT+1
    DO 430 J=JT,NA
    IH=MOD(IH,KBW)+1
    RESMIN=BIG
    JMO-JM
    JM=MOD (JM,K@W)+1
    DO 380 [=1,5
    SUB(1)=SUII(I)-RESQUE(I,IH)+RESQUE(I,JMO)-KESQUE(I,JM)
    IF !SUM(I;.GT.KLSMIN.OR.SMOQUE(I,JM).GE.BIG) GO TO 380
```

```
    RESM&N=SUM(I)
    IS=I
380 CONTINUE
    SMO (J)=SMOQUE (IS,JM)
    IF (ALPHA.LE.O.0.OR.IS.GE.5) GO TO 430
    RESMIN=(1.0+ALPHA)*RESMIN
    I=5
    GO TO 400
390 I =I + (-1)
400 IF ((-1)*((I)-(IS)).GT.0) GO TO 410
    IF (SUM(I).GT.RESMIN) GO TO 390
410 IF (I.GE.5) GO TO 420
    A=(RESMIN-SUM(I))/(SUM(I+I)-SUM(I))
    SMO(J)=(1.O-A)*SMOQUE'(I,JM)+A*SMOQUE (I+1,JM)
    GO TO 430
420 SMC (J)=SMOQUE (I,JM)
430 CONTINUE
440 IT=NA-1
    S2=SMO(1)
    IF (IPER.NE.2) GO TO 450
    A=S2
    SMO(1)=0.25*(SMO(NA)+2.0*S2+SMO(2))
    GO TO 460
450 SMO(1)=0.25*(2.0*S2+3.0*SMO(2)\ldots..:%)(3))
460 DO 470 J=2,1T
    Sl=S2
    S2=SMO(J)
    SMO(J)=0.25*(S1+2.0*S2+SMO(J+1))
470 CONTINUE゙
    [F (IPER.NE. 2) GO TO 480
    SMO(NA)=0.25*(A+2.0*SMO(NA)+S2)
    (jo ro 490
480 SMO (NA)=().25*(2.0*SMO(NA)+3.0*S2-SI)
490 IF (LOLN.LE.L) GO 1O 550
    DO 500 1=1,NA
    SC(2,1)=SMO(1)
    CONTINUE
    XUP=SC(1,1)-1.
    j=0
    DO 540 1=1,N
    XI=X(I)
    IF (XI.LE.XUP) GO TO 530
    J=J+1
    XLOW:=SC(1,J)
    XUP=SC(1,J+1)
    YLUW==SC(2,J )
    YU!二SC(?,J+1)
    IF (XLOW.NE.YUP'! GO TO 510
    SMOPE=0.
    Gu)TO 520
51U SLOPE=(YUP-YLUW)/(XUP-XIOW)
520 1F (J+1.EQ,NA) XUP-X(N)
530 SMO(1)-YLOWr(XI-XLOW)*SLOPE
540 (ONHMNDE
550 J}=
```

```
560 J0=J
    SY(1)=SMO(J)
    IF (W(1).LE.0.0) GO TO 570
    SY(I)=W(J)*SMO(J)
    FBW(1)=W(J)
570 IF (J.GE.N) GO TO 610
580 IF (X(J+1).GT.X(J)) GO TO 610
    J=J+1
    IF (W(J).GT.O.O) GO TO 590
    SY(1)=SY(1)+SMO(J)
    GO TO 600
590 SY(1)=SY(1)+W(J)*SMO (J)
    FBW(1)=FBW(1)+W(J)
600 IF (J.LT.N) GO TO 580
6 1 0 ~ I F ~ ( J . L E . J O ) ~ G O ~ T O ~ 6 3 0 ~
    IF (W(1).LE.0.0) FBW(1)=J-J0+1
    SY(1)=SY(1)/FBW(1)
    DO 620 I=JO,J
    SMO(I)=SY(1)
    620 CONTINUE
    6 3 0 \mathrm { J } = \mathrm { J } + 1
    IF (J.LE.N) GO TO 560
    RETURN
    END
```


APPENDIX II

The following is a complete listing of a fORTRAN subroutine implementing the rejection rule described in this paper.

SUBROURINE REJECT (PRED,RESP,N,WEIGHT, SCRAT)

```
C
```

C
REJECTION RULE FOR SMOOTHTNG (FRIEDMPN AND STLETRLE, 1982)
REJECTION RULE FOR SMOOTHTNG (FRIEDMPN AND STLETRLE, 1982)
C
C
C CODED BY: J. H. FRIEDMAN AND W. STUETZLE
C CODED BY: J. H. FRIEDMAN AND W. STUETZLE
C DEPARTMENT OF STATISTICS AND
C DEPARTMENT OF STATISTICS AND
C STANFORD LINEAR ACCELERATOR CENTER
C STANFORD LINEAR ACCELERATOR CENTER
C STANFORD UNIVERSITY
C STANFORD UNIVERSITY
`STANFORD, CA. }9430` STANFORD, CA. }9430
INPUT:
INPUT:
PRED(N) :ABSCISSA VALUES IN INCREASING ORDER
PRED(N) :ABSCISSA VALUES IN INCREASING ORDER
RESP(N) :CORRESPONDING ORDINATE (RESPGNSE) VALUES
RESP(N) :CORRESPONDING ORDINATE (RESPGNSE) VALUES
N :NUMBER OF OBSERVATIONS (X,Y-PAIKS)
N :NUMBER OF OBSERVATIONS (X,Y-PAIKS)
OUPUT:
OUPUT:
WEIGHT(N) : REJECTION FLAGS.
WEIGHT(N) : REJECTION FLAGS.
WEIGHT(I)=0 IF OBSERVATION I IS CCNSIDERED AN OUTLIER
WEIGHT(I)=0 IF OBSERVATION I IS CCNSIDERED AN OUTLIER
WEIGHT(I.)=1 OTHERWISE
WEIGHT(I.)=1 OTHERWISE
SCRATCH:
SCRATCH:
SCRAT(N,2):INTERNAL WORKING STORAGE
SCRAT(N,2):INTERNAL WORKING STORAGE
NOTE:
NOTE:
REJEC'T USES SUBROUTINE RUNMED (SEE BELOW)
REJEC'T USES SUBROUTINE RUNMED (SEE BELOW)
DIMENSION PKED(N),RESF(N),WEIGHTT(N),SCRAT(N,2)
DIMENSION PKED(N),RESF(N),WEIGHTT(N),SCRAT(N,2)
DATA FACT/4.5/
DATA FACT/4.5/
DATA RELSFA/0.s/
DATA RELSFA/0.s/
IF (N.GT.25) GO TO 10
IF (N.GT.25) GO TO 10
IBAND=7
IBAND=7
GO TO 50
GO TO 50
10 IF (N.GT.100) GO TO 20
10 IF (N.GT.100) GO TO 20
IBAND=9
IBAND=9
GO TO 50
GO TO 50
20 IF (N.GT.400) GO TO 30
20 IF (N.GT.400) GO TO 30
I BAND=11
I BAND=11
GO TO 50
GO TO 50
30 IF (N.GT.800) GO TO 40
30 IF (N.GT.800) GO TO 40
IBAND=13
IBAND=13
GO TO 50
GO TO 50
40 IBAND=15
40 IBAND=15
50 CNTL RUNMED (RESP,WEIGHT,N, IBAND)
50 CNTL RUNMED (RESP,WEIGHT,N, IBAND)
IFIRST=IBAND/2+1
IFIRST=IBAND/2+1
[LAST=N-IBAND/2
[LAST=N-IBAND/2
DO 60 I=1,IFIRST
DO 60 I=1,IFIRST
SCRAT(I, 1)=WELGHT (I)
SCRAT(I, 1)=WELGHT (I)
60 CONTINUE
60 CONTINUE
DO 70 1=1LAST,N
DO 70 1=1LAST,N
SCRAT (I, I)=WEIGHM(I)
SCRAT (I, I)=WEIGHM(I)
70 CONTINUE

```
70 CONTINUE
```

```
    DO 90 I=IFIRST,ILAST
    IMl=I-1
    IPl=I+1
    IF (PRED(IMI).NE.PRED(IPI)) GO TO 80
    SCRAT (I, 1)=0.5*(WEIGHT(IMI)+WEIGHT (IPI))
    GO IO 90
    SCRAT(I,I)=WEIGHT(IMI)+(WEIGHT(IPI)-WEIGHT(IMI))*(PRED(I)-PRED(IMI
    1))/(PRED(IP1)-PRED(IML))
    CONTINUE
    I=0
10G IF (I.GE.N-L) GO TO 150
    I=I+1
    MO=I
110 IF (PREL(I+1).GT.PRED(I)) GO TO 120
    I=I+l
    IF (I.LT.N) GO TO 110
120 IF (I.EQ.MO) GO TO 100
    NTIE=I -MO+1
    R=0.
    DO 130 J=MO,I
    R=R+SCRAT (J,1)
130 CONTINUE
    R=R/NTIE
    DO 14; J=MO,I
    SCRAT(J,1)=R
140 CONTINUE
GO TO 100
150 DO 160 I=1,N
    WEIGHT(I)=ABS(RESP(I)-SCRAT(I,I))
160 CONTINUE
    CALL RUNMED (WEIGHT,SCRAT(1,1),N,IBAND)
    IS2=N*RELSPA/2.
    SUM=0.
    DO 170 I=1,IS2
    SUM=SUM+SCRAT(I,I)
170 CONTINUE
    ISEFF=IS 2
    DO 200 I=1,N
    IF (I.G'I.N-Is2) GO TO 1:0
    SUM=SUM+SCRAT (I+IS2,1)
    ISEFF=ISEFF+1
180 IF (L.LE.IS2+1) GO TO 190
    SUM=SUM-SCiNAT(I-1S2-1,1)
    ISEFF=ISEFF-1
190 SCRAT (I, 2* =SUM/ISEFF
200 CON'INUE
        I=0
210 IF (I.GE.N-1) GO TO 260
    I=I+1
    MO=I
220 IF (PRED(I+1).G'I'PRED(I)) GO TO 230
        I=I +I
        1F (I.L'.N) GO TO 220
230 IF (I.EQ.MO) &U TO 210
        NTIE=I-MO+1
```

```
        R=0.
        DO 240 J=MO,I
        R=R+SCRAT(J,2)
        240 CONTINUE
        R=R/NTIE
        DO 250 J=MO,I
        SCRAT (J, 2)=R
    250 CONTINUE
        GO TO 210
    260 DO 280 I=1,N
        IF (WEIGHT(I).LE.FACT*SCRAT(I,2)) GO TO 270
        WEIGHT (I)=0.
        GO TO 280
    270 WEIGHT (I)=1.
    280 CONTINUE
        RETURN
        END
C-------------------------------------------------------------------------------------
C
    SUBROU'IINE RUNMED (SEQ,SMO,N,IBAND)
C------------------------------------------------------------------------------
C
C FAST RUNNING MEDIAN FINDER (FRIEDMAN AND STUETZLE, 1982).
C
C CODED BY : J. H. FRIEDMAN AND W. STUETZLE
C DEPARTMENT OF STATISTICS AND
C. STANFORD LINEAR ACCELERATOR CENTER
C STANFORD UNIVERSITY
C STANFORD, CA. }9430
C
C INPUT:
C SEQ(N) :RESPONSES IN ORDER OF INCREASING PREDICTOR VALUES
C N :NUMBER OF OBSERVATIONS
C IBAND : SPAN OF RUNNING MEDIANS (HAS TO BE ODD AND < < 2l)
C O
C SMO(N) :SMOOTHED RESPONSES
C
NO'T: :
C T:IE MAXIMAL SPAN CAN BE INCREASED BY INCREASING THE DIMENSION
C OF THE ARRAYS SCRAT AND ITAG
C
C----------------------------------------------------------------------------------------
    DIMENS:ON SEQ(N),SMO(N)
    DIMENSION SCRAT(21),ITAG(21)
    DATA KINs*/1.E20/
    DO 10 I= 1,IBAND
    SCRAT(I)
    ITAG(I)=1
    10)CONIINUE
    KMIN=SCRAT(:
    IMIN=1
    DU 2O I =2,IBAND
```

```
    IF (SCRAT(I).GE.RMIN) GO TO 20
    RMIN=SCRAT(I)
    IMIN=I
20
40 IF ((I).GT.(IBAND)) GO TO 60
    IF (SCRAM(I).GE.SCRAT(I-1)) GO TO 30
    TEMP=SCRAT (I)
    ITEMP=ITAG(I)
    J=I
50 SCRAT (J)=SCRAT (J--1;
    ITAG (J)=ITAG(J-1)
    J=J - ?
    IF (SCKAT(J-1).GT.TEMP) GO TO 50
    SCRAT (J)=TEMP
    ITAG(J)=ITEMP
    GO TO 30
60 [BAND2 = [BAND / 2+1
    RMED=SCRAT(IBAND2)
    DO 70 I=1, {BAND2
    SMO(I)=RMED
70 CONTINUE
    IFIRST=2
    ILAST=IBAND +1
    ISMO=IBAND 2 +1
    TMED=RMED
80 YIN=SEQ(ILAST)
    YOUT=SEQ(IFIRST-1)
    IF (YIN.GE.RMED) GO TO 180
    IF (YOUT.GE.RMED) GO TO 90
    RNEW=RMED
    GO 'iO 290
90 IF (YOUT.LE.RMED) GO TO 120
    KMINUS=0
    RNEW=-RINF
    DO 110 I=IFIRST,ILAST
    SI=SEQ(I)
    IF (SI.LT.RMED) GO TO 100
    GO TO 110
100 KMINUS=KMINUS+1
    IF (SI.LE.RNEW) GO TO 1lO
    RNEW=SI
110 CONTINUE
    IF (KMINUS.GE.IPAND2) GO TO 290
    RNEW=RMED
    GO TO 290
120 KM1NUS=0
    SGO=-KINF
```

```
    RSE=-RINF
    DO 160 I=IFIRST,ILAST
    SI=SEQ(I)
    IF (SI.LE.RMED) GO TO 130
    GO TO 160
130 IF (SI.GE.RMED) GO TO 150
    KMINUS=KMINUS+1
    IF (SI.LE.RTS) GO TO 140
    RTS=SI
140 IF (SI.LE.RSE) GO TO }16
    RSE=SI
    GO O 1.60
150 RSE=SI
160 CONTINUE
    IF (KMINUS.N'.IBAND2) GO TO 170
    RNEW=RTS
    GO TO 290
170 RNEW=RSE
    GO TO 290
180 LF (YIN.LE.RMED) GO TO 280
    IF (YOUT.LE.RMED) GO TO }19
    RNEW=RMED
    GO TO 290
190 IF (YOUT.GE.RMED) GO TO 220
    KPLUS=C
    RNEW=RINF
    DO 210 I=IFIRST,ILAS'T
    SI=SEQ(I)
    IF (SI.GI.RMED) GO TO 200
    GO TO 2l0
200 KPLUS=KPLUS+1
    IF (SI.GE.RNEW) GO TO 210
    RNEW=SI
210 CONTINUE
    IF (KPLUS.GE.IBAND2) GO TO 290
    RNEW=RMED
    GO TO 290
220 KPLUS=0
    RTB=RINF
    RBE=RI
    DO 260 . FIRS'I,ILAST
    SI=SEQ(I)
    IF (SI.GE.RMED) GO TO 230
    GO TO 260
230 IF (SI.LE.RMED) GO TO 250
    KPLUS=KPLUS+1
    IF (SI.GE.RTB) GO TO 240
    RTB=SI
240 IF (SI.GE.RBE) GO TO 260
    RBet=SI
    GO TO 200
250 RBE=SI
260 CONMINUE
    1F (KPLUS.NE.IBAND2) GO TO 270
    RNEW=RTB
```

GO TO 290
270 RNEW=RBE
GO TO 290
280 RNEW=RMED
290 RMED=RNEW
SMO (ISMO) = RMED
IFIRST=IFIRS'T+I
$I S M O=I S M O+1$
ILAS ${ }^{m}=I L A S T+1$
IF (ILAST.LE.N) GO TO 80
DO 300 I $=I S M O, N$
$\operatorname{SMO}(I)=$ RMED
300 CONTINUE
RETURN
END

Figure Captions

```
Figure fa: Twe hundred observations (points) drawn from the model
    Y=sin[2\pi(i-X)2] + X\in with e iid standard normal.
Figure lb: The data of Figure la with the computed smooth superimposed. The height of the bottom curve is proportional to the span value employed at the corresponding abscissa value.
Figure lc: Same as Figure lb with the addition of the curve \(y=\sin \left[2 \pi(1-x)^{2}\right]\)
Figure 2: Five hundred observations from the same model as Figure 1 , with the computed smooths for both \(m=1\) and \(m=5\).
rigure 3a: Output of rejection rule applied to artificial date set. Rejected observations are marked by squares.
Figure 3b: Output of rejection rule applied to rea! data set.
```


FIGURE 2

FIGURE 3b

TABLE I

	n	Pbad	\bar{K}	\%bds	K	
	25	0.05	5	1.0	5	
	50	0.05	7	0.5	5	
	100	0.05	7	1.0	7	
	200	0.05	7	2.0	7	
	400	0.05	9	1.0	7	
	800	0.05	9	2.0	9	
	25	0.1	9	0.5	7	
	50	0.1	9	2.3	9	
	100	0.1	11	1.4	9	
	200	0.1	13	0.5	11	
	400	0.1	13	1.0	11	
	800	0.1	15	0.0	13	
	25	0.2	15	1.9	13	
	50	0,2	21	0.7	15	
	100	0.2	23	1.4	19	
	200	0.2	27	1.8	21	
	400	0.2	31	1.9	27	
	800	0.2	33	2.1	31	
n :	length of sequence					
Pbad:	probability of an outlier					
$\overline{\mathrm{K}}$:	Bonferroni estimate of span necessary to guarantee breakdown probability 90.05					
\%bds :	Percentage of breakdown actually observed in 1000 Mcnte Carlo trials for span \bar{K}.					
K :	Span necessary to guarantee breakdown probability ≤ 0.05 (estimated from 1000 monte $C a r l o t r i a l s)$.					

TABLE II

```
\begin{tabular}{ll}
\(n\) \\
\hline
\end{tabular}
S25
7
1100 9
\400 11
$800
    1 3
>800 15
K: span of running medians in steps (1) and (3) of rejection
```

n : length of sequence rule

SECURITY CLASSIFICATION OF TMIS PAGE (When Data Entervd)

17. DISTRIBUTION STATEMENT, of tho edstrect miored in Block 20, if differmi trom Report)
10. SUPPLEMENTARY NOTES

15 KEY WORDS (Continue an reverze elde if neceseary and ldentify by block number)
rot.stness, smoothing, curve estimation, regression, outlier detecion

A variable span scatturplot smoother based on local linear fits is described. Local cross-validation is used to estimate the optimal span as a function of abscissa value. A rejection rule is suggested to make the smoother resistant against outliers. Computationaily efficient algorithms making use of updating formulas and corresponding FORTRAN subroutines are presented.

UNCLASSIFIEO
§NO102•6F O142001
security cbassificaticnor ris paine men dere Antered

