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SMOOTHING OF SCATTERPLOTS®

Jerome H. Friedman
Stanford Linear Accelertor Center
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and
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Department of Statistics, Stanford University
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ABSTRACT

A variable span scatterplot smoother based on local linear ¢§its is
described. Loral cross-validation is used to estimate the optimal span
as a funclion of abscissa vaiue. A rejection rule is suggested to make

the smoother resistant against outliers. Computationally efficient
algorithms making us: of updating formulas and corresponding FORTRAN

subroutines are presented.

*Work supported by the ‘Department of Energy under contracts DE-
AC03-76SFD0515 and DE-AT03-81-ER10343, by the 0ifice of Naval Research
under contract ONR NJ0014-81-K-0340, and by the U.S. Army Rescarch Oftice
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A smoother is =& procedure that operates on bivariate data
(x4,91)...(Xn,yn) and produces a decomposition

vi = s(x3) + ry, i=l...n. (GD)

Here 8 is a smooth function, often simply called tre wncoth, and the rj;
are residuals, It is possible to formally define ....at constitutes a
smooth function, and to define measures of smoot .ess, but for our
purposes an intuitive notion will be sufficient. sn0o0thers are used to

summarize the association between the preu:>t> variabie X and the

response Y. 1t was pointed out by Cleveland (*"7-} and is a commonly
held belief, that when looking at a scatterplot the eye is distracted by
the extreme points in the point cloud, i.e., *+ a2 tuzzy backaground, and
tends to miss structure in the bulk of the de.», Augmentation of the
g plot by a smooth is a possible remedy. More formally., smoothers can be

regarded as curve estimators; one assumes that the response uas generated

by adding random noise to a smooth functicn:

yi = f(x;) + €; (2)

and conciders thes smooth 3 as an estimate for f.

Recently scatterplot smocthers have found & new use 1n muitiple
nonparametric regression (friedman and Stuetzle, 1981). Let
(X4,¥1) ... (XpVns denote the observations; x; here is a vector in RP, not
just a single number., Assume as above that y; = f(x;) + €3, Yy = 1...n.
Projectiyon pursurt regression constructs an estimate m for  of the form

M

m(x) = Z s;(a,.x),
121
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where the a; and suitably chosen unit vectors in RP. For given &j, 8;
(essentially) is found by smoothing the scatterplet of the residuals
i-1
rji-t = y;-¥ sklax.xj) versus a,.xj. The smoother described in this
k=1

report is, up to minor modifications, the one used 1in the current

projection pursuit regr2ssion procedure,

2. Bagic Concepts

According to the definition above, any procedure that passes a smooth
curve through a scatterplot, for example a procedure that fits a least
squares straigh' line, would be called a smoother. This 1is not quite
what we have in mind. Assume ‘he data are generated according to (2).
We are interested in procedurcs that can approximate § arbitrarily
closely, given a dense encugh sample, wi1thout any conditions on f apart
from f being smooth. Such grecedur2s can be based on local averaging.
Take s(x;) to be the averane of the responses for those observations with
predictor values in a neighborhcnd N of xj:

s{x;) = ave(yj|x56 . (3
Here "ave"” can stand for the arithmetic mean, the median, or nmrure
complicated ways of averaging to be discussed belou. A critical
parameter to be chosen is the SPAN, the s1ze of the neighborhood over
which averaging takes place, It controls the smoothness of s. The
bigger the span. the smother s will be, Yo obtain consistency, i.e., to
make sure that s gets arbytrarily c¢lose to t as the sampling ratle
1ncreases. one must shrink the diameter of the neighboshood vn such a way

that the number of oJbservations yn the neighborhood stv!1 grows to
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infinity. Shrinking the neighborhood makes the systematic or bias
component in the estimation error diminish, while ncreasing the
neighborhood sample size guarantees that the variance component of the

error goes to zero as wuell.

An alternative method for naonparametric curve estimation 1is based on

series expansions: make an ansatz for s of the form
M
s(xg) = ¥ ajgjlxk)
izt

where the g;(x) can, for example, be polynomials or trigonometric
functions. The constants a; are then determined by fitting the series to
the data, mest commonly by least squares., The role of the span 1s played
here by M, the number of terms included 1n the model. Trigonometric
functions have been used wWwith success in cases where the signal s
naturally periodic. 11 the abscissas x; are equi-spaced, the fit 1s
particularly 1nexpensive to compute using the Fast Fourier Transform.
Both conditions are usually not fulfilled 1n the case of scatterplot
smoothing, naking the method less attractive. The use of polynomials has
the drauback that they are not well surted to represent a wide variety of

commonly encourtered functions, for example, functions with asymptotes.

There are, of course, connections between smoothing by series
expansion and smoothing by leccal averaging. 1f the series 15 fitted by
least squares, the fitted values s({x;) are weighted averages of the
responses yj. Depending on the abscissas and the functions g;(x), the
weights determining s(x,) might or might not be concentrated on responses

Wwith corresponding predictor values close to x,. If they are, the serves
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expansion method behaves like a local averaging method. An example of
this is teast squares fit of cubic splines which Wwill be further

discussed in Section 9,

3. A Simple Nonresistant Smoother

The simplest example for a local averaging type smoother is the moving
average, uwhere "ave" 1n equation (3) denctes the arithmetic mean. The
s12e of the neiyhborhood 15 usually specified by the span, the number k
of observations to be included in the averaging. We w11l assume k to be
odd and the abscissas x; to be in increasing order. The neighborhood can
be chosen either symmetricaliy, containing k/2Z observations to the left
of x; and the same number to the right, or it can be chosen to contain
the k nearest neighbors of x;, including xj. (We assume that k/2 is
computed by integer division.) There are no general results on uhich of
thes: two possibilities is better statistically. The nearest nerghbors
approach generalizes to higher dimensions, but the choice of a symmetric
nei1ghborhood is computationally simpler in that exactly one point enters
and one point leaves the neyghboirhood as one moves from ohservation 1 to
ohservation 1+1,. HWe will, in the following, use symmetric neighborhoods.
The boundaries, where it is not possible to keep N symmetric, have to be
treated specially; a commonly wused adjustment 15 to shrink the
neighborhood 20 that +for 1=1 and i=n, one sverages only over k/2+1
observations. With these conventions, the movina average smoother is
defined by

s(x;} = meanly,lmax(i-k72,1) ¢ 3 ¢ minGi+krs2,n0.

thyrously, the mean does not have to be recomputed every time. 1t can be




updaterd, reducing the computation from nk to n. Such updating can be
done for all the smoothers we will consider, and is highly desirable

because 1n typical apwnlications k 1s 5% to 30% of n, and thus the savinns

are substantial. The simple moving averaige smoother has some serious
snortcomings. One dysturbing property 1s that 11t duves not reproduce
straight 1li':s 1f the abscissa values are not equi-spaced. Ancther
disturbyng feature 1s the bad behaviour at the boundaries. If, for

example, the slope of the underiying function f 15 positive at the right
boundary. the estimate for observations close to the boundary wi1ll be
biased downuwards; 1t the ¢clope is negative, the estimate is brased
vpuards. Both problems can be alleviated by fitting a least vquares
straight line L to the observations 1n the neirahborhood 1nstead of
fitting a constant and taking the value of the line at x, as the smoothed
value. This obviously solves bo.h problems mentioned above. For the
computation, again updating formulas can be used. The slope B and
intercept a of the least squares straight lYine through a set of points

(X41:¥1). .- (Xmrym) are given by

Cm
B = —
Vi
with
Xm = z X/,
Fa = X vism
Cw = 2 (Xy=Xmdlyi-Pm).
Vm = ): (X‘_in)‘\a




When we want to add an observation (Xee1:¥Ymet1)» We can make use of the

foilowing easi1ly derived formulas:

§m§1 = (mi. + Xp‘¢1) /7 (n+1),
Vet = (T + Yueq) 7 (m+1),
m+ 1
Cmet = C + = (Xpsa = Xua 1) (Ymet = Vpaq)d,
m
m+1
Vimet = Vi + — (Xmey = Xmar)2,
m

Analogous formulas can obviously be used for removal of an observation

from the set.

4. Cchoice of Span

The most important choice in the use of & local averaging smoother is
the choice of the spar value. 1f the smoother is regarded as a curve

estimator, then the span controls the trade off between bias and variance

of the estimate. We sllustrate this for the case of a simple moving
average smoother, In this case, the smoothed value at pownt x; is given
by
1 i+ks2
six,) = = Yoy,
kK 1-krs2

1+ we assume that the errors €; are v,1.d. with expected value zero and

variance 6%, then ihe expected squared error at point x, 1s

1 14k/s2 i
ESE (x;]k) = (F(x;) - - ¥ #(x;) )7 + = ol (4)
k 1-ks2 k

Increasing tlie span will (11 d2§/1x24D) ncrease the f.rst term, the bras

component of the estimation error and decrease the second term, the
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variance component; decreasing the span will have the opposite effect.
The span should be chosen such that both compnents of the error are
reasonably balanced. Stated more geometrically, a larger span makes the
smooth appear less wWiggly by more strongly damping high frequency

components of the series (x,.y;J).

We have, so far, said nothing useful on how to choosse the span 1n
practice. The advice given above on balancing bias and variance 1s not
very helpful because both f and the variance of the random error are

unknown .

One can estimate the cr¢inal span value yn a particular situation as
that value that minimizes an estimate for the integrated sjyuared error

‘\
12(k) = J ESE(x|k) dF (x).

Using the average squared residual of the data from the smooth

1
12(k) = - [y ,-s(x,|k)]?

H-MD

n izl
for this purpose 1s not appropriate since this 1s always m:nimized by the

span value k=1. A better estimate 15 provided by a method referred to as

*cross-valida® on" (M. Stone, 1974) or ‘"predictive sample reuse”
(Gersser, 1975) Each observation 1s 1n  turn deleted and the value of
the smooth s(.,(x.lk) at x, 1s calculated ‘from the other n-1}
observaticns, The cross-validated estimate nf the integrated square
erros 18
1 n
17.0(ks = - } {y, -~ s(,,(x‘,ik)]z. i5)
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Clearly, ELi2.,] equals the expected squared error obtained by applying
the procedure to a sample of n-1 observations from the same dist:ibution.
The cross-validated estimate for the optimal span value is taken to be
the value key that minimizes (5),

kev = min-' 2., (k).
0¢k §N

Model selection through cross-validat.on has been remarkably successful
in & wide varicty of situations (see M. Stone, 1974, Geisser, 1975,

Craven and Wahba, 1957, €. Sione, 1981).

For the moving average smeothers discussed in the previous section,
the deleted smooth estimates s(i,(xilk) are especially easy to compute;
each observation is simply deleted from the neighborhood used to compute
its local straight line fit. Again. the use of updating formulas makes
this computation very rapid. As one moves from observation i to 141,
exactly tuwo observations enter the neighborhood (i and i+k/2+1) and
exactly tuwo leave it (1+1 and i-k/2). The (deleted) residual squared

riciy = Dyi - eoiy (x5]K012 (6)
is computed for each observation and then averaged over all observations,
1

izg, (k) = —
n =1

r2

[n =

Ciye 7

For small to moderate changes in k, 12¢,(k) changes very little so that
it is adequate to evaluate it for several (4 to 7) discrete values of k
in the range [0 ¢ k/n € 1f. The value of k corresponding to the smallest
of these values 1s then used. This can be accomp!ished by maintaining
several running average smoothers - one ftor each span value - 1n the pass

over the data, thus keeping the computational cost linear in n.

rap,
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So far, ue have been assuming that the span 1s constant over the uwhole
range of predictor values. Thic s not optimal if either the variance of
the random component or the second derivative of the underlying function
t change over the range of predictor values. A local increase in error
vartance would call for an increase in span, whereas an 1ncrease in
second derivative of ¥ would require a decrease. 1t 1s, therefore,
desirable to allow the span value to adapt to these changing conditions.
This requires that the optimal span value be choosen locally rather than
choosing a single global value. Again, the form of moving average
smoothers make this especially easy; the (deleted) residual squared (5)
-for each of the several k values- 1s averaged locally 1n a neilghborhood

of each ohservation

. 1 1+L72
120y (kixi) = - ) rog; (xglk) (8)
L 2=1-1/2
rather than glnbally over all observations (7). Nete that (8) alsn has

the form of a simple moving average smoother and can therefore beo
computed rapidly through the use of updating formulas. The value th=at
minimizes (8)

Kev(xi) = min? 12.,(k;x,) (9)
O<Ck ¢N

1s the span value used tor the 1th observation,

Most often the shape of *Z., (k;xi) near *ts mitimum value is shallou
and asymmetrac, increasing wore slowly in the direction of smaller k
values . Yartability 1n the estimate izcv, therefore, causes ﬁcv to be
highly variable and biased toward smaller values. Although this has

little effect on the qual.ry of ithe resulting smooth 1n terms of expected

ia
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squared error (ESE}, 1t does offect i1ts aesthetyic guality since, for
comparabie ESE, the less smooth solution tends to be selected. This can
be remedied by forcing the procedure to take the smoothest solution in
these circumstances. Specifically, the largest span value k¥, for which

izcv(k*cv;xi) ¢ (1+a) min izcv(k;xii (10)
0Ck ¢N

is used for the ith observation. Here o loosely controls an upper linit
on the fraction of ESE that 1is to be sacrificed for the goal of

smeothness. Valu2s 1n the range 0.05 ¢ a ¢ 0.2 are reasonable.

Since the optimal span value 15 estimated separately for each
observation, 1ts size can vary substantially over the ranuve of predictor
values. However, since for close abscissa values the neighborhoods
overlap considerably, this variation is constrained to be smooth. The
degree of smoothness 1s controlled by the parameter L (8) which can be
regarded as a span for smoothing the (deleted) residuals squared from the
original smooths. As with the original smoother, 1ts optimal value can
be estimated by cross-validation, To the extent that the variation of
the ser nd der-vative of f or the variation 1n the random component s
comparable to the variation of f 1tself, this second level of cross-
validatien may be bheneficial. Agan, updating formulas make this
retatively nexpensive, However, in most circumstances chu'sing a

nominal value for L (0 2n to 0.3n) 1s adequate.

It 's mrortant to note that using cross-validated residuals as a
basis for choosing span value 1s highly sen,itive to lack of independence
among the €, (2) as ordered on x,. ¥ there 1s a large positive

(negative) correfation among observations with symilar x vaiues,
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substantial under (over) estimates will result, In situations where a
high degree of auto-correlation 1is suspected, these span selection

procedures should be used with caution.

Figure 1 illustrates the application of this smoothing algorithm to an
artificial data set. (A FORTRAN subroutine implementing vhis algorithm
is listed in Appendix 1.) The data for this examnie consists of M=200
pairs (x;i,y;) with the x; drawn randomly (11d) from a uniform
distribution in the interval [0,1]. The y; are obtained from

vi = sinl2n(1-%x5)2] + xje;
with the €¢; iid standard normal. The parameter ALPHA [a in (10)] was set
to 0.1 and RESPAN [L/n 1n (8)] was set to 0.25 (see Appendix 1). This
example simulates a situation 1n which both the curvature of f decreases
and the vartance of the random component 1ncreases with increasing x.
Figure la 15 a scatterplot of the simulated data. Figure 1b also shous
this scatterpiot, but with the resulting smooth superinposed. The height
of the curve near the bottom indicates the span value chosen at each x.
The span 1s seen to wncrease with x to account for the increasing noise,
as wWell as to take advantage cof the decreasing curvature o7 f, (For X )
0.7, the span has reached the largest value provided 'n the program,
k/8 = 06.7.) Figure lc s the same as Figure b except that the curve
Yzt (x)=sin(2n(1-x)2] 1s superimpos2d for reference. The resulting smooth
1s seen to estimate the underlying f reasonably well, Note that for a
lynear function y=axtb (zero curvature) the smoother will tend to use a
constant (max:mum) span value regardless of (the variation of) the

amptitude of the noise.
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5. keducing Computation by Binning

In the previous sections, we have described a fairly intricate
scatterplot smoother,. As an essential building block of projection
pursuit regression (Friedman and Stuetzle, 1981), 1t has performed well.
In this context, the smoother is applied to the full data set many times
in a single run. In order for such a procedure to be computationally

feasible for large data sets, it is necessary that the smoother be as

fast as possible. One possibility to increase speed 1is by binning.
Denote the observations for one particular scatterplot by
(X9,¥4) .. (Xpe¥nd. We assume here that the observations already have
been sorted so that the x; are 1in increasing order. thcose a bin size,

say m, and define new data points (uq,vy)...(Up, Vi /m) by

uj mean (X(i-1)met-.Xim)i

vi 2 mean (Y(i-1)me1...Viml.
Then apply the smoother described above to the <{uy,vi)...(Un/wVn/m).

The smooth for predictor values xj not among uy...un,m can be obtained by

linear interpolation or, at the boundaries, by extrapolation,.

The computing time tor the smoother grows linearly in the number of
observations, and so binning reduces the run time of the smoother roughly

by a factor of m.

Figure 2 shouws the results of applying the smoother to a <ample of
n=500 observations generated from the same model as the data shouwn in
Figure 1, with the results of applying the binning procedure with m=5
superimposed. The quality of the smooth 1s seen to suffer very little

while the computation has been substantially reduceu.
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6. Resisiance

As for all data analytic procedures, 1t s highly desirable for a
scatterpiot smoother to be resistant against occasional outliers in the
data. (A1l our analysis is conditional on the observed predictor values;
nutlier thus means outlier in response.) The smoother described n
Sections 4 and 5 clearly 1is not resistant. One way to overcome this
limitation is to first screen the data with a rejection rule identifying

outliers, and then apply the smoother to the cleaned data set.

We suggest a rejection rule based on running medians. A running
median smoother with span k 1s defined by
s(xi) = med (;i-ks2...y;+k/72)

The ends of the sequence must be treated specrally, most simply by
replicating the outermost values defined above. The rejection rule makes
five passes over the data:

1) Compute a running median smooth s.

2) Replace s(x;) by s*{(x,) «obtavned by 1l nearly interpolating
betuween (x,.4, s(xi-4J)) and (Xijse1r, S{Xieq))e The purpose of
this step 1s to ensure a more realistic estimate of spread 1n
steps (3) and (4) +{or monotone (sub)sequences, which are
exactly reproduced by a running median.

?) Smooth the absolute residuals |r,| = | yy - s*xi)| by a
running median and obtain a sequence vy ..v,, of locsl spread
estimates v¥*,

4) Smooth the sequence of lucal spread estimates by a moving




average with span f¥n and obtain smoothed spreads v¥;. This
makes the spread estimates more stable. The same effect could
be achieved by increasing the span of the running medians in
Step (3); houever, this would be more expensive
computationally. In the code given 1in Appendix 2, the
constant f is set to 0.3.
5) Flag all observations for which | ril 2 ¢c-v¥;. In the code, ¢
18 set to 4.5,
Some details related to the treatment of ties have been omitted. A

FORTRAN subroutine implementing this algorithm is listed in Appendix 2.

The span for the running medians in Steps (1) and (3} is chosen to be
increasing with the sample size n (see Table 2). A motivation for our
particular choices is given in Chapter 7. We use the same span in both

gsteps, aithough there is no inherent need to do so.

Figure 3a shous the result of applying the rejection rule to an
artificial data set. The true undertying function is a sine uave, The
piredictors are uniformly distributed in [0,2n); the random errors are
Gaussian with standard deviation 0.3. Outliers occur with protabil..y
0.2; they were generated by adding a Gaussyan wrth standard deviaticn 2.4
to the original observation, Observations +{lagged as outliers by the
rejection ruie are marked by squares. Figure 3b shous the results of

applying the rejection rule to a real data set.

7. Resistance of Running Medirans

The choice of span ¥ ‘fc¢r the running medians n Steps ') and (3)
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gives rise to rather interest ng questions. Somewhat vaguely stated, the
rejection ruie will be able to detect extreme outliers as long as these
running medians do net break doun. We w11l now define precisely how ue
measure the degree of resistance of a smoother, and give results on the

dependence of the resistance of a running median smoother on the span.

Assume we want to smooth a sequence of length n. Responses can be
etther "good"™ or "bad", that 1s, good observations or outliers. We

0 1f yij 1s good, b; =1 it y; 1s

t

define random variables b;...bpn by bj;

H

an outlier, Assume that Prob(b; 1Y = p and that the bj are
independent. (As noted by Mallows 1980), the Jatter assumption might
not aluways be realistic; outliers n time series sometimes vome n
bursts.) A smoothed value s, i1s called bad if 1t can be made arbitrarily
large by suitable choice of the reponse values for the bad observations.
A smoother is said to suffer a breakdoun if one or more ot the smoothed
values s; are bad. The probability that this happens under the above
model for the b 15 called the breakdown probability of the smoother. 1t
will generally depend on p and n. A smouther with breakdown probabilty

(1-p)" 1s called nonresistant. (For a different definition of breakdoun

probability, see Mallows (1980).)

We will nouw devise an approximate formula for the span necessary to
guarantee an upper bound on the br.akdown probabiiity as a function of n
and p = Prob(b,=1), For that purpose, wWwe define new random variuauvles

S1.:.Sn-k+q DY
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A running median smoother suffers a breakdown if among any consecutive k
observations more than ks2 are bad; ie., if max s; > ks2. Thic
probability does not seem to be simple to evaluate, but it 1is easy to
obtain an upper bound in terms of the binomial probability Probleik.,p? >
k72, using the Bonferroni inequality:
Prob(max s; > ks2) £ (n-kx+1) Prob(B(k,p) > kr2).

This inequality provides an estimate for the span needed to guarantee a
certain upper bound on the breakdoun probability for given n and p.
Table 1 gives estimates of the necessary span k for breakdown probability
bounded by 0.05, and several values of n ond p (n=25,50,100,200,400,8G0;
p=0.05,0.1,0.2). for a comparison, We also list the percentage of
breakdowns actually observed in thousand randomly generated Bernoulli
sequences for the estimated value of k, and the smallest value of k
resulting wn 50 or fewer breakdouns. The results show that the
Bonferrony estimate is close, especially for p=0.05 and p=0.1 uhere
Prob(8(k,p) » k/2) 1s small; this is in agreement with experience gained
in using the Bonferrony inequality in multiple comparisons. The span of
the running medians 1n Steps (1) and (3, of the rejection rule described
in Chapter 6 uwas chosen to guarantee a breakdown probability of less than

0.05 for probability p=0.1 of obtarning an outlier.

Another interesting question 1s how fasi the span k(n} must grow as a
function of n wWith everything else fixed. This «question has been
answered by P, Erdos and A. Reny1 (1970):

Theorem: If k(n) = cin n then
S

ProbL! 1 m max — = q) = 1%,
et iin-k+ K
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where a is related to ¢ via the equation
-1 o p
— = An(p(1-p)) + (V-p-a) (An — - An —2,
c 1-a 1-p
for a > ¢c.
This theorem 1. a special case of Erdos and Renyi’s theorem 2. It
can be applied to our situation as follous: Choose « = 1/2 - €.
Then thyre exists ar ng such that for all n > ng uwe have max s; ¢
k72 for almost all sampling sequerces. In addition, Erdos and Renyi
show that
- 1t k grows slower than Inn (k(n)zin n=0,), then fer a’l but
finitely many values ot n, max s; = k for almost all sampling
sequences., ("k cannot arow slouwer than 'n n".)
- It k grows faster than In n (k(n)/1n n+w), then lim max s;=kp for
almost all sampling sequences; i.e,, the strong law of large

numbers applies. ("k does not have to grow faster than In n".)

6. An Updating Algorithm for Running Medrans

There is a straightforward way to compute running medrans: Obtain the
median of each consecutive k-tupel by sorting 1t. That can be
substantially improved upon by making use ov the fact that the set of
responses defining s,,y 15 almost the same as the set of responses
defining si; only v,n = ¥,4k,2+¢1 has to be added, and ygouy = ¥..k,2 has
to be deleted. The following rules are easy to verifys

- If yyn ¥ si, then s,4% = 5.

= yyn > s, and yout 2 5y or At vy, sy oand yeut ¢ Sy then s,44

S,
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So in the case of random data, we have to do nothing but make these tests

halt the time.

-1t yin > 8: and Yout ¢ Si» then let k* denote the number of
observations in the neu span that are bigger than s;. If X* C k72,
then sjs49 = 33, else sj44 is the smallest observation strictly bigger
than s;. The analog of that is true 'f yjn ¢ s; and yout > Si.

= If yin > s; and yout = si» then define k* as above. It k* = ks2,
then sij4q4 s the smaliest observation in the span strictly bigger
than sj; else sjsy 1is the smailest observation in the span that is
bigger than or equal to s;. The analvg of that is true if y;, ¢ s;
and Yoyt = Si-

In appendix 2, we give a FORTRAN subroutine that implements the algorithm

outlined above.

For random data, the algorithm will take 0(nk) operations, 1t is
poss ble to reduce that to 0(n log k) by organizing the observations in
the span 1nto a bhinary tree which 1is kept balanced as observations are
moved in and out (AVL-tree; see Knuth (1373), pp 451), Untfortunately,
for the range of k that we have in mind (about 20), 103 k is not enough

smaller than k to compensatt for the increased overhead.

$. Daiscussion

Cleveland (1979) has suggested a scatterplot smoother also based on
local linear fits. 1t differs from the one described in this report
mainly 1n three respects:

- 1. does not use varrable span.

- In the t1t of the local straiqht line determing the smooth s(x,) for




predictor valu? x;, the observations ar2 weighted according to their

distance from x,- observations towarus the extremes of the span
receive lower weights than observations uWw:th predictor values close
to xj. Asymptotic calculations suggest that assigning unequal
Weights should reduce the error of the curve estimate, but there 1s
no evidence that it makes a substantial difference for sample sizes
occurring in practice. It dres, however, produce a smoother looking
estimate.

- The procedure derives 1ts resistance properties not from data
screening with a rejection rule. Ingtead, each of the 1local
straight lines 1s fitted, not by least squares, but by a resistart

fitting procedure.

Updating formulas cannet be wused in this scheme, making 1t
comparatively expensive in terms of computing. To reduce computation,
Cleveland suggests evaluating the smooth only for every m-th predictor
value, The parameter m .ere plays a similar role as our bin size; 1t
would be chosen as a fraction of k. HWe developed our smoothing procedure
because variable span is often important, and because the use of updating

formulas dramatically reduces computation,

Another class of procedures suggested for smoothing are procedures
based on splines, A splaine tfunction s of order & with knots at z....2x
15 a function satisfying the foilowing two conditrons:

- In each of the intervals (-«,2¢y),024,2;7) .. (2Zyg-1,2x)»(2k,®), s 18 &

polynomial oi degree 2 - 1;

-~ g has £ - 2 continuous derivatives.
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One way to use spline functions in scatterpiot smoothing is to fit a
spline function with knots z4...2x to the data (x4,y1)...(Xn,yYn), either
by least squares or by some resistant method. The degree of smoothness
is determined by the number and position of the knots. A major
disadvantage of this method is that «x+1 parameters must be chosen: the
number and the positions of the knots. Usually some heuristic procedure
igs used to place the knots once k has been fixed (Jupp, 1978). This
leaves the number of knots to be determined. This number plays the rele
of the span in determining the degree of smocothing. Unfortunately, the
output of the smoother can depend on k in a very nonlinear way; it is
easy to construct examples where the addition of one more knot
substantially decreases the residual sum of squares, whereas further
knots hardiy make any ditference. This makes k more difficult to choose
than the span in a local averaging smoother. furthermore, least squares
fit of splines is substantially slower so that choosing k through cross-

validation is usually too exper=zive.

Another way 1s to wuse smoothing spiines in the sense of Reinsch
(1967) . A smoothing spline s of order 22 for smoothing parameter A 1s

the function that minymizes

Xn
Yy =f(xi))2 + 2 #0212 (x)dx
X4
among atl functrons f with 2 deriyvaties, The solution really turns out
to be a spline function of order 2£ with knots x;...xn:i the name 15 thus
justified. The larger A 1s chosen, the smoother s becomes; thus, A here
plays the role of the span. Computation of the splire for given A

requires the sociution ot a banded n¥n linear system A drauwback ot the
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method, as described here, is that it is impossible to .~tawn an
intuitive feeling for the choice cf A in a given example. So, one
usually fixes not A, but the residual sum of squares around the smooth.
The corresponding value of A then has to be found iteratively by
repeatedly solving the minimization problem. This substantially
increases the necessary amount of computation, Algorithms to determine
the optimal A by cross-validation wusually require computation of the
singular value decomposition of an nxn matrix; they are exgensive and

infeagsible for sample sizes larger thaa 200-300.

To summarize, the local averaging smoother descril,ed 1in this report
has two desirable properties that set it apart om other scatterplot
smoothers: 1t is very fast to compute and the value of the parameter tnat
controls the amount of smoothing 1is optimized 1locally (through cross-

validation), allowing it to change over the range of predictor values,
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APPENDIX 1

The following is a complete 1listing of a FORTRAN -ub=outine

implementing the smoothing procedure described in this paper.
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SUBROUTINE SUPSMU (N, X,Y,W, IPER,ALPHA, RESPAN, IBIN, SMO, SC)

et o s o T e an s e . v - S - - s . o e = T P TR e i e et v T = e T ek b T e e W A i cim Ve e Ea i em e = S

C SUPER SMOOTHER (FRIEDMAN AND STUETZLE, 1982).

C

C CODED BY: J. H. FRIEDMAN AND W. STUETZLE

NCoCOOCcoCoOooO00O000an

~

coocococono oL oaoOcaonG.,

DEPARTMENT OF STATISTICS AND
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY

STANFORD CA. 94305

INPUT:

N : NUMBER OF OBSERVAVIONS (X,Y - PAIRS).
X(N) : ORDERED ABSCISSA VALUES.

Y(N) : CORRESPONDING ORDINATE (RESPONSE) VALUES.
W(N) (OPTIONAL) WEIGHT FOR EACH (X,Y) OBSERVATION.
W < 0 0 => ALL OBSERVATIONS {AVE EQUAL WEIGHT.

IPER : PERIODIC VARIABLE FLAG.

IPER=1 => X IS ORDINARY ORDERED VARIABLE.

IPER=2 => X 1S A PERIODIC (CIRCULARLY DEFINED) VA' ABLE.
ALPHA : FRACTICNAL SMOOTHNESS PENALITY ( SEE (10) SECTION 4).
RESPAN : FRACTIONAL SPAN FOR RESIDUAL SMOOTHING

L/N, SEE {8) SECTION 4).
RESPAN .LP. O => FIXED SPAN SMOOTHER WITH FRACTIONAL
SPAN = ABS(RESPAN).
[BIN : BINNING FACTOR (M, SEE SECTION 7).

OUTPUT:

SMO({N) : SMOOTHED ORDINATE (RESPONSE) VALUES.

CRATCH:

SC(3,N) : INTERNAL WORKING STORAGE.

NOTE:

ALPHA=0.1 AND R&SPAN=0.25 AR"™ REASONABLEF VALUES. FOR RESPAW > 0
SMOOTHER OUTPUT IS COMPLEMELY CROSS-VALIDATED; X(I), Y(1), AND
W(l) ARE NOT USLD IN THE CALCULATION OF SMO(1). THEREFORE,
THE AVERAGE SQUARED RESTDUAL
N
AGR = SUM  w{L)*(Y(I)=-SMO[L))**2
I=1
CAN BE USED AS A GOODNESS-OF-FIT MEASURE FOR THE PURPOSE OF
SELECTING OPTIMAL VALUES FOR SMOOTHING | ARAMETERsS BY
REPEATED AFPLICATION.

FOR SMALL SAMPLES (N < 40) OR IF THERE ARE SUBSTANTIAL SERIAL
CORRELATIONS BETWEEN OBSERATLONS CLOSE IN X - VALUE, THEN

A PRESPECIFIED FIXED SPAN SMOOTHER (RESPAN < )) SHOULD BE

USED. REASONABLE SPAN VALUES ARE 0.3 .GE. ABS(RESPAN) .GE. 0.5.

DIMENSION X{(N),Y(N),W(N), bMO(N) SC(3,N)
DOULLE PRECLISION SX(5),8Y(5),SXX(5),8XY (5}
DIMENSION IBW(5), RESQUE(S,101), SMOQUE(S5, 11
INTEGER IN,0UT

DATA IBWL, SPLMAX [/ 3,0,.35,

DATA B1G,EES "1 OF20, 1. 0E-03/

S SUM(5), FBW(Y )
1)




10

20

30
40

50

60

70

80

20

100

110
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IF (W{l1).LT.0.0) GO TO 20
DO 10 I=1,N

SC(3,1)=W(I)

CONTINUE

GO TO 40

DC 30 I=1,N

SC(311)=1.

CONTINUE
IF (X(N).
SX(1)=0.0
FBW(1)=SX(1l)

po 50 J=1,N
SX(1)=SX{1)+SC(3,J)*YJ)
FBW/!1)=FBW(1)+SC(3,J)
CONTINUE

A=SX(1)/FBW(1l)

DO 60 J=1,N

SMO(J)=A

CONTINUE

RETURN

I=N/4

J=3*1

SCALE=X(J)=X(I)

GT.X(1)) GO TO 70

1F (SCALE.GT.0.0) GO TO S0
IF (J.LT.N) J=J+1

IF (I.07.1) I=I-1
SCALE=X(J)-X{1)

GO Tu 80
VSML=(LEPS*SCALEJ**2

I¥ {(IBIN.LE.Ll) GO TO 1'yu
NA=0

w
~<
—

SY(l

SA(L)
Y(l)= s
FBw(l) I
IF (MOD(
NA=NA+ |
SC{1,NA}= )/FBW(1)
SC(2,NAY=8Y(1)/FBW(1)
SC(3,NAJ=FBW(1)
Sx(l‘—ﬂ 0
SY(l) (1)
FBW ( Y(1l)
CONPINUh
IF (MOD{N, IBINJ.EQ.0) GO TU 130
=NA+1
(L NA\- X{L)/vBWil)
C(2 NA) (1)/rnw(1)
,(B,NA)-Lun(l)
GU To 3o
NA=N
LDy 120

X(J)*sC(3,J)
Y{(J)*SC(3,u)
)+5C(3,3)
BIN).NE.O) GO TO i00

Pl )N
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120
130

140

150

160
170

180
190

200
210

220
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SC(1,J)=X(J)

SC(2,J)=Y(J)

CONTINUE

IBW(1)=IBW1
IDELTA=(SPNMAX*NA~IBW(1))/4.0+0.5

DO 140 1=2,5
IBW(I)=MINO(NA/2,IBW(I-1)+IDELTA)
CONTINUE

DO 150 I=1,5

EX{1)=0.0

SY(1)=8X(I)

SXX(1)=SY(I)

SXY (I)=SXX(1)

FBW(I)=aXY{I)

SUM(I)=FBW(I)

IF (MOD(1BW(I),2).EQ.0) IBW(I)=IBW(I)+1
CONTINUE

IF (RESPAN.GE.0.0) GO T0 160

IBWS=1

IBW(1)=0.5*ABS(RESPAN) *NA

IF (MOD(IBW(1),2).EQ.0) IBW{l)=IBW(l)+1
IBW(5)=1IBW(1l)

CO TO 170

IBW5=5

IF (IPER.NE.2) GO TO 220

IT=NA-IBW(5)+1

IH=IBW(5)~1

DO 190 J=I1T,NA

DO 180 1I=1,IBWS

IF (J.LT.NA-IBW(I)+1l) GO TO 180
XT=SC(1,J)
YT=SC(2,J)
WP=8C(3,J)
SX{I)=8X((
SY(I)=SY(1I
SXX{I)=SXX(L)+XT*XT*WT
SXY{L)=SXY(I)+XT*YT*WT
FEW(T)=FBW(I)+WD

CONTINUE

CONT INUE

DO 210 J=1, 1

DO 200 I=1,IBWS

LF (J.GT..:8W(I)-1) GO TO 200
XT=8C(1,J)

YT=8C{2,J)

WI=5C(3,J)

SX(I)=SKX{L)+XT*WT
SY(I)=SY(I)+YT*WT

SXX (1) =8XX (I )+XT*XT*WT
SXY(1)=SXY(I1)+XT*YT*WT
FBW(1)=FBW(I)+WT

CONTINUE

CONTINUE

GO MO 250

[1T=2LBW(S)~

+XT*WT
+YT*WT




230
240
250

260

270
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DO 240 J=1,IT

DO 230 I=1,1BWS

IF (J.GT.2*IBW(I)-1) GO TO 230

T=8C(1,J)

YT=SC(2,J)

WT=SC(3,J)

SX(I)=SX(I)+XT*WT

SY(I)=SY(I)+YT*WT
SKX{L)=0XX (I )+XT*XT*WT
SXY(I)=SXY(I)+XT*YT*WT

FBW(I)=FBW(I)}+WT

CONTINUE

CONTINUE
KBW=MINO(L101,2*INT{0.5*RESPAN*NA+0.5)+1)
KBWO2=KBW/2+1

IH=0

JT=IH

JIM=JT

DO 370 J=1,NA

RESMIN=BIG

IF (J.LT.KBWO2) GO TO 260

JT=JT+1

JMO=JM

IM=MOD{JM, KBW)+1

1H=MOD(IH, KBW)+1

DO 310 I=1,1BWS
IF (IBWS.NE.S)
XT=8C(1,J)
YT=SC(2,J)
WT=SC(3,J)
sx(x) sx( ) -
SY(L)=8SY(I)-
SXX{1)= bXX(
SXY(L)=8XY(
FBW(I)=FBW(
OUT=J-IBW(I)
IN=J+IBW(IL)-1

GO TO 270

XT*WT
=YT*WT
)= XT*XT*WL
)= XT*YT*WT
)

I
L
I)~-WT

IF {{IPER.NE.2).AND.{(OUT.LT.]1.0OR.IN.GT.N

1IF {(ouT.LT.1) OUT=NA+OUT
[P [ IN.GT.NA) IN=IN-NA
XT=SC(1,0UT)
YT=8C(2,007)
WT=8C{3,0UT)
SX{L)=8X{1)=-XT*WT

SY(I)=8Y(1)-YT*WT
SXX{L)J=SXX{[]-XT*XT*WT
SXY(L)=SXY{ {)~-XT*YT*w
FUW(L)=EBW(L,-WT
XT=SC(1, IN)
YT=8C(2, IN)
WP SC(3, IN)
(l)‘.)\‘ Ll \fY‘l‘*Nl
Y(IJ=8Y(L)rYD*wr
SXK(I):J\X L) eXTeXT el
SXY (Lj=uX L) s XIeylew?

A))

GO TO 28y

OPITTY




280

290

300

310
320

3306
340

350

360
370
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FBW(I)=FBW(I)+WT

D=SXX(I)~SX(I)**2/FBW(I)

VAR=D/FBW(I)

A=0.0

IF (VAR.GT.VSML) A=(SXY(I)-SX(I)*SY(I)/FBW(1))/D
SM=A*SC(1,J)+(SY(I)-A*SX(I))/FBW(I)

1IF (IBWS.NE.l1) GO TO 290

SMO(J)=SM

GO TO 320

RES=SC(3,J)*(SC(2,J)-SM)**2

IF (J.GT.KBW) SUM(I)=SUM(I)~-RESQUE(1,IH)

SUM( I)=5UM(I)+RES

RESQUE (I, IH)=RES

SMOQUE (L, IH)=8M

IF (VAR.LT.VSML.AND.I.LT.5) SMOQUE(I,IH)=BIG

IF (J.LT.KBWO2) GO TO 300
SUM{I)=SUM(I)-RESQUE(I,JM)

IF (JT.GT.Ll) SUM(I)=SUM(I)+RESQUE(I,JMO)

IF (SUM(IL).GT.RESMIN.OR.SMOQUE(I,JM).GE.BIG) GO TO 300
RESMIN=SUM(I)

1S=I

XT=8C(1,J)

YT=SC(2,J)

WT=S(( i)
SX(I)=SX(I1)+XT*WT
SY(I)=SY(I)+YT*WT
SXX(L)=SXX{(I)+XT*XT*WT
SXY(I)=SXY(I)+XT*YT*WT
FBW(L)=FBW(I)+WT
CONTINUE

IF (IBWS.EQ.l1) GO TO 370

IF (J.GE.KBWO2) SMO(JT)=SMOQUE(IS,JM,

IF (ALPHA.LE.0.0.0OR.J.LT.KBWO2.0R.IS.GEL.5) GO "0 370
RESMIN:=(1.0+ALPHA)*RESMIN

1=5

GO TO 340

I=1+(-1)

IF ((-1)*((1)-{IS)).GT.0) GO TO 350

IF (SUM(I).GT.RESMIN) GO TO 330

1F (I.GE.5) GO TO 360
A=(RESMIN-SUM(I))/(SUM{I+1)~SUM(1))
SMO(JT)=(1.0-~A)*SMOQUE( [, JM)+A*SMOQUE(I+1,JM)
GO TO 370

SMO(JT)=SMOQUE (I,JIM)

CONTINUE

IF (IBWS.NE.5) GO TO 440

JT=JT+1

DO 430 J=JT,NA

IH=MOD{ 1H, KBW)+1

RESMIN=BIG

JMO=JM

JM:MUD(JM,KBw)rl

DO 3890 [=1,

>u“i““bUH( 1)-RESQUE (T, IH)+RESQUE (L, IJMO)~KESQUE( L, JM)

T (SUMOLT . GT. RESMIN.ORCSMOQUE(L,JM) .GE.BIG) GO TO 380
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RESM.N=SUM(I)
1S8=1
380 CONTINUE
SMO(J)=SMOQUE (IS, JM)
IF (ALPHA.LE.0.0.OR.IS.GE.5) GO TO 430
RESMIN=(1.0+ALPHA)*RESMIN
I=5
GO TO 400
390 I=I+(-1)
400 IF ((-1)*((1)-(IS)).GT.0) GO TO 410
IF (SUM(I).GT.RESMIN) GO TO 390
410 IF (I.GE.5) GO TO 420
A=(RESMIN-SUM(I))/(SUM(I+1)-SUM(I))
SMO(J)=(1.0~A)*SMOQUE{I,JIM)+A*SMOQUE(I+1,JM)
GO TO 430
420 SMC(J)=SMOQUE(I,JM)
430 CONTINUE
440 IT=NA-1
$2=SMO(1)
IF (IPER.NE.2) GO TO 450
A=S2
SMO(1)=0.25*{SMO(NA)+2.0*S2+SMO(2))
GO TO 460
450 SMC(1)=0.25%(2.0%S2+3.0*SMO(2,-.'0(3))
460 DO 470 J=2,1T
§1=82
$2=SMO(J)
SMO(J)=0.25%{S1+2.0*S2+SMO(J+1))
470 CONTINUE
[F (IPER.NE.2) GO TO 480
SMO(NA)=0.25%(A+2.0*SMU(NA)+S2)
GO TO 490
480 SMO(NA)Y=0.25%(2.0*SMO(NA)+3.0%32-51)
490 IF (LBIN.LE.1) GO T0 550
DO 50U f=1,NA
SC{2,L)=sMO(1)
500 CONTINUE
XUP=SC(1,1)-1.

et v RO LI WY SRS T SR ATt Tt o B e PO

J=0

DO 540 [=1,N

XI=X(1)

IF (X1.Lk.XUP) GO TO 530
J=J+1

XLOW=SC{1,J)

XUP=8C{1l,J+1)

YLOW=SC(2,J)

YUP=5C({?2,J+1)

I[F {XLOW.NE.XUP} GO TO 510

SLOPLE=0.

GO TO 520
510 SLOPE=(YUP-YLUW)/(XUP-XLOW)
520 Ir (J+1.E8Q.NA) XUP=X(N}
530 SMO(L)=YLOW - {X1-XLOW)*SLOPE
540 CONTINUE
550 J=1

L



560

570
580

590

680
610

620
630
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JO=J

SY(1)=8MO(J)

IF (W(1).LE.0.0) GO TO 570
SY(1)=W(J)*SMO(J)
FBW(1)=w(J)

IF (J.GE.N) GO TO 610

IF (X(J+1).GT.X(J)) GO TO 610
J=J+1

IF (W(J).GT.0.0) GO TO 590
SY(1)=SY(1)+SMO(J)

GO TO 600
SY(1)=SY(1)+W(J)*SMO(J)
FBW(1)=FBW(1)+W(J)

IF (J.LT.N) GO TO 580

IF (J.LE.JO) GO TO 630

IF (W(1).LE.0.0) FBW(1)=J-J0+1
SY(1)=8Y(1)/FBW(Ll)

DO 620 1=J0,J

SMO(1)=SY(1)

CONTINUE

J=J+1

IF (J.LE.N) GO TO 560
RETURN

END

R
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APPENDIX 11

The following is a complete listing of & FORTRAN

implementing the rejection rule described in this paper.

subroutine
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SUBROUTINE REJECT (PRED,RESP,N,WEIGHT, SCRAT)

C ____________________________________________________
C
C REJECTION RULE FOR SMOOTHING (FRIEDMAN AND STUETZLE, 1982)
C
C CODED BY: J. H. FRIEDMAN AND W. STUETZLE
C DEPARTMENT OF STATISTICS AND
C STANFORD LINEAR ACCELERATOR CENTER
C STANFORD UNIVERSITY
C STANFORD, CA. 94305
C
C INPUT:
C PRED(N) :ABSCISSA VALUES IN INCREASING ORDER
N RESP(N) : CORRESPONDING ORDINATE (RESPCNSE) VALUES
3 N :NUMBER OF OBSERVATIONS (X,Y-PAIRS)
C OUPUT:
C WEIGHT(N) :REJECTION FLAGS.
¢ WEIGHT(I1)=0 IF OBSERVATION I IS CCNSIDERED AN OUTLIER
< WEIGHT(I)=1 OTHERWISE
C
¢ SCRATCH:
[ C SCRAT (N, 2) : INTERNAL WORKING STORAGE
C
o
C NOTE:
¢ REJECT USES SUBROUTINE RUNMED (SEE BELOW)
[0 o v e e om e o et s o e e e e e e e e e e e ot e s o s = e o e =
DIMENSION PRED(N),RESF(N),WEIGHT(N),SCRAT(N,2)
DATA FACT/4.5/
DATA RELSFA/0.s/
IF (N.GT.25) GO TO 10
IBAND=7
GO TC 50
10 IF (N.GT.100) GO TO 20
IBAND=9
GO TO 50
20 IF (N.GT.400) GO TO 30
IBAND=11
GO TO 50
30 IF (N.GT.800) GO TO 40
IBAND=13
GO TO S50

40 IBAND=15

50 CMI.L RUNMED (RESP,WEIGHT,N, IBAND)
IFIRST=IBAND/2+1
[LAST=N-IBAND/2
DO 60 I=1,IFIRST

: SCRAT(L,1)=WEILGHT(I)

3 60  CONTINUE
DO 70 I=I1LAST,N
SCRAT(X,1)=WEIGHT (L)

70 CONTINUE
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DO 90 I=IFIRST, ILAST
IM1=1-1
IP1=I+1
IF (PRED(IM1).NE.PRED(IP1l)) GO TO 80
SCRAT(I,1)=0.5*(WEIGHT (IM1)+WEIGHT(IP1))
GO TO 90
80 SCRAT(I,1)=WEIGHT(IM1)+(WEIGET(IP1)-WEIGHT(IM1))*(PRED(I)-PRED(IM1
1))/ {PRED(IP1)-PRED(IM1))
90 CONTINUE
1=0
106 IF (1.GE.N-1) GO TO 150
I=I+1
MO=1
110 IF (PREC(I+1).GT.PRED(I)) GO TO 120
I=I+1
IF (I.LT.N) GO TO 110
120 IF (I.EQ.MO) GO TO 100
NTIE=I~MO+1
R=0.
DO 130 J=MO, I
R=R+SCRAT(J,1)
130 CONTINUE
i R=R/NTIE
3 DO 14> J=MO,I
; SCRAT(J,1)=R
: 140 CONTINUE
GO TO 100
g 150 DO 160 I=1,N
WEIGHT(I)=ABS(RESP(I1)-SCRAT(I,1))
160 CONTINUE
CALL RUNMED (WEIGHT,SCRAT(1l,1),N, IBAND)
1S2=N*RELSPA/2.
SUM=0.
DO 170 1=1,182
SUM=SUM+SCRAT(I,1)
170 CONTINUE
ISEFF=152
DO 200 I=1,N
IF (I.GT.N=I52) GO TO 120
SUM=SUM+SCRAT(I+1S2,1)
[SEFF=ISEFF+1
180 1F (l.LE.IS2+1) GO TO 190
SUM=SUM-SCLAT(I-182-1,1)
ISEFF=ISEFIF-1
190  SCRAT(I,2"'=SUM/ISEFF
200 CONTINUE
=0
210 IF (I.GE.N-1) GO TO 260
I=I+1
MO=1
220 IF (PRED(I+1).CT.PRED(I)) GO TO 230
[=1+1
IF (1.LT.N) GO TO 220
230 IF {1.+EQ.MO)Y GU TO 210
NTIE=[-MO+!
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R=0.

DO 240 J=MO,I
R=R+SCRAT(J, 2)
CONTINUE
R=R/NTIE

DO 250 J=MO,I
SCRAT(J, 2)=R
CONTINUE

GO TO 210

DO 280 I=1,N
IF (WEIGHT(I).LE.FACT*SCRAT(I,2)) GO TO 270
WEIGHT(1)=0.
GO TO 280
WEIGHT(I)=1.
CONTINUE
RETURN

END
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FAST RUNNING MEDIAN FINDER (FRIEDMAN AND STUETZLE, 1982).

CODE

INPU
S
N
I

OUTP
S

NOTZ:

rl\

D BY : J. H. FRIEDMAN AND W. STUETZLE
DEPARTMENT OF STATISTICS AND
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY
STANFORD, CA. 94305

T:

EQ(N) :RESPONSES 1N ORDER OF INCREASING PREDICTOR VALUES
:NUMBER OF OBSERVATIONS

BAND :SPAN OF RUNNING MEDIANS (HAS TO BE ODD AND <=21)

UT:

MO(N) : SMOOTHED RESPONSES

AE MAXIMAL SPAN CAN BE INCREASED BY INCREASING THE DIMENSION

OF THE ARRAYS SCRAT AND ITAG

10

DIMENSION SEQ(N), SMO(N)
DIMENSION SCRAT(21),ITAG(21)
DATA RINS/1.E20/

DO 10 I=1, IBAND

SCRAT(1)- SEQ(1I)

1PAG(I )=}

CONTINUE

RMIN=SCRAT{ i}

IMIN=]

DO 20 1=2, IBAND
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IF (SCRAT(I).GE.RMIN) GO TO 20
RMIN=SCRAT(I)

IMIN=I

CONTINUE

TEMP=SCRAT (1)

SCRAT (1 )=RMIN

SCRAT (IMIN )=TEMP
ITAG(Ll)=1MIN

ITAG (IMIN)=1

1=3

GO TO 40

I=I+1

IF ((I).5T.{(IBAND)) GO TO 60
IF (SCRAT(I).GE.SCRAT(I-1)) GO TO 30
TEMP=SCRAT(I)

ITEMP=ITAG(I)

J=1

SCRAT(J )=SCRAT(J-1)
ITAG(J)=ITAG(J-1)

J=J~"

IF (SCKAT(J-1).GT.TEMP) GO TO 50
SCRAT (J ) =TEMP

ITAG(J)=ITEMP

GO TO 30

IBAND2=IBAND/2+1
RMED=SCRAT ( IBAND2)

DO 70 1I=1,IBAND2

SMO (1 )=RMED

CONTINUE

IFIRST=2

ILAST=IBAND+1

ISMO=IBAND2+1

TMED=RMED

YIN=SEQ(ILAST)
YOUT=SEQ(IFIRST-1)

IF (YIN.GE.RMED) GO TO 180
IF (YOUT.GE.RMED) GO TC 90
RNEW=RMED

GO 10 290

IF (YOUT.LE.RMED) GO TO 120
KMINUS=0

RNEW=-RINF

DO 110 I=IFIRST, ILAST
SI=SEQ(I)

IF (SI.LT.RMED) GO TO 100
GO TO 110

KMINUS=KMINUS+1

IF (SI.LE.RNEW) GO 70 110
RNEW=S1

CONTINUE

I[F {KMINUS.GE.IBAND2) GO TO 290
RNEW=RMED

GO TO 290

KMINUS=0

s =-RINF
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130

140

150

160

170

180

190

200

210

220

RSE=-RINF

DO 160 I=IFIRST, ILAST
SI=SEQ(I)

IF (SI.LE.RMED) GO TO 130
GO TO 160

IF (SI.GE.RMED) GO TO 150
KMINUS=KMINUS+1

IF (SI.LE.RTS) GO TO 140
RTS=51

IF (SI.LE.RSE) GO TO 160
RSE=SI

GO "0 160

RSE=SI

CONTINUE

IF (KMINUS.M7.IBAND2) GO TO 170
RNEW=RTS

GO TO 290

RNEW=RSE

GO TO 290

1F (YIN.LE.RMED) GO TO 280
IF (YOUT.LE.RMED) GO TO 190
RNEW=RMED

30 TO 290

IF (YOUT.GE.RMED) GO ™0 220
KPLUS=C

RNEW=RINF

DO 210 I=IFIRST, ILAST
SI=SEQ(I)

IF (SI.GT.RMED) GO TO 200
GO TO 210

KPLUS=KPLUS+1

IF (SI.GE.RNEW) GO TO 210
RNEW=S1

CONTINUE

IF (KPLUS.GE.IBAND2) GO TO 290
RNEW=RMED

GO TO 290

KPLUS=0

RTB=RINF

RBE=RI

DO 260 .FIRST, ILAST
SI=SEQ(Il)

IF (SI.GE.RMED) GO TO 230
GO TO 260

IF (SI.LE.RMED) GO TO 250
KPLUS=KPLUS+1

IF (S1.GE.RTB) Gu TO 240
RTB=S1I

IF (SI.GE.RBE) GO TO 260
RBE=S1

GO TO 2060

RBE=S1

CONTINUE

1¥ (KPLUS.NE.IBAND2) GO TO 270
RNEW=RTR
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GO TO 299
RNEW=RBE

GO TO 290
RNEW=RMED
RMED=RNEW

SMO ( ISMO )=RMED
TFIRST=IFIRST+1
ISMO=ISMO+1
ILAST=ILAST+1
IF (ILAST.LE.N) GO TO 80
DO 300 I=ISMO,N
SMO(I)=RMED
CONTINUE

RETURN

END
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Figure Captions

Figure la: Tuwe hundred observations (points) drawn from the model
v=8in[2w(1-X)2] + Xe with ¢ iid standard normal.

Figure 1b: The data of Figure 1a with the computed smooth
superimposed. The height of the bottom curve is proportional to
the span value employed at the corresponding abscissa value.

Figure lc: Same as Figure b with the addition of the curve
Y=sin[2n{1-%X)2]

Figure 2: Five hundred observations from the same model as Figure

1, with the computed smooths for both m=1 and m=%,

Figure 3a: Outpu! of rejection rule applied to artificial dat. set.
Rejected observations are markecd by squares.

Figure 3b: Output of rejection rule applied to rea! data set.
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TABLE 1
n Pbad K %bds K
i 25 0.05 5 1.0 5
? 50 0.05 7 0.5 5
100 0.05 7 1.0 7
200 0.05 7 2.0 7
l 400 0.05 9 1.0 7
i 800 0.05 9 2.0 9
25 0.1 9 0.5 7
r 50 0.1 9 2.3 9
: 100 0.1 " 1.4 9
3 200 0.1 13 0.5 "
; 400 0.1 13 1.0 1
‘; 800 0.1 15 0.0 13
; 25 0.2 15 1.9 13
j 50 0.2 21 0.7 5
§ 100 0.2 23 1.4 19
§ 200 0.2 27 1.8 21
% 400 0.2 3 1.9 27
i 800 0.2 33 2.1 3

| n: length of sequence

Pbad: probability of an outlier

K Bonferroni estimate of span necessary to guarantee
breakdown probability ¢ 0.05

4bds: Percentage of breakdown actually observed n 1000 Mente
Carlo trials for span K.

Kr Span necessary to guarantee breakdown probabylyvty ¢ 0.05
(estimated from 1000 Monte Carto trials).
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TABLE I1

j

: n K
$ 2% 7
€100 9
£400 1
£800 13
>800 1%

n: length of sequence

K: span of running medians in steps (1) and (3) of rejection

rule
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