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Wavelet shrinkage (WaveShrink) is a relatively new technique for nonparametric
function estimation that has been shown to have asymptotic near-optimality prop-
erties over a wide class of functions. As originally formulated by Donoho and
Johnstone, WaveShrink assumes equally spaced data. Because so many statistical
applications (e.g., scatterplot smoothing) naturally involve unequally spaced data,
we investigate in this paper how WaveShrink can be adapted to handle such data.
Focusing on the Haar wavelet, we propose four approaches that extend the Haar
wavelet transform to the unequally spaced case. Each approach is formulated in
terms of continuous wavelet basis functions applied to a piecewise constant inter-
polation of the observed data, and each approach leads to wavelet coe�cients that
can be computed via a matrix transform of the original data. For each approach, we
propose a practical way of adapting WaveShrink. We compare the four approaches
in a Monte Carlo study and ®nd them to be quite comparable in performance. The
computationally simplest approach (isometric wavelets) has an appealing justi®ca-
tion in terms of a weighted mean square error criterion and readily generalizes to
wavelets of higher order than the Haar.
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1. Introduction

Suppose we observe data Y1; Y2; . . . ; Yn generated according
to the model

Yi � f �xi� � �i i � 1; 2; . . . ; n; �1�
where f is an unknown function, the xi's are ®xed known
sampling times satisfying xi < xi�1, and the �i's are inde-
pendent and identically distributed random variables from
the distribution N�0; r2�. The goal is to estimate the f �xi�'s
such that the estimates f̂ �xi� have small risk, where the risk

is de®ned as

R�f̂ ; f � � 1

n

Xn

i�1
E f̂ �xi� ÿ f �xi�
� �2

: �2�

Many techniques have been developed to estimate f �xi�.
When the spacings xi�1 ÿ xi between sampling times are all
equal, Donoho and Johnstone (1994) have recently pro-
posed the use of wavelet shrinkage (WaveShrink), a
wavelet-based technique for nonparametric function esti-
mation that is particularly valuable for large amounts of
data and for functions exhibiting locally nonsmooth be-
havior (e.g., jumps, cusps or peaks). On a theoretical level,
WaveShrink has been shown to have very broad near-op-*Corresponding author
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timality properties. For example, WaveShrink achieves,
within a factor of log n, the optimal minimax risk over each
functional class in a variety of smoothness classes and with
respect to a variety of loss functions (Donoho et al. (1995)).

To date, the methodology and algorithms for Wave-
Shrink have almost exclusively focused on equally spaced
xi's ± this is a severe restriction because many statistical
applications do not have an equally spaced design. The
goal of this paper is to evaluate the e�ectiveness of very
simple schemes for extending WaveShrink to unequally
spaced samples. We investigate four such schemes, all of
which use piecewise constant interpolation in conjunction
with the Haar wavelet. Our results establish a benchmark
against which to evaluate more elaborate schemes. We
demonstrate that, while the di�erences in the performance
of the four schemes are small overall, the simplest scheme
(isometric wavelets) has an appealing justi®cation in terms
of a weighted mean square error criterion and can be readily
generalized to wavelets of higher order than the Haar.

There are several previous papers in the literature that
focus on de®ning and computing the wavelet transform for
unequally sampled data. Antoniadis et al. (1994) consider
curve estimation using wavelet methods for unequally
sampled data in which estimation is accomplished by
keeping or eliminating all wavelet coe�cients on a given
scale. Delyon and Juditsky (1995) discuss fast algorithms
for computing wavelet coe�cients in the unequally sampled
case. Sweldens (1995) proposes a `lifting' scheme that de-
®nes a wavelet transform for arbitrary sampling schemes
over one and higher dimensional surfaces (in fact, the iso-
metric wavelets we introduce in Section 3.1 can be formu-
lated as a special case of lifting). Foster (1996) considers a
weighted wavelet transform that takes irregular spacing
into account. Antoniadis et al. (1997) propose replacing
unequally sampled data by averages over regularly spaced
bins and then applying the usual wavelet transform to the
binned data. Scargle (1997b) formulates a similar idea in the
context of the Haar wavelet transform. None of the above
papers deal speci®cally with WaveShrink, but there are two
previous papers that do. Scargle (1997a) gives an example of
applying wavelet shrinkage with a universal threshold to
wavelet coe�cients computed from a binned radial velocity
time series, but does not study the properties of this esti-
mator. Hall and Turlach (1997) study wavelet shrinkage
based on two di�erent interpolation methods (local aver-
aging and local linear interpolation) in conjunction with
sampling on dyadic scale and wavelets of possibly higher
order than the Haar (sampling of interpolated data on a
grid is also studied by Kovac and Silverman (1998), who
developed fast algorithms for computing the variance and
covariance of such samples). Sampling on a grid is one of
the four schemes that we consider in this paper, but we do so
only in the context of a much simpler interpolation scheme
(piecewise constant interpolation between midpoints of the
observations) in conjunction with the Haar wavelet.

The remainder of this paper is organized as follows.
Following a review of Haar wavelet analysis for equally
spaced data in Section 2, we de®ne four simple wavelet
analysis techniques appropriate for unequally spaced data
in Section 3. We review the basics of WaveShrink in Sec-
tion 4 and adapt it in Section 5 to work with the four
analysis techniques, hence producing nonparametric func-
tion estimates through wavelet coe�cient shrinkage. In
Section 6 we report the results of a simulation study
comparing the approaches using synthetic signals studied
by Donoho et al. (1995). To demonstrate how our meth-
odology works on an actual unequally sampled time series,
we estimate the light curve for a variable star in Section 7.
We summarize our main conclusions and discuss directions
for further research in Section 8. All results in this paper
can be reproduced through software that is accessible by
anonymous ftp: see Section 9.

2. Haar wavelet analysis for equally spaced data

In section 3 we propose four de®nitions for a wavelet
transform, all of which extend the usual Haar wavelet
transform so that it is suitable for denoising unequally
spaced data. To motivate these de®nitions, we review here
the Haar continuous wavelet transform (CWT) and note
that, when the Haar CWT is applied to a function �f that is
a piecewise constant interpolation of the elements of a
column vector f containing equally spaced samples from
the function f , the resulting wavelet series is identical to the
Haar discrete wavelet transform (DWT) of f. This corre-
spondence between the CWT wavelet series for �f and the
DWT of f will motivate our de®nitions of wavelet analysis
appropriate for unequally spaced data.

Let f � �f �x1� f �x2� � � � f �xn��T , where for this section we
assume xi � i. For simplicity assume n � 2J for some in-
teger J > 0. De®ne the piecewise constant approximation �f
to the function f as

�f �x� � f �xi�; xi ÿ 1
2 � x < xi � 1

2 ; i � 1; . . . ; n;
0; otherwise.

�
�3�

Let j � 1; 2; . . . ; J be indices for scales, and let
k � 1; 2; . . . ; n=2j be indices for locations within the jth
scale. De®ne nÿ 1 Haar mother wavelets as

wj;k�x� �
1���
2j
p ; 2j�k ÿ 1� � 1

2 � x < 2j�k ÿ 1
2� � 1

2;

ÿ 1���
2j
p ; 2j�k ÿ 1

2� � 1
2 � x < 2jk � 1

2;

0; otherwise;

8<: �4�

and de®ne a single Haar father wavelet (or scaling func-
tion) as

/J ;1�x� �
1��
n
p ; 1

2 � x < n� 1
2;

0; otherwise.

�
�5�

The wavelet series for �f is formed from the inner products
of �f with the wj;k's and /J ;1, i.e.,
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h �f ;wj;ki �
Zn�1

2

1
2

�f �x�wj;k�x� dx and

h �f ;/J ;1i �
Zn�1

2

1
2

�f �x�/J ;1�x� dx:

�6�

Because it is piecewise constant by construction, the func-
tion �f can be represented exactly as

�f �x� �
XJ

j�1

Xn=2j

k�1
h �f ;wj;kiwj;k�x� � h �f ;/J ;1i/J ;1�x�:

Let us now place the n values of the wavelet series into
the n dimensional column vector af. The last element of af
is taken to be h �f ;/J ;1i, while the ®rst nÿ 1 elements are the
h �f ;wj;ki's ordered as follows: h �f ;w1;ki; k � 1; . . . ; n=2;
h �f ;w2;ki; k � 1; . . . ; n=4; . . . ; h �f ;wJÿ1;ki; k � 1; 2; h �f ;wJ ;1i.
For example, when n � 4 we have

af �
h �f ;w1;1i
h �f ;w1;2i
h �f ;w2;1i
h �f ;/2;1i

0BBB@
1CCCA

By construction, the vector af can be expressed as an
orthonormal transformation of the vector f, namely, the
Haar DWT of f; i.e., we can write af � W f, where W is an
n� n orthonormal matrix that de®nes the Haar DWT. For
example, the DWT matrix for n � 4 is given by

W �

1��
2
p ÿ 1��

2
p 0 0

0 0 1��
2
p ÿ 1��

2
p

1
2

1
2 ÿ 1

2 ÿ 1
2

1
2

1
2

1
2

1
2

0BBBBB@

1CCCCCA �
wT
1;1

wT
1;2

wT
2;1

vT
2;1

0BBBB@
1CCCCA �7�

and hence af �

hf;w1;1i
hf;w1;2i
hf;w2;1i
hf; v2;1i

0BBB@
1CCCA;

where hf;wi � fTw is the usual inner product between two
column vectors f and w. Thus, although af was de®ned in
terms of the Haar CWT of the function �f , it has an alter-
native interpretation as the Haar DWT wavelet coe�cients
for the vector f.

3. Wavelet analysis for unequally spaced data

Let us now consider the case of unequally sampled data so
that we assume just the ordering xi < xi�1; i � 1; . . . ; nÿ 1.
For convenience we also assume that x1 � 1 and xn � n

(this convention is handy because it forces the average
spacing between adjacent xi's to be unity, thus greatly
simplifying the mathematics that follow). The vector f
now consists of samples of f at the xi's. We start by de-
®ning �f in a manner analogous to equation (3). De®ne
x0 � 0 and xn�1 � n� 1, and let mi � �xi � xi�1�=2;
i � 0; . . . ; n, represent the mid-points of the augmented
xi's. Let

�f �x� � f �xi�; miÿ1 � x < mi; i � 1; . . . ; n;
0; otherwise.

�
�8�

Note that, when xi � i, we have miÿ1 � xi ÿ 1
2 and

mi � xi � 1
2, so the above de®nition is consistent with (3)

for the equally spaced case. With �f so de®ned, we now
consider how to de®ne Haar-like mother and father
wavelets appropriate for unequally sampled data. In the
next four subsections, we explore the following four
ideas, each of which can be used with wavelet shrink-
age.

� Isometric Wavelets: Here we de®ne a Haar-like orthog-
onal (but not in general orthonormal) CWT such that the
corresponding wavelet series for �f is identical to the Haar
DWT of f. This scheme amounts to just taking the Haar
DWT of f, so formally we treat the data as if they were
equally spaced; however, as shown below, this procedure
has an appealing justi®cation in terms of an isometry
involving a risk measure with a non-Euclidean norm. A
generalization of this scheme of wavelets other than the
Haar is to apply any DWT to f.

� Asymmetric Haar: Here we take the Haar-like orthogo-
nal isometric wavelets and adjust the mother and father
wavelets to de®ne an orthonormal set of functions, which
we call the `asymmetric Haar' functions. The corre-
sponding wavelet series for �f can be interpreted as a (in
general) nonorthonormal transform of the vector f;
however, the resulting transform is easy to compute and
readily invertible. This scheme cannot be readily gener-
alized beyond the Haar case.

� Sampling on a Grid: Here we sample the interpolated
function �f over a grid of equally spaced points and apply
the Haar DWT to these samples. This scheme can be
generalized by using other DWTs and other interpola-
tion schemes, and it can readily handle sample sizes n
that are not a power of 2.

� Exact Integration: Here we form the wavelet series for �f
using the Haar CWT de®ned over the interval of support
for �f . This scheme can be generalized to other CWTs and
other interpolation schemes, and it can handle n's that
are not a power of 2.

3.1. Isometric wavelets

Let X and Y be two random variables with joint density
p�x; y� and marginal densities pX �x� and pY �y�. Suppose we
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construct a rule ~f �X � for predicting Y given X . The mean
squared prediction error for this rule is given by

Ef� ~f �X � ÿ Y �2g �
Z

varfY jxgpX �x� dx

�
Z

~f �x� ÿ EfY jxgÿ �2
pX �x� dx:

Suppose further that X and Y are related via a `random
sampling time' version of equation (1), namely,
Y � f �X � � �, where � is a random variable independent
of X with variance r2. The above then becomes

Ef� ~f �X � ÿ Y �2g � r2 �
Z

~f �x� ÿ f �x�ÿ �2
pX �x� dx:

The above suggests that the natural way to measure the
distance between a function f and its estimate ~f is via a
norm de®ned in terms of an inner product involving pX as a
weighting function:

hg; hipX
�
Z

g�x�h�x�pX �x� dx:

Note that, when the sampling times are ®xed and equally
spaced, then pX �x� � 1

n

P
dxi�x� (where da is the Dirac

measure at a) is the measure of choice and leads to the
usual de®nition of risk (cf. Equation 2); on the other
hand, when the sampling times are random and hence
unequally spaced, the above derivation suggests using a
measure involving the density pX of the random variable
X . In practice, we do not know pX , but suppose we
consider the xi's of equation (1) to be ordered observa-
tions from a random sample of size n from X (for this
argument we drop the assumptions x1 � 1 and xn � n, and
we now augment the xi's using x0 � x1 ÿ �xn ÿ x1�=�nÿ 1�
and xn�1 � xn � �xn ÿ x1�=�nÿ 1��. Under the assumption
that the mid-points mi are distinct, we can then estimate
pX using

p̂X �x� �
1

n�miÿmiÿ1� ; miÿ1 � x < mi; i � 1; . . . ; n;

0; otherwise

8<:
(note that

R
p̂X �x� dx � 1, as required). The weighted inner

product thus becomes

hg; hip̂X
�
Xn

i�1

1

n�mi ÿ miÿ1�
Zmi

miÿ1

g�x�h�x� dx

�
Xn

i�1

Z i
n

iÿ1
n

g�ai � biy�h�ai � biy� dy

�
Z1
0

~g�y�~h�y� dy � h~g; ~hi

where ai � imiÿ1 ÿ �iÿ 1�mi; bi � n�mi ÿ miÿ1�;

~g�y� � g�ai � biy�; iÿ1
n � y < i

n ; i � 1; . . . ; n;
0; otherwise;

�
�9�

~h is de®ned in an analogous manner; and h�; �i is the
Euclidean inner product. Let L2�c; d� represent the set of all
square integrable functions de®ned over the interval �c; d�.
The above arguments shows that the metric spaces
�L2�m0;mn�; h�; �ip̂X

� and �L2�0; 1�; h�; �i� are isometric, with
an isometry given by the invertible mapping
U : L2�m0;mn� ! L2�0; 1� de®ned by (9). Thus, any ortho-
normal wavelet basis for L2�0; 1� with respect to the Eu-
clidean metric is equivalent to an orthonormal basis for
L2�m0;mn� with respect to the empirical p̂X metric, and
hence expansion of the unequally spaced piecewise con-
stant function �f over a wavelet basis for �L2�m0;mn�; h�; �ip̂X

�
is equivalent to expansion of the equispaced piecewise
constant function U� �f � over a wavelet basis for
�L2�0; 1�; h�; �i�. (Note that, as long as we use the same es-
timate for pX , the same argument holds both for interpol-
ation schemes other than piecewise constant and for
wavelets other than the Haar.)

Based upon the above argument, we can de®ne `iso-
metric' Haar mother and father wavelets w�1�j;k and /�1�J ;1 that
treat unequally spaced data in a manner consistent with
using an inner product weighted by our simple estimate of
pX . Isometric wavelets force the wavelet series for �f , say
a
�1�
f , to be identical to coe�cients obtained from the usual

Haar DWT of the vector f. The appropriate de®nitions for
the isometric Haar mother wavelets are

w�1�j;k �x� �
1���
2j
p ; m2j�kÿ1� � x < m2j kÿ1

2� �;
ÿ 1���

2j
p ; m2j kÿ1

2� � � x < m2jk;

0; otherwise,

8><>:
while the father wavelet /�1�J ;1 is de®ned as in equation (5).
These wavelets are plotted in the left-hand column of ®gure
1 for a simple example involving n � 4 points. By con-

struction w�1�j;k is nonzero over exactly 2j of the sampling
points xi, so the notion of scale maintained by these
wavelets does not depend on the distances between the xi's.
The mother wavelet w�1�j;k takes on the same values as the
corresponding wavelet for the usual Haar CWT, and in a
similar fashion hw�1�j;k ;w

�1�
j;k0 i � 0 for k 6� k0; however, the

isometric Haar CWT di�ers from the usual CWT in the
following ways. Let d�j;k and dÿj;k be the widths of the strictly
positive and negative portions of w�1�j;k :

d�j;k � m2j�kÿ1
2� ÿ m2j�kÿ1� and dÿj;k � m2jk ÿ m2j kÿ1

2� �:
We then have

Zn�1
2

1
2

w�1�j;k �x� dx � �d�j;k ÿ dÿj;k�=2j=2

and
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Zn�1
2

1
2

w�1�j;k �x�
h i2

dx � �d�j;k � dÿj;k�=2j:

Because in general d�j;k is not equal to dÿj;k and also
d�j;k � dÿj;k is not equal to 2j, it follows that the mother
wavelets need not either integrate to zero or have unit

norm and that hw�1�j;k ;w
�1�
j0;k0 i need not be zero when j di�ers

from j0. Thus the w�1�j;k 's and /�1�J ;1 do not constitute an

orthonormal set of functions. By construction, we have,
e.g., when n � 4,

a
�1�
f �

h �f ;w�1�1;1i

h �f ;w�1�1;2i

h �f ;w�1�2;1i

h �f ;/�1�2;1i

0BBBBBBBB@

1CCCCCCCCA
�

hf;w�1�1;1i

hf;w�1�1;2i

hf;w�1�2;1i

hf; v�1�2;1i

0BBBBBBBB@

1CCCCCCCCA
� W1f;

where W1 is by de®nition the Haar DWT matrix W of
equation (7), and the transposes of w

�1�
j;k and v

�1�
J ;1 are the

rows of W1. Thus, while a
�1�
f is not produced by an ortho-

normal transform of �f , by design it can be interpreted as an
orthonormal transform of the vector f.

3.2. Asymmetric Haar

As noted in the previous section, isometric Haar wavelets
are not orthonormal with respect to the Euclidean inner
product (although they are orthonormal with respect to
the empirical p̂X inner product). The basic idea behind the
`asymmetric Haar' approach is to adjust the heights of the
isometric Haar wavelets so that the resulting functions
w�2�j;k and /�2�J ;1 are orthonormal with respect to the Eu-
clidean inner product. Thus, as was true for the isometric
Haar wavelets, the widths of the asymmetric Haar wave-
lets are de®ned by the observed xi's; in contrast, the
heights of the mother asymmetric Haar wavelets are set to
ensure unit norms and integration to zero, while the height
of the father wavelet is set to yield unit norm. The ap-
propriate de®nitions for the asymmetric Haar mother
wavelets are

w�2�j;k �x� �
w�j;k �

��������������������
dÿj;k

d�j;k�d�j;k�dÿj;k�

r
; m2j�kÿ1� � x < m2j kÿ1

2� �;

wÿj;k � ÿ
��������������������

d�j;k
dÿj;k�d�j;k�dÿj;k�

r
; m2j kÿ1

2� � � x < m2jk;

0; otherwise,

8>>>><>>>>:
while the father wavelet /�2�J ;1 is given as in equation (5). An
example of these wavelets is plotted in the second column
of ®gure 1. By construction each mother wavelet integrates
to zero and has unit norm. It is easy to check that the w�2�j;k 's
and /�2�J ;1 are pairwise orthogonal.

The wavelet series a
�2�
f for �f with respect to the asym-

metric Haar wavelets is given by, e.g., when n � 4,

a
�2�
f �

h �f ;w�2�1;1i
h �f ;w�2�2;1i
h �f ;w�2�2;1i
h �f ;/�2�2;1i

0BBBB@
1CCCCA � W2f;

where W2 is an n� n matrix that can be de®ned as follows.
Let di � mi ÿ miÿ1 be the distances between midpoints. We
then have

h �f ;w�2�j;k i �
Zn�1

2

1
2

w�2�j;k �x� �f �x� dx �
Xn

i�1
w�2�j;k �xi�f �xi�di;

with a similar expression for h �f ;/�2�J ;1i. We can thus write
W2 � VD, where V is an n� n matrix that has the same
pattern of zeros as the usual Haar DWT matrix W , while D
is a diagonal matrix with diagonal elements given by
d1; . . . ; dn. As an example, for n � 4 we have

V �

w�1;1 wÿ1;1 0 0

0 0 w�1;2 wÿ1;2
w�2;1 w�2;1 wÿ2;1 wÿ2;1
/�2;1 /�2;1 /�2;1 /�2;1

0BBBB@
1CCCCAFig. 1. The above ®gure illustrates the di�erent wavelets used in

function space for the four techniques (here x1 � 1; x2 � 1:1;
x3 � 3:4 and x4 � 4)
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and D �
d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

0BB@
1CCA:

Note that, when the xi's are equally spaced, W2 for this
example is equal to the W of equation (7). De®ne
~W2 � VD1=2, where D1=2 is the square root matrix for D. A
straightforward argument shows that ~W T

2
~W2 � I . The or-

thonormality of ~W T
2 implies that W T

2 W2 � D and hence that
W ÿ1

2 � V T . Thus, while the columns of W2 are pairwise
orthogonal, they do not have unit norm; nonetheless, the
W2 transform can be readily inverted so that we can recover
f from a

�2�
f using f � V T a

�2�
f .

3.3. Sampling on a grid

The third simple scheme we consider is to sample the in-
terpolated function �f over a set of n0 � 2J 0 � n equally
spaced points, to use these sampled values to construct a
new interpolated function and then to apply the usual Haar
CWT to this new function to obtain the vector of n0 CWT
coe�cients a

�3�
f . To specify the n0 interpolated values, let

D � n=n0 � 2JÿJ 0 and x0i � 1
2� iÿ 1

2

ÿ �
D; i � 0; . . . ; n0 � 1.

De®ne the vector n0 interpolated values as
f�3� � � �f �x01� �f �x02� � � � �f �x0n0 ��T . Let m0i � 1

2� iD; i � 0; . . . ; n0

represent the midpoints of the x0i's (note that m00 � 1
2 and

m0n0 � n� 1
2�. De®ne the new interpolated function as

�f �3��x� � �f �x0i�; m0iÿ1 � x < m0i; i � 1; . . . ; n0;
0; otherwise.

�
De®ne n0 ÿ 1 Haar mother wavelets w�3�j;k as in equation (4),
with the distinction that now j � J0; J0 � 1; . . . ; J with
J0 � 1� J ÿ J 0 (note that J0 � 1�. The father wavelet /�3�J ;1
is given by (5). Let Wn0 be the n0 � n0 Haar DWT matrix.
The CWT coe�cients a

�3�
f can be expressed as

a
�3�
f �

����
D
p

Wn0 f
�3� � W3f with W3 �

����
D
p

Wn0G;

where G is an n0 � n matrix expressing the interpolation. In
the example shown in the third column of ®gure 1 (for
which n � 4 and n0 � 8), the G matrix is given by

GT �
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1

0BB@
1CCA:

Note that the number of ones in the ith column of G in-
dicates the number of times f �xi� is used in the interpola-
tion scheme. We can de®ne a pseudo inverse for this G as
follows:

G# �
1 0 0 0 0 0 0 0
0 1

2
1
2 0 0 0 0 0

0 0 0 1
3

1
3

1
3 0 0

0 0 0 0 0 0 1
2

1
2

0BB@
1CCA:

Note that, if the ith column of G contains ni ones with
ni � 1, then the ith row of G# contains 1=ni in ni places. If
each f �xi� is used at least once so that G has rank n, then
G#G � In, where Ik refers to the k � k identify matrix. Since
W T

n0 Wn0 � In0 , we can recover f from a
�3�
f in the full rank case

via f � W #
3 a
�3�
f , where W #

3 � G#W T
n0 =

����
D
p

.
Although we can always ensure that G has rank n by

making n0 su�ciently large, a practical problem is that n0 so
chosen is driven by the smallest spacings between the
original xi's and hence can be prohibitively large. When this
is a concern, a practical ± but suboptimal ± procedure is to
pick n0 so that the resulting D is less than or equal to, say,
the lower p% quantile qp of the observed spacings
xi ÿ xiÿ1's, (this yields J 0 � dlog2 nÿ1

qp
� 1

� �
e). We used

p � 20 in the Monte Carlo simulations reported in section
6. The matrix G typically now has a rank less than n be-
cause certain columns can have all zero elements (with
p � 20 we found the rank of G to be about 90% to 95% of
n in the Monte Carlo simulations, which means that 5% to
10% of the observations were being e�ectively discarded).
By de®ning the corresponding rows of G# to be zero, we
will have G#G � Kn, where Kn is an n� n diagonal matrix,
all of whose diagonal elements are either 1 or 0 (note that,
if the ith diagonal element of Kn is zero, then f �xi� is not
used at all in the interpolation scheme). When G#G 6� In,
we can only recover portions of the vector f perfectly since
W #

3 a
�3�
f � Knf. Elements of Knf that are zero due to a zero

diagonal element in Kn can be ®lled in by setting them equal
to the value of their nearest neighbor, thus yielding an
approximate reconstruction of f given by

f�3� � MnW #
3 a
�3�
f ;

where Mn is an n� n matrix whose diagonal elements are
identical to those of Kn and whose o�-diagonal elements
are de®ned by the nearest neighbors. For example, if the ith
diagonal element of Kn is zero while elements iÿ 1 and
i� 1 are nonzero, and if xi ÿ xiÿ1 < xi�1 ÿ xi, then the ith
row of Mn will be unity at element iÿ 1 and zero elsewhere.

3.4. Exact integration

The fourth simple scheme we consider is to analyze �f using
the Haar CWT de®ned by equations (4) and (5) with
j � J0; J0 � 1; . . . ; J where J0 � 1. This yields the Haar
CWT coe�cients a

�4�
f , each of which is obtained by an inner

product of �f with wj;k or /J ;1 (see equation (6)). Because
these functions are all piecewise constant, we can express
each coe�cient in a

�4�
f as a linear combination of elements

in f, and hence we can write a
�4�
f � W4f, where W4 is a n0 � n

matrix with n0 � 2J 0 and J 0 � J ÿ J0 � 1.
To recover f using the elements of a

�4�
f , we form f�4�,

whose ith element is by de®nition

�f �4��xi� �
XJ

j�J0

Xn=2j

k�1
h �f ;wj;kiwj;k�xi� � h �f ;/J ;1i/J ;1�xi�:
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An e�cient way to obtain f�4� is to ®rst compute
g � W T

n0 a
�4�
f =

����
D
p

(as before, W 0
n is the n0 � n0 Haar DWT

matrix); to associate the jth value gj in g with the jth
interval �12� �jÿ 1� n

n0 ;
1
2� j n

n0�; j � 1; . . . ; n; and then to set
the ith value of f�4� equal to the gj such that xi is contained
in the jth interval. (An alternative reconstruction proce-
dure is to form the pseudo-inverse of W4, but this becomes
computationally impractical for large n0. It should be noted
this alternative procedure does not in general yield f�4�.)

As was true for sampling on a grid, we can insure that
f�4� � f by making J 0 su�ciently large, but again the
practical problem is that the resulting n0 can be prohibi-
tively large. The choice of J 0 is obviously quite important.
If it is set too small, we will not get a reasonable approx-
imation to �f when projected upon the basis functions wj;k
and /J ;1. As a practical procedure, we set J 0 using the same
heuristic as we did for sampling on a grid.

4. WaveShrink for equally spaced data

In this section we review the key steps in the WaveShrink
algorithm for denoising equally spaced data as formulated
in Donoho and Johnstone (1994). Given n samples gener-
ated according to equation (1) with xi � i, we can express
our model in vector notation as Y � f� �, where
Y � �Y1 Y2 � � � Yn�T and � � ��1 �2 � � � �n�T . The Wave-
Shrink algorithm estimates f using the following three
steps.

1. Computation of the Wavelet Coe�cients. As before, let
W be the n� n DWT matrix.
Using this matrix, we compute

aY � W Y � W f� W � � af � a�:

Because the DWT is an orthonormal transform and be-
cause the �i's are independent and identically distributed
normal random variables (iid rv's), the vector a� has ex-
actly the same distribution as �. The wavelet transform
thus converts a `function plus noise' model into another
such model, and the statistical properties of the noise are
identical in both models.

2. Shrinkage of Wavelet Coe�cients. The underlying
heuristic of WaveShrink is that the wavelet transforms of
the sampled function and the noise are quantitatively dif-
ferent. On the one hand, WaveShrink postulates that f is
well represented in the wavelet domain by a combination of
all coe�cients associated with the large scales indexed by
j � Js � 1; . . . ; J together with a few important large coef-
®cients associated with scales j � 1; . . . ; Js. On the other
hand, the elements of a� are iid rv's, and hence the wavelet-
domain representation for the noise consists of coe�cients
of roughly the same size. The WaveShrink algorithm is
thus to leave untouched all coe�cients in aY corresponding
to scales j � Js � 1; . . . ; J and to shrink toward zero the

ns � nÿ n=2Js coe�cients at scales j � 1; . . . ; Js. If the few
large coe�cients in af dominate all the coe�cients in a� and
if each coe�cient is shrunk appropriately by an amount
that depends on its magnitude, WaveShrink can suppress
noise coe�cients while retaining the large important coef-
®cients in af with little alteration. A number of shrinkage
functions have been proposed and studied in the literature
(see, e.g., Bruce and Gao (1996)). For simplicity and for
comparison with results in the equally spaced case, we use
the soft shrinkage function due to Donoho and Johnstone
(1994):

dS
k�x� � sgn�x��jxj ÿ k��; �10�

where k is a (to be determined) positive threshold level;
sgn�x� � 1 if x > 1 and = ÿ1 otherwise; and �x�� � x if
x > 0 and = 0 otherwise.

3. Estimation of the Function. Let aY;i be one of the
wavelet coe�cients in aY that is to be shrunk. The shrunk
coe�cient is then given by

âY;i � rdS
k�aY;i=r�: �11�

On the other hand, if aY;i is one of the coe�cients that is to
be left alone, then âY;i � aY;i. Let âY be a vector containing
the âY;i's. Because W is an orthonormal transform, its in-
verse is its transpose, so we can estimate f via f̂ � W T âY.

The above formulation for WaveShrink requires that we
know the noise variance r2 and that we set Js and k. Es-
timation of r2 is not di�cult: because the heuristic behind
WaveShrink says that these coe�cients mainly depend on �
with the exception of a few large values (`outliers') due to f,
we can use a robust estimate of the variance of the j � 1
scale wavelet coe�cients (Donoho et al. (1995)). To set Js,
we follow Bruce and Gao (1996), who found via empirical
experiments that leaving the 16 highest scale wavelet co-
e�cients untouched is generally a good choice; i.e.,
Js � J ÿ 4, and ns � nÿ 16 (see, however, our discussion
of the constant function in section 8).

The most di�cult task in specifying WaveShrink is to
determine the threshold level k. Since the goal is to estimate
f such that the risk measure of equation (2) is small,
Donoho and Johnstone (1995) propose estimating the risk
measure as a function of k and then picking k such that the
estimated risk is minimized. The proposed estimator is
Stein's unbiased risk estimator (SURE), which is de®ned as
follows. Let aY;i; i � 1; . . . ; ns represent the subset of the
wavelet coe�cients to be shrunk. For a given k, the risk
estimator is given by

SURE�k� � r2 nÿ 2
Xns

i�1
IfjaY;ij � krg

 

�
Xns

i�1
min a2Y;i=r

2; k2
n o!

�12�
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where IfjaY;ij � krg � 1 if jaY;ij � kr and = 0 otherwise.
Finding the minimizing k is easy because the minimum of
SURE�k� can only occur over a set of ns discrete values.

It should be noted that WaveShrink is computationally
very e�cient because the DWT and its inverse can be
performed using fast `pyramid' algorithms (Mallat (1989)).
These algorithms require O�n� ¯oating point operations (by
comparison, the well-known fast Fourier transform algo-
rithm requires O�n log2 n���. In addition, because Wave-
Shrink leaves unaltered all wavelet coe�cients for the
J ÿ Js largest scales, it is only necessary to use Js repetitions
of the pyramid algorithm (in fact, this allows us to relax the
requirement that n be a power of 2: we actually only need
that n be divisible by 2Js).

5. WaveShrink for unequally spaced data

In order to estimate f from noisy data Y using the lth of the
four Haar-like transforms described in section 3, we
transform the data to obtain the empirical wavelet coe�-
cients a

�l�
Y � WlY, shrink the wavelet coe�cients to obtain

â
�l�
Y , and then produce the estimate f̂�l� from â

�l�
Y . While the

material in Section 3.l completely describes how to com-
pute a

�l�
Y and to produce the estimate f̂�l� once â

�l�
Y is known,

we need to adapt the shrinkage step to handle unequally
sampled data.

Although the DWT of equally spaced data leaves the
noise structure unaltered, this is not generally true for three
of the methods we have discussed. Under the model
Y � f� �, we have

a
�l�
Y � a

�l�
f � a�l�� with a�l�� � Wl�:

Since the covariance matrix of � is by assumption r2I , the
covariance matrix R�l� of a

�l�
Y is R�l� � r2WlW T

l . In
particular we have

R�1� � r2I ; R�2� � r2VDDV T ; R�3� � r2DWn0GGT W T
n0

and
R�4� � r2W4W T

4 :

Except for R�1�, the diagonal elements for these covariance
matrices are in general not equal, and the matrices in
general have nonzero o�-diagonal elements. Thus the ele-
ments of a

�l�
� ; l � 2; 3 or 4, in general have heterogeneous

variance and are pairwise correlated. To correct for the
heterogeneous variance, we use `diagonal' shrinkage so
that equation (11) becomes

â�l�Y;i � rid
S
k�a�l�Y;i=ri�;

where r2
i is the ith diagonal element of R�l�; likewise, the risk

estimator given in equation (12) is adjusted by replacing
both occurrences of aY;i by a�l�Y;ir=ri. Note that, because
diagonal shrinkage requires knowledge only of the diagonal
elements of R�l�, we can use e�cient algorithms to compute
these elements rather than forming all of R�l� using ine�-

cient matrix multiplications (these algorithms are imple-
mented in the computer code referenced in section 9).

Although diagonal shrinkage forces homogeneous vari-
ances for a

�l�
Y , its elements are in general still pairwise

correlated. For ideal shrinkage, we would need to account
for these correlations; however, under certain conditions,
Johnstone and Silverman (1997) show that diagonal
shrinkage is asymptotically equivalent to ideal shrinkage.
For simplicity we con®ne ourselves in this paper to diag-
onal shrinkage (this simpli®cation is valid as long as the
covariance matrix is diagonally dominant ± this is always
true for isometric wavelets, but might be violated for the
other techniques if the sample distribution of the di�eren-
ces xi�1 ÿ xi is highly skewed).
WaveShrink also requires knowledge of r2. As noted

previously, it is easy to estimate r2 in the equally spaced
case using a robust estimator such as the median absolute
deviation (MAD) scale estimator. For unequally spaced
data, we can estimate r2 using the same robust estimator in
the case of isometric wavelet scheme, but the other three
methods require more complicated estimators. In the ex-
ample discussed in Section 7, we used a MAD estimate
based on the ®nest scale wavelet coe�cients rescaled by the
diagonal of the covariance matrix, but it is beyond the
scope of this article to ascertain what is the best way of
estimating r2 for each method. To focus our study on the
methods themselves rather than on more complicated in-
terplay between the methods and various estimators of r2,
we will evaluate the four methods in the next section under
the assumption that r2 is known a priori.

6. Monte Carlo study

Here we report on Monte Carlo experiments conducted to
compare the performance of WaveShrink based upon the
four techniques described above. We used ®ve test func-
tions: the zero function f �x� � 0 and functions proportional
to the four plotted in Figure 2, which are called the blocks,
bumps, heavisine and Doppler functions. The latter four
functions were used in Donoho and Johnstone (1994) for
testingWaveShrink on equally spaced data and were chosen
to be caricatures of ones arising in imaging, spectroscopy
and other scienti®c applications. These functions are de-
®ned precisely in Table 1 of Donoho and Johnstone (1994)
over the interval [0, 1], which we have mapped to the in-
terval �1; n�; to match the convention adopted in this paper;
additionally, each of these nonzero test functions was nor-
malized such that its 'standard deviation' is equal to 5:

1

nÿ 1

Zn

1

�f �x� ÿ �f �2 dx � 25; where �f � 1

nÿ 1

Zn

1

f �x� dx:

We consider four di�erent sample sizes: n � 64; 128; 256
and 512.
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For all except the Doppler function, we set the xi's by
choosing n samples from a standard normal distribution
and then rescaling and relocating their order statistics such
that the ®rst and last values were 1 and n; for the Doppler
function, the order statistics of the absolute values of the n
samples were used instead (this yields a denser sampling of
the ®rst portion of the Doppler signal, which is the region
over which it is varying rapidly). The rationale for using
the normal distribution was to simulate the sampling
scheme that would arise in scatter plots involving normal
deviates. For each set of xi's so chosen, we simulated a
noisy function from equation 1, with r2 � 1 (i.e., the
standard deviation of the noise is 5 times smaller than the
`standard deviation' of the function). Each noisy function
was then used to estimate the true f over the selected xi's
using each of the four WaveShrink techniques. The quality
of the estimate was measured by computing the observed
risk, namely,

R̂�f̂ ; f � � 1

n

Xn

i�1
�f̂ �xi� ÿ f �xi��2: �13�

To eliminate e�ects that might be attributable to a partic-
ular choice of the xi's, we reselected the xi's for each
function nr � 16384=n times (this makes the total number
of generated noisy functions the same for each n). We re-
peated the above to obtain nr observed risks for each
function and each WaveShrink technique. We then aver-
aged all nr observed risks for each function/technique
combination. (The risk function that we are actually esti-
mating thus di�ers from the one presented in equation 2:
the xi's are replaced by random variables Xi, and the ex-
pectation is over the joint distribution of the Xi's and Yi's.)

As noted above, we used SURE to select the threshold k
for each noisy function. We assumed knowledge of the
noise variance r2 in computing SURE, so the resulting
observed risk can be called oracle based (Donoho and
Johnstone (1994)). In order to assess how well SURE picks
an appropriate k, we also determined the k such that the
right-hand side of equation 13 is minimized as a function of
k. We denote this second procedure as a super oracle.

Table 1 lists the oracle-based average observed risks
along with estimated standard deviation for these averages.
For each sample size n and each test function, we have used
a bold font to indicate the smallest average observed risk
(in several cases two risks are so indicated because they
agree to the two decimal points shown in the table). With
the exception of one case (n � 128 and heavisine, for which
exact integration tied with sampling on a grid), either iso-
metric wavelets or sampling on a grid had the smallest
average observed risk. The general pattern is for isometric
wavelets to be the best technique for large n, while sam-
pling on a grid is better for small n. If we examine the
di�erence between observed risks, there is little separation
between isometric wavelets and sampling on grid: in cases

Fig. 2. The above ®gure shows the four test functions used in the
Monte Carlo experiments

Table 1. Oracle-based average observed risk (nr=16384/b repeti-

tions)

Isometric Asymmetric Sampling Exact

blocks

n=64 0.66�0.03 0.71�0.03 0.63�0.04 0.66�0.06
n=128 0.50�0.02 0.55�0.02 0.49�0.03 0.52�0.04
n=256 0.38�0.02 0.45�0.02 0.38�0.02 0.39�0.01

n=512 0.28�0.01 0.33�0.01 0.29�0.01 0.29�0.01

bumps
n=64 0.75�0.04 0.79�0.04 0.83�0.06 0.88�0.09
n=128 0.66�0.02 0.71�0.02 0.65�0.03 0.68�0.03

n=256 0.58�0.02 0.63�0.02 0.58�0.02 0.61�0.02
n=512 0.49�0.01 0.54�0.01 0.49�0.01 0.50�0.01

heavisine

n=64 0.75�0.03 0.80�0.03 0.67�0.03 0.70�0.03
n=128 0.57�0.02 0.64�0.02 0.56�0.02 0.56�0.02
n=256 0.43�0.01 0.50�0.01 0.46�0.02 0.46�0.02

n=512 0.31�0.01 0.38�0.01 0.36�0.01 0.36�0.01

Doppler
n=64 0.93�0.03 0.94�0.03 0.88�0.04 0.95�0.04
n=128 0.87�0.02 0.89�0.02 0.82�0.02 0.88�0.02

n=256 0.80�0.01 0.84�0.01 0.78�0.02 0.82�0.02
n=512 0.68�0.01 0.74�0.01 0.73�0.02 0.71�0.01

pure noise

n=64 0.30�0.02 0.35�0.03 0.28�0.02 0.29�0.02
n=128 0.16�0.01 0.19�0.01 0.16�0.01 0.16�0.01
n=256 0.08�0.01 0.10�0.01 0.09�0.01 0.09�0.01

n=512 0.04�0.00 0.06�0.00 0.05�0.00 0.05�0.00
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where the former a large risk than the latter, the di�erence
in observed risks is always less than 16% . Moreover, if we
take sampling variations into account, there are very few
cases where we can claim that the di�erence between av-
erage observed risks is statistically signi®cant. We can thus
conclude the isometric wavelet scheme works at least as
well as the other three methods and thus is the preferred
technique because of its inherent computational simplicity.

When the super oracle was used, we found that the ob-
served risk did not decrease substantially. For the blocks,
bumps, heavisine and Doppler functions, the improvement
that was gained by using the super oracle was 5% as av-
eraged across the 64 combinations of sample size and
method displayed in Table 1 (the improvements were all
less than or equal to 12% ). For the constant function, the
improvements were somewhat larger, ranging between 8%
and 18% with an average of 12% over the 16 sample size/
method combinations in Table 1, a result that is consistent
with the discussion in Donoho and Johnstone (1995) con-
cerning the performance of SURE with extremely sparse
signals. We can conclude that the SURE procedure works
well in picking out an appropriate k for thresholding.

7. Example: an astronomical time series

As an example of wavelet shrinkage of an actual unequally
sampled time series, we consider the problem of estimating
the light curve for the variable star RU Andromeda (this
time series was obtained from the American Association
of Variable Star Observers (AAVSO) International Data-
base, which is maintained by J.A. Mattei and is accessible
on the World Wide Web at www.aavso.org). The ob-
served magnitude values for this star are indicated in
Figure 3 by small dots, which range in time from Julian
Day 2,449,004 to 2,450,352 (January 1993 to mid-1996).
The magnitudes of this star are measured at irregularly
spaced times due to blockage of the star by sunlight,
weather conditions and availability of telescope time.
There were 295 observations in all, three of which were
reported as upper limits on the star's magnitude and hence
were eliminated since their error properties are quite dif-
ferent from the remaining observations. Out of the 292
remaining observations we selected 256 values at random
to conform to the power of two assumption made
throughout this paper (we did the random selection just
once, but a slight improvement to this procedure would be
to make many such selections and then to average the
resulting estimated light curves).

The four di�erent estimated light curves are indicated on
Figure 3 by connected lines. Qualitatively the four esti-
mated light curves are quite similar, although the one given
by asymmetric Haar is markedly noisier in appearance.
The estimated light curves generally track the overall light
variations quite nicely.

8. Conclusions and discussion

We have demonstrated that the simple isometric wavelet
scheme works just as well as three other schemes for con-
structing a Haar-like wavelet shrinkage estimator for un-
equally sampled data. We have provided some theoretical
justi®cation as to why the isometric wavelet scheme works
in terms of a nonstandard ± but intuitively appealing ±
metric, a result that is of interest even for smoothing
schemes that are not based on wavelets. The isometric
wavelet idea has additional appeal in that it is trivial to
extend it to wavelets other than the Haar, which will be
considered in future research.

Isometric wavelets can be extended to higher dimension
of the predictor space. Of particular interest in the 2-D
denoising problem. Images are 2-D signals on a grid. Be-
cause the data are equally spaced at the pixel locations,
WaveShrink can be used for the image denoising problem
and enjoys the same properties as in the 1-D case. Among
the four techniques proposed in this paper to generalize
WaveShrink to the unequally spaced setting, the isometric
wavelet technique can easily be extended to the 2-D
problem. In the 1-D case, the segmentation of the predictor
space (the line) from mid-point to mid-point leads to both

Fig. 3. Wavelet shrinkage estimates of light curve for the variable
star RU Andromeda (this time series was obtained from the
American Association of Variable Star Observers (AAVSO) In-
ternational Database maintained by J.A. Mattei)
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the de®nition of the compact support of the wavelets, and
the empirical marginal density p̂X �x�. Similarly, the planar
tessellation (Okabe et al. (1992)) of the predictor space in
Voronoi diagrams o�ers the same properties: the compact
support of the wavelets is the union of neighboring Vor-
onoi polygons, and the area of the Voronoi polygon re¯ects
the density of the explanatory data.

It should be noted that, with Js ®xed a priori, wavelet
shrinkage estimation of a constant function is not com-
petitive with the best parametric procedure (i.e., the sample
mean), but it can be made so if Js is set so that there is but a
single scaling coe�cient (proportional to the sample mean)
and if threshold levels are set such that wavelet shrinkage
sets all the wavelet coe�cients to be zero. More research is
needed on data-based setting of Js and the threshold levels
to ascertain whether wavelet shrinkage can compare fa-
vorably to the best parametric procedure in this case and
similar scenarios.

9. Software availability

The ®gures and tables in this paper are reproducible
through software that can be obtained by anonymous ftp
to ftp.statsci.com in the directory pub/WAVELETS/

unequal (this software makes use of the S+WAVELETS

toolkit in S-PLUS).
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