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The Conjugate Gradient Method

The conjugate gradient method was orininally invented to minimize a quadratic
function

1
F(X):§XTAX—|—b-X—|—C

with x € R™ and A symmetric and positive definite. This is equivalent to
finding x with VF(x) = 0, i.e. solving the linear system

Ax+b =0.

Linear systems are typically solved using Gauss elimination or Choleski de-
composition. The CG method is an alternative solution method. It is of
interest for several reasons:

e In the CG method, the only operation involving A is multiplication of
A with a vector. If A is large and sparse, this can be advantageous,
because it may not be necessary to ever store A in an m X m matrix.
Instead, A can be stored in a compressed form or computed on the fly.
One then only needs to write a special purpose function for multiplying
A with a vector.

e CG is an iterative method. In theory, the number of iterations needed
by the GC method is equal to the number of different eigenvalues of
A, i.e. at most m. To get the solution to machine precision usually
requires more than m iterations. In practice, a good approximation is
frequently reached much earlier, which makes the CG method attractive
for large problems.

e The CG method can be used to solve least squares problems with large
and sparse design matrix.



e The CG method can be generalized to a minimization method for gen-
eral (non quadratic) smooth functions.

1. Minimizing quadratic functions
Our goal is to minimize a quadratic function
L p
F(x) = 5 X Ax+b-x+c

with x € R™ and A symmetric and positive definite. Let x, = —A~'b be
the location of the minimum, and note that VF(x) = Ax + b = A(x — x,).

The basis of the CG method is the following

Lemma 1: If we go from some point Xq in direction p till we reach the
minimum:

X1 = Xo+1tp with

t = argmin, F(xy+ tp)
then x; — x, is A-conjugate to p: p’ A(x; — x,) = 0.
Proof: Because x; minimizes F' along p, the gradient VF(x;) has to be

orthogonal to p: pT A(x; — x,) = 0.

It is easy to verify that the optimal step is

PTA(xo—x) _ p'VF(xo)

Fo_ _
plAp plAp

Note 1: Because the minimum of F' is reached at x,, Lemma 1 implies that,
once we go along a direction p to the minimum, we can restrict further steps
towards the minimum to be A-conjugate to p.

The following is a simple consequence of Lemma 1:



Lemma 2: Let py,...,p; be mutually A-conjugate directions. Then
F(xo+ tip; + -+ -+ txpg) can be minimized by stepping from x, along p, to
the minimum x,, stepping from x; along p, to the minimum x,, etc.

Note 2: Because x; minimizes F' among all vectors of the form xo—i-Zf:l tip;,
VF(xx) p; = PrA(xy —x,) = 0 for i = 1,...,k. Therefore x; — x, is A-
conjugate to py, ..., Pg-

As there are only m mutually conjugate directions, Lemma 2 shows that the
following algorithm finds the minimum of F'

Alg 1: Pick pq,...,p,, mutually A-conjugate, and starting guess x;.

Fori=1tom {
t=—p;- (Ax;1 +b) / (p] Ap;)
X; = Xj—1 + tp;

}

Return x,,

The conjugate gradient method is Alg 1 with a particular choice of py,...,p,,-
Let g, = —VF(x;) = —(Ax; + b) be the negative gradient at x;,. The CG
method picks p,; as the component of g, A-conjugate to py,...,p;:

b g{APi D
i=1 plTApZ- ’

Pri1 =8 —

This makes sense: At each step we try to go downhill as steeply as possibly,
subject to the step being conjugate to the previous steps.

What makes the GC method work nicely is that in the above equation,
gl Ap, =0 fori=1,...,k—1;

thus p,, is a linear combination only of g, and p,. We will now show this
fact.



Lemma 3: [py,...,Ps] = [0 - -+, 8s_1] = [A(Xo—%4), A%(x9—Xy), . .., A*(x0—

X*)]

Proof:

gy = —A(xo—x)

P = —A(xo—x,)

X1 = Xo+Up;

g = —Alx—x,)=—A(x) —x,) +t,4%(x9 — x,)

b2 = lincom of g,y = Py € [A(x0 — x,), 4%(x0 — )]

g, = —A(xo—x,) € [A(xg—x,), A%(x0 — x,), A(x0 — x,)]

p; = lincom of g, py, Py = P3 € [A(x0 — x,), A%(x0 — x,), A7(x0 — x,)],

and so on. This could easily be made more formal by induction.

Note 3: Lemma 3 also shows that the gradients g,,g;,... are mutually
orthogonal: gk 1 Pi;---5Pg and [pla R pk] = [gla trty gkfl]‘

The following lemma gives the desired result:

Lemma 4: gl Ap, =0fori=1,...,k—1.

Proof: gl Ap;, = —(A(xx — x,))"Ap;. Now x; — x, is A-conjugate to
Py,--., P, and [Apy, ..., Apy_4] C [Py,...,Ps) (Lemma 3). Thus x; — x,
is A-conjugate to Apy,..., Ap, ;.

We thus have the following first version of the CG algorithm:
Alg. 2: Pick starting guess xj.

fori=1tom {
g1 =—(Ax;,_; +b);if g,_; = 0 return x;_,
if (i > 1) then 3; = (g] 1 Ap,_1) / (P} 1AP;_1)
if i =1 then p; =g, else p; =g, | — fip; ,
a; = (g1 P;) / (P?Apz')
X = X1+ &;p;

return xX,,



The formulas in the algorithm can be simplified somewhat. For example the
g, can be computed recursively:

Xi = Xi-1top; =
—AXi —b = —AXi_l —b-— OflApZ =
8 = 81— oAp;

The expressions for 3; and «a; can also be simplified. Multiplying the above
gradient formula by g, and g; ;, we see that

lg;ll? = —augl Ap;

||gi—1||2 = aiginlAPi
As gi_1 = P;+BipPi_1,

||gi—1||2 = aig?AAPi
= aiP?APi

Therefore “2

IS
Biy1 = —7—
||gi—1||2

This gives the following simplified algorithm:

Alg. 2: Pick starting guess xg, and set g, = —(Axy + b)

fori=1tom {
if g;_; = 0 then return x;_;
if (i > 1) then §; = —|lg; 1[1* / [|gi 2|’
if i =1 then p, =g, else p, =8,_, — BiP,_1
a; = |lg;i_1|I” / (p] Ap;)
X; = Xj—1 + ;p;
g =81 — wAp;
return X,,

This algorithm requires one matrix x vector multiplication per iteration.



2. Conjugate Gradients for Least Squares Problems

We are given a response vector y € R", and a n X m design matrix C'. We
want to find a parameter vector x with

ly — Cx||> = min!
This equivalent to solving the normal equations

CTCx—-C"y =0
or minimizing the quadratic function

1
F(x) = §XTCTCX —x"C"y.

We will use the CG method to minimize F'(x). Let x; be the parameter
vector after the k-th iteration. The residual vector after the k-th iteration is
r; =y — Ox;, and the negative gradient is g, = —VF(x;) = CTry.

Note that pl CTCp,, = ||Cpgl%; so ax can be obtained without calculating
CTC. Note also that x; = xx_1 + agp;,, and therefore ry = ry_; — ,.Cp;,.

This gives the following algorithm:

Alg. 3: Pick starting guess x.

ro =y — Cxg
8o = CTry
fori=1tom {
if g;_, = 0 then return x;
if (i > 1) then 8 = —|lg;_1[” / lgi—all®
if i =1 then p; = g, else p; = g; | — fip;,
a; = ||g;1[” / [ICpyll?
X; = Xj—1 + a;p;
r; =r;; —a;Cp;
g, = CTr;
return x,,

This algorithm requires one multiplication of C' with an m-vector and one
multiplication of C7 with an n-vector.



The CG Algorithm for Minimizing General Smooth Functions

Let F(x) : R™ — R be a general smooth function (at least twice differ-
entiable). A typical minimization procedure does a sequence of univariate
minimization along suitably chosen directions:

Alg 4: Pick starting guess xy and maximum number of iterations maxit.

for i = 1 to mawit {
Choose search direction p;,
«; = argmin, F'(x;_ + tp;)
X; = Xj—1 + ;p;
if converged, return x;

}

return ”failed to converge”

An obvious choice for the search direction p, is the negative gradient —V F(x;_1).
Alg 4 with this choice of directions is called steepest descent minimization.
However, steepest descent is usually a terrible procedure. It quickly drops
down into a valley and then makes very slow progress.

It is much better to use conjugate gradients. Close to a local minimum, every
smooth function is approximately quadratic with positive definite Hessian.
Once it has gotten close enough, CG will home in on the solution very rapidly.

At first glance it seems that in order to apply CG, we need to have the Hessian
of F', because it would take the role of A. This can be avoided. Inspection
of Alg 2 reveals that A is used in two places, namely in the calculation of
VF(x;), and the calculation of the step size ;. If we can provide a procedure
to calculate VI, the first use can be avoided. We can find the step size q;
by performing a univariate numerical minimization of F(x; + tp;). The CG
method with these two modifications is called the Fletcher-Reeves method.



