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Connections between Canonical Correlation Analysis,
Linear Discriminant Analysis, and Optimal Scaling

As ususal, let X be the n x p matrix of predictor variables, and let Y be
the n x K matrix of dummy response variables. (In principle, K — 1 dummy
variables would be enough, but having K of them will be convenient below).
We assume that the predictors are centered (x = 0). Let W and B be the
within-class and between-class ssp matrices:
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where x;,7 = 1,...,ny are the class k predictor vectors. Note that rank(B) <
K —1 because the K class mean vectors are linearly dependent: Zszl nEXp =

0.

Linear Discriminant Analysis (LDA)

The first discriminant direction a; is the unit vector that maximizes the
ratio of between class sum of squares to within class sum of squares of the
projected data:
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The i-th discriminant direction maximizes the ratio subject to being orthog-
onal to all previous ¢ — 1 directions. In general, there will be min(p, K — 1)
discriminant directions.



Canonical Correlation Analysis (CCA)

The first canonical correlation p; is the maximum correlation between a vec-
tor in X-space (the space spanned by the columns Xj,...X, of X) and a
vector in Y -space:
p1 = max cor (Xa,Y0)
a,

The vectors a; and #; maximizing the correlation are only determined up to
a multiplicative constant. We will refer to the corresponding unit vectors as
the first canonical direction and the first canonical scores. The i-th canonical
correlation is the maximum correlation between a vector in X-space un-
correlated with Xay, ..., Xa;_;, and a vector in Y-space uncorrelated with
Y0,...,Y0;,_1. The corresponding unit vectors a; and 0; are called the -
th canonical direction and the i-th canonical scores. In general, there are
min (K, p) canonical correlations. At least one of those will vanish, however,
because the Y-space contains the constant vector 1, to which the columns of
X are orthogonal.

Optimal Scaling

Optimal scaling is frequently used by social scientists to extend extend statis-
tical procedures like principal component analysis and regression to categori-
cal data. We discuss it here for the classification problem, i.e. regression with
categorical response. The goal is to find scores 64, ...,0k for the categories
1,..., K such that the transformed response vector Y can be predicted as
well as possible by a linear model:
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To prevent the degenerate solution # = 0, we have to impose a constraint,
like ||Y0||> = 1. Optimal scaling is just another way of looking at the canon-
ical correlation problem, that makes it look less symmetric and more like a
regression problem.



Equivalence of CCA and LDA

To show the equivalence between CCA and LDA, we need the following

Lemma: Let x be a centered response vector, and let Y be a design matrix,
which does not have to be centered, but whose column space contains the
constant vector 1. Then a coefficient vector # maximizing cor (x, Y #) can be
found by minimizing ||x — Y6||.

Proof: The squared correlation between x and Y6 is
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cor(x,Y0) = —HXHZ var (V0)

The centering terms disappear because x is already centered. Note that the
optimal Y@ is only determined up to a constant vector, because

cor?(x,Y0) = cor?(x,Y0 +cl).

We thus need to maximize only over the subspace S of #’s with mean (Y6) =
0, which implies that var (Y0) = ||Y6]*:
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It is easy to see that the unconstrained optimum
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can be found by minimizing ||x — Y8||. Moreover,
0 = argming||x — Y|

also satisfies the constraint, because 0 = X = mean (Y6). (In the last step
we use the fact that the column space of Y contains the constant vector).
Therefore, 6 is also a solution to the constrained problem.



Here now is the main result.
Prop: The first discriminant direction is the same as the first canonical

direction.

Proof: The maximum squared correlation between Xa and Y@ is
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As shown in Lemma 1, an optimal 6 for given a can be found by linear
regression of Xa on on the Y-space:

argmaxgeor*(Xa,Y0) = (YY) 'Y Xa
Substituting into the correlation gives
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The key point is that the matrix XY (YTY)"'YTX in the numerator ac-
tually is the between class ssp matrix. Notice that Y7X is a K X p ma-
trix whose k-th row is mpxg, (YZY)™! = diag(1/ny,...,1/nk), and thus
XTY (YTY)='YTX is indeed the properly weighted ssp matrix of the class
means.

As a consequence,
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This shows that the vector a giving the maximum correlation also maximizes
the ratio of between class sum of squares to within class sum of squares of
the projected data.



