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Connections between Canonical Correlation Analysis,
Linear Discriminant Analysis, and Optimal Scaling

As ususal, let X be the n × p matrix of predictor variables, and let Y be
the n×K matrix of dummy response variables. (In principle, K − 1 dummy
variables would be enough, but having K of them will be convenient below).
We assume that the predictors are centered (x̄ = 0). Let W and B be the
within-class and between-class ssp matrices:

W =
K∑

k=1

nk∑

i=1

(xki − x̄k)(xki − x̄k)
T

B =
K∑

k=1

nkx̄kx̄
T
k ,

where xki, i = 1, . . . , nk are the class k predictor vectors. Note that rank(B) ≤
K−1 because the K class mean vectors are linearly dependent:

∑K
k=1 nkx̄k =

0.

Linear Discriminant Analysis (LDA)

The first discriminant direction a1 is the unit vector that maximizes the
ratio of between class sum of squares to within class sum of squares of the
projected data:

a1 = argmaxa
aT Ba

aT Wa

The i-th discriminant direction maximizes the ratio subject to being orthog-
onal to all previous i− 1 directions. In general, there will be min(p,K − 1)
discriminant directions.
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Canonical Correlation Analysis (CCA)

The first canonical correlation ρ1 is the maximum correlation between a vec-
tor in X-space (the space spanned by the columns X1, . . . Xp of X) and a
vector in Y -space:

ρ1 = max
a,θ

cor (Xa, Y θ)

The vectors a1 and θ1 maximizing the correlation are only determined up to
a multiplicative constant. We will refer to the corresponding unit vectors as
the first canonical direction and the first canonical scores. The i-th canonical
correlation is the maximum correlation between a vector in X-space un-
correlated with Xa1, . . . , Xai−1, and a vector in Y -space uncorrelated with
Y θ1, . . . , Y θi−1. The corresponding unit vectors ai and θi are called the i-
th canonical direction and the i-th canonical scores. In general, there are
min(K, p) canonical correlations. At least one of those will vanish, however,
because the Y -space contains the constant vector 1, to which the columns of
X are orthogonal.

Optimal Scaling

Optimal scaling is frequently used by social scientists to extend extend statis-
tical procedures like principal component analysis and regression to categori-
cal data. We discuss it here for the classification problem, i.e. regression with
categorical response. The goal is to find scores θ1, . . . , θK for the categories
1, . . . , K such that the transformed response vector Y θ can be predicted as
well as possible by a linear model:

θ̂ = argminθ min
a
‖Y θ −Xa‖2

To prevent the degenerate solution θ = 0, we have to impose a constraint,
like ‖Y θ‖2 = 1. Optimal scaling is just another way of looking at the canon-
ical correlation problem, that makes it look less symmetric and more like a
regression problem.
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Equivalence of CCA and LDA

To show the equivalence between CCA and LDA, we need the following

Lemma: Let x be a centered response vector, and let Y be a design matrix,
which does not have to be centered, but whose column space contains the
constant vector 1. Then a coefficient vector θ maximizing cor (x, Y θ) can be
found by minimizing ‖x− Y θ‖.

Proof: The squared correlation between x and Y θ is

cor 2(x, Y θ) =
〈x, Y θ〉2

‖x‖2 var (Y θ)

The centering terms disappear because x is already centered. Note that the
optimal Y θ is only determined up to a constant vector, because

cor 2(x, Y θ) = cor 2(x, Y θ + c1).

We thus need to maximize only over the subspace S of θ’s with mean (Y θ) =
0, which implies that var (Y θ) = ‖Y θ‖2:

max
θ

cor 2(x, Y θ) = max
θ∈S

〈x, Y θ〉2
‖x‖2‖Y θ‖2

It is easy to see that the unconstrained optimum

max
θ

〈x, Y θ〉2
‖x‖2‖Y θ‖2

can be found by minimizing ‖x− Y θ‖. Moreover,

θ̂ = argminθ‖x− Y θ‖

also satisfies the constraint, because 0 = x̄ = mean (Y θ̂). (In the last step
we use the fact that the column space of Y contains the constant vector).
Therefore, θ̂ is also a solution to the constrained problem.
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Here now is the main result.

Prop: The first discriminant direction is the same as the first canonical
direction.

Proof: The maximum squared correlation between Xa and Y θ is

ρ2
1 = max

a,θ

〈Xa, Y θ〉
‖Xa‖2 var (Y θ)

As shown in Lemma 1, an optimal θ for given a can be found by linear
regression of Xa on on the Y -space:

argmaxθcor 2(Xa, Y θ) = (Y T Y )−1Y T Xa

Substituting into the correlation gives

ρ2
1 = max

a

〈Xa, Y (Y T Y )−1Y T Xa〉2
‖Xa‖2 ‖Y (Y T Y )−1Y T Xa‖2

=
aT XT Y (Y T Y )−1Y T Xa

‖Xa‖2

The key point is that the matrix XT Y (Y T Y )−1Y T X in the numerator ac-
tually is the between class ssp matrix. Notice that Y T X is a K × p ma-
trix whose k-th row is nkx̄k, (Y T Y )−1 = diag(1/n1, . . . , 1/nK), and thus
XT Y (Y T Y )−1Y T X is indeed the properly weighted ssp matrix of the class
means.

As a consequence,

ρ2
1 = max

a

aT Ba

aT XT Xa

= max
a

aT Ba

aT (B + W )a

= max
a

(1 +
aT Wa

aT Ba
)−1

This shows that the vector a giving the maximum correlation also maximizes
the ratio of between class sum of squares to within class sum of squares of
the projected data.
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