1 Fitting linear manifolds

Def 1.1 A subset L of \mathbb{R}^p is called a k-dimensional linear manifold (or a k-dimensional affine subspace) if there is a k-dimensional linear subspace U with the following properties:

(1) $x, y \in L \Rightarrow x - y \in U$.
(2) $x \in L, u \in U \Rightarrow x + u \in L$.

If u_1, \ldots, u_k form a basis of U, and $u_0 \in L$, then every $x \in L$ has a unique representation

$$x = u_0 + \sum_{i=1}^{k} x_i u_i$$

Without loss of generality we can assume that u_0, \ldots, u_k are orthonormal.

Prop 1.1 Let L denote a k-dimensional linear manifold with associated subspace U. Then for every $x \in \mathbb{R}^p$ there is a unique closest point $z \in L$.

Proof: For $z = u_0 + \sum z_i u_i$, we have

$$\|x - z\|^2 = \|x - u_0 - \sum z_i u_i\|^2$$

$$= \|x - u_0\|^2 + \sum z_i^2 - 2 \sum z_i \langle x, u_i \rangle$$

Taking derivatives with respect to z_i gives $z_i = \langle x, u_i \rangle, i = 1, \ldots, k$.

The closest point in L to x thus is $z = u_0 + \sum \langle x, u_i \rangle u_i$. The squared distance of x from L is

$$d^2(x, L) = \|x - u_0\|^2 - \sum \langle x, u_i \rangle^2$$

Note: $x - z \in U^\perp$ because

$$\langle x - z, u_i \rangle = \langle x - u_0 - \sum \langle x, u_j \rangle u_j, u_i \rangle = 0$$

Define $V = U^\perp$, the orthogonal complement to U in \mathbb{R}^p. Let P_V denote the orthogonal projection onto V.

Note: $d^2(x, z) = \|x - z\|^2 = \|P_V(x - z)\|^2 = \|P_V(x) - u_0\|^2$.

The following proposition is the main result of this section:
Prop 1.2 Given a collection x_1, \ldots, x_n of points in \mathbb{R}^p. A k-dimensional linear manifold L minimizing $\sum_{i=1}^n d^2(x_i, L)$ has the following properties:

1) $\bar{x} = 1/n \sum x_i \in L$.

2) The associated subspace U is spanned by k largest eigenvectors (eigenvectors with the largest eigenvalues) of the sample covariance matrix $\Sigma = 1/n \sum (x_i - \bar{x})(x_i - \bar{x})^T$.

Note: Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$ denote the eigenvalues of Σ. L will be uniquely determined only if $\lambda_k > \lambda_{k+1}$. It is easy to think of point configurations in the plane for which there is no unique closest line, for example if x_1, \ldots, x_n are all the same or if they are arranged in a symmetric pattern, like the vertices of a regular hexagon.

To prove Prop. 1.2, we first show that, for any fixed subspace U, the linear manifold with associated subspace U that is closest to x_1, \ldots, x_n has to go through \bar{x}.

Prop 1.3 Let U be a linear subspace and L be a linear manifold with associated subspace U minimizing $\sum d^2(x_i, L)$. Then $\bar{x} \in L$.

Proof: $\sum d^2(x_i, L) = \sum \|P_U(x_i) - u_0\|^2$. Thus $u_0 = 1/n \sum P_U(x_i)$. This shows that $\bar{x} \in L$ because

$$\bar{x} = P_U(\bar{x}) + P_U(\bar{x}) = P_U(\bar{x}) + u_0.$$

Without loss of generality we can assume that $\bar{x} = 0$. We have shown that the closest linear manifold then passes through 0, i.e. is a linear subspace. We thus have reduced the problem to finding the closest linear subspace to a set of points.

Prop 1.4 A k-dimensional linear subspace U closest to x_1, \ldots, x_n is spanned by k largest eigenvectors (eigenvectors with the largest eigenvalues) of $\Psi = \sum x_ix_i^T$.

Proof: Let u_1, \ldots, u_k denote an orthonormal basis for U. Then

$$\sum d^2(x_i, U) = \sum \|x_i\|^2 - \sum_{i=1}^n \sum_{j=1}^k (x_i, u_j)^2.$$
Thus we want to maximize

$$ \sum_{i} \sum_{k} \langle x_i, u_j \rangle^2 = \sum_{j} u_j^T \sum_{i} x_i x_i^T u_j = \sum_{j=1}^{k} u_j^T \Psi u_j. $$

Let a_1, \ldots, a_p denote eigenvectors of Ψ for eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$. We now switch to eigencoordinates. In this coordinate system, the quadratic form defined by Ψ is diagonal. In other words, we want to find orthonormal vectors v_1, \ldots, v_k maximizing

$$ \sum_{i=1}^{k} v_i^T \text{diag}(\lambda_1, \ldots, \lambda_p) v_i = \sum_{i=1}^{k} \sum_{j=1}^{p} v_i^2 \lambda_j, $$

Define $h_j = \sum_{i=1}^{k} v_i^2, j = 1, \ldots, p$. Obviously, $\sum_{j} h_j = k$, because $\sum_{j} h_j$ is the sum of squared norms of k orthonormal vectors. Also, $0 \leq h_j \leq 1$. To see this, consider a matrix V with orthonormal rows v_1^T, \ldots, v_k^T. V can be expanded to a $p \times p$ matrix V^* with orthonormal rows. V^* also has orthonormal columns, and the result follows.

Now consider the function $\phi(h_1, \ldots, h_k) = \sum_{i=1}^{p} h_i \lambda_i$. Under the constraints that $0 \leq h_j \leq 1$ and $\sum_{j} h_j = k$, $\phi(h_1, \ldots, h_k)$ is maximized for $h_1, \ldots, h_k = 1$ and $h_{k+1}, \ldots, h_p = 0$. This implies that v_1, \ldots, v_k lie in a space spanned by k largest eigenvectors of Ψ.

We have so far defined a linear manifold L by its associated subspace U and a translation vector u_0:

$$ L = \{u_0 + u : u \in U\}, $$

or, for u_1, \ldots, u_k a basis of U,

$$ L = \{u_0 + \sum x_i u_i\}. $$

The mapping $\phi : \mathbb{R}^k \to \mathbb{R}^p$ defined by

$$ \phi(x) = u_0 + \sum_{i=1}^{k} x_i u_i $$
is a homeomorphism between \(L \) and \(R^k \). A linear manifold thus has a global chart (global parametrization).

We will now discuss an alternative representation for linear manifolds, as the kernel of an affine map.

Prop 1.5 Let \(l : R^p \to R^q \) with \(q < p \) denote a linear map of full rank. Then for any \(c \in R^q \) the set

\[
X = \{ x \in R^p : l(x) - c = 0 \}
\]

is a \((p-q)\)-dimensional linear manifold in \(R^p \).

Proof: We have to show that

1. There is a \((p-q)\)-dimensional linear subspace \(U \) of \(R^p \) such that \(x, y \in X \Rightarrow x - y \in U \).

2. \(x_0 \in X, u \in U \Rightarrow x_0 + u \in X \).

Proof of (1): \(l(x) = c, l(y) = c \Rightarrow l(x - y) = 0 \). Thus \(x - y \in Ker(l) \), the kernel of the linear map \(l \). \(Ker(l) \) is a linear subspace of \(R^p \) of dimension \(p - q \).

Proof of (2): \(x_0 \in X, u \in U \Rightarrow l(x_0 + u) = l(x_0) = c \).

Let us now return to the minimum distance problem. For given \(x_1, \ldots, x_n \in R^p \), we want to find a linear map \(l : R^p \to R^k \) and a vector \(c \in R^k \), such that

\[
L = \{ x \in R^p : l(x) - c = 0 \}
\]

is the closest linear manifold of co-dimension \(k \) to \(x_1, \ldots, x_n \). We already showed that \(Ker(l) \) is the space spanned by the \(p - k \) largest eigenvectors of \(\Sigma = 1/n \sum (x_i - \bar{x})(x_i - \bar{x})^T \). Thus, if \(l(z) = Az \), the row space of \(A \) has to be spanned by the \(k \) smallest eigenvectors of \(\Sigma \). We also know that \(L \) has to pass through \(\bar{x} \Rightarrow c = l(\bar{x}) \).

Summary:
A k-dimensional linear manifold L with associated subspace U can be represented in parametric form

$$L = \{ \mathbf{x} \in \mathbb{R}^p : \mathbf{x} = \mathbf{u}_0 + \sum_{i=1}^{k} x_i \mathbf{u}_i \}$$

with $\mathbf{u}_0 \in L$ and $\mathbf{u}_1, \ldots, \mathbf{u}_k$ a basis for U. Alternatively, L can be represented as the null space of an affine map $\mathbf{x} \to l(\mathbf{x}) - \mathbf{c}$, where $l : \mathbb{R}^p \to \mathbb{R}^{p-k}$ is a linear map of full rank and $\mathbf{c} \in \mathbb{R}^{p-k}$.

For given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$, let L denote a linear manifold closest to $\mathbf{x}_1, \ldots, \mathbf{x}_n$. Then $\mathbf{\bar{x}} \in L$, and

- $[\mathbf{u}_1, \ldots, \mathbf{u}_k]$ is spanned by k largest eigenvectors of Σ.
- $l(z) = A\mathbf{z}$, with the row space of A spanned by k smallest eigenvectors of Σ, and $\mathbf{c} = A\mathbf{\bar{x}}$.