12. Metric Scaling

Given: $n \times n$ matrix Δ of dissimilarities between n objects ($\Delta^T = \Delta; \delta_{ij} \geq 0; \delta_{ii} = 0$).

Goal: Find points y_1, \ldots, y_n such that euclidean inter-point distances $d(x_i, x_j)$ closely reflect dissimilarities.

Note: The points y_1, \ldots, y_n can only be determined up to shift and rotation.

Note: Will have to define what we mean by “closely reflect”: Need to define function $\Phi(\Delta, D)$ measuring difference between dissimilaries and distances (stress of the configuration).

Note: Alternatively we might be given $n \times n$ matrix Θ of simliarities ($\Theta^T = \Theta; \theta_{ij} \leq \theta_{ii}$).

Can convert similarities into dissimilarities by setting

$$\delta_{ij}^2 = \theta_{ii} + \theta_{jj} - 2\theta_{ij}.$$
We already know:

Suppose we are given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^m$.
Set $\delta_{ij} = d(\mathbf{x}_i, \mathbf{x}_j)$ euclidean interpoint distance.
Let y_1, \ldots, y_n be obtained by projecting $\mathbf{x}_1, \ldots, \mathbf{x}_n$ onto a k-D subspace. Set $d_{ij} = d(y_i, y_j)$.
Then the subspace minimizing

$$\Phi(\Delta, D) = \sum_{ij} (\delta_{ij}^2 - d_{ij}^2)$$

is spanned by the k largest principal components (eigen-vectors of Σ).

What if:

- We are not given $\mathbf{x}_1, \ldots, \mathbf{x}_n$, but only Δ?
- We do not know whether Δ is euclidean (a euclidean interpoint distance matrix for a set of points in some euclidean space.)
Fact: Can easily

- Check whether Δ is euclidean;
- If yes, find out in which dimension, and
- Construct x_1, \ldots, x_n with interpoint distance matrix Δ.

How? Suppose $x_1, \ldots, x_n \in R^m$ for some m and $\delta_{ij} = d(x_i, x_j) = \|x_i - x_j\| \Rightarrow$

$$\delta_{ij}^2 = \|x_i\|^2 + \|x_j\|^2 - 2 \langle x_i, x_j \rangle.$$

Look at matrix with elements δ_{ij}^2.
Sweep out row means $\Rightarrow (i, j)$-th element is

$$\|x_j\|^2 - \frac{1}{n} \sum_j \|x_j\|^2 - 2 \langle x_i, x_j - \bar{x} \rangle.$$

Sweep out column means $\Rightarrow (i, j)$-th element is

$$-2 \langle x_i - \bar{x}, x_j - \bar{x} \rangle.$$
So: Denote by A the $n \times n$ matrix with elements $a_{ij} = -\frac{1}{2} \delta_{ij}^2$. Define
$$H = I - \frac{1}{n} \mathbf{1} \mathbf{1}^T.$$
If Δ is interpoint distance matrix of n points in m-D space then HAH is centered inner product matrix $\rightarrow HAH$ is positive semidefinite with rank $\leq m$.

Compute eigen-decomposition of $B = HAH$:
$$B = HAH = U \Lambda U^T.$$
Suppose $\lambda_1, \ldots, \lambda_q > 0$ and $\lambda_{q+1}, \ldots, \lambda_n = 0$.
Let X be the $n \times q$ matrix with i-th columns $X_i = \sqrt{\lambda_i} U_i$.
Then the rows of X, regarded as points in q-D space, have interpoint distance matrix Δ.

Why:
$$\|x_i - x_j\|^2 = b_{ii} + b_{jj} - 2b_{ij}$$
$$b_{ij} = a_{ij} - a_i - a_j + a.. \Rightarrow$$
$$\|x_i - x_j\|^2 = a_{ii} + a_{jj} - 2a_{ij} \quad \text{because } A^T = A$$
$$= -2a_{ij} \quad \text{because } a_{ii} = a_{jj} = 0$$
$$= \delta_{ij}^2$$