
SPLINE SMOOTHING ON SURFACES

TOM DUCHAMP AND WERNER STUETZLE

Abstract. We present a method for estimating functions on topologically and/or geometrically
complex surfaces from possibly noisy observations. Our approach is an extension of spline smooth-
ing, using a �nite element method. The paper has a substantial tutorial component: we start by
reviewing smoothness measures for functions de�ned on surfaces, simplicial surfaces and di�eren-
tiable structures on such surfaces, subdivison functions, and subdivision surfaces. After describing
our method, we show results of an experiment comparing �nite element approximations to exact
smoothing splines on the sphere, and we give examples suggesting that generalized cross-validation
is an e�ective way of determining the optimal degree of smoothing for function estimation on
surfaces.

1. Introduction and motivation

We present a method for estimating functions on topologically and/or geometrically complex sur-
faces, like a (deformed) sphere, a three hole torus (Figure 1(a)), or the model of an elephant
(Figure 1(b)). Let M be a surface. We assume that we are given observations (xi; yi), with xi 2M
and yi 2 R. The yi are, possibly noisy, observations of some unknown function ftrue at the locations
xi, and our goal is to estimate ftrue.

(a) (b)

Figure 1. Panel (a) Three hole torus; Panel (b): Model of an elephant.

Estimation of functions de�ned on Euclidean domains is widely recognized as an important problem
that has been addressed by researchers in areas as diverse as the earth sciences, meteorology,
computer graphics, computer vision and image processing, machine learning, and statistics. The
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conceptually simple problem of estimating functions on the line alone has generated many hundreds
of publications proposing a wide variety of algorithms and establishing their theoretical properties.

Among non-euclidean domains, the 2-sphere has attracted the most attention, driven by obvious
applications in the earth sciences and meteorology. While there has long been some interest in
function estimation on more complex domains, motivated by examples like estimating the pressure
over the wing of an aircraft, research in this direction has recently received renewed impetus by the
advent of 3D photography. The goal of 3D photography is to generate computer models of physical
objects, reecting their shape and other aspects of their appearance, such as color or reectance.
It is natural to think of color and reectance as (not necessarily real valued) functions de�ned on
the surface, which have to be estimated from physical measurements.

Our approach to function estimation on surfaces is a generalization of spline smoothing on the line
(Wahba 1990). The smoothing spline with smoothing parameter � is the function f� minimizing
the spline functional

(1.1) E[f ] =
1

n

X
(yi � f(xi))

2 + �

Z
f 00(x)2dx

in the space of functions with square integrable second derivative.

Using techniques from the calculus of variations it can be shown that for any � > 0, f� is a cubic
spline function with knots at the predictor values xi. The parameter � controls the tradeo� between
smoothness of the estimate and �delity to the data or, in statistical terms, the tradeo� between
bias and variance. In the limit �! 0, the smoothing spline f� interpolates the data and therefore
estimates ftrue with small bias but (possibly) large variance. For � =1, on the other hand, f� is
the least squares straight line, which has low variance but may have a large bias. In practice, the
optimal value of � has to be estimated from the data, typically by (generalized) cross-validation
(Wahba 1990).

Spline smoothing has been previously generalized to the plane, the at torus, and the standard
sphere, by replacing the single integral in Equation 1.1 with a so-called \thin-plate" energy term,
which is a measure of roughness (Duchon 1977; Meinguet 1979; Wahba 1981; Wahba 1990). The
theory of spline smoothing has been extended to arbitrary Riemannian manifolds (Narcowich 1995;
Dyn et al. 1997; Kim 2001). However, these authors have not presented operational methods for
actually computing such splines.

We extend the domain of spline smoothing to the class of subdivision surfaces. Subdivision surfaces
can model complex shapes of arbitrary topology in a conceptually simple and parsimonious way;
they are easy to represent and manipulate in the computer; and they support the notion of a
\Sobolev space W2(R) of functions with square integrable second derivative" (Arden 2001).

In contrast to simple domains like the line or the sphere there are no closed form expressions for
smoothing splines on subdivision surfaces. We therefore use the �nite element method to approxi-
mate such splines. Similar ideas have recently been used to solve partial di�erential equations on
subdivision surfaces (Cirak et al. 1999; Bajaj and Xu 2001).
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Besides presenting a novel method for function estimation on surfaces, our paper has a substan-
tial tutorial component, summarizing de�nitions, ideas, and results that are scattered through the
literature. In Section 2 we use the simple setting of spline smoothing on the line to introduce
multiresolution spaces of univariate spline functions and the �nite element method for approximat-
ing smoothing splines. We also explain the idea of computing piecewise linear approximations to
splines through subdivision. In Section 3 we discuss roughness measures for bivariate functions and
introduce multiresolution spaces of polynomial splines in the plane and their subdivision rules. In
Section 4 we consider roughness measures for functions on arbitrary compact surfaces. In Section 5
we generalize spline smoothing to surfaces parameterized over a planar region. In Section 6, we
introduce subdivision functions, which are a generalization of splines, and subdivision surfaces. In
Section 7 we give a precise de�nition of smoothness for functions on subdivision surfaces. Our
principal contribution, a �nite element method for spline smoothing on subdivision surfaces is de-
scribed in Section 8. In Section 9 we present experimental results. Section 10, containing a review
and discussion of related work and ideas for future research, concludes the paper.

2. Univariate spline smoothing

Suppose that we are given data (x1; y1); : : : ; (xn; yn) 2 R
2 , with a = x1 < x2 < � � � < xn = b. The

smoothing spline for smoothing parameter � is the function f� minimizing the spline functional

(2.2) E[f ] =
1

n

X
(yi � f(xi))

2 + �

Z b

a
f 00(x)2dx

in the Sobolev space W2([a; b]) of functions with square integrable second derivative. As pointed
out in Section 1, for any � > 0 there is a closed form solution to this optimization problem: f� is
a cubic spline with knots at the xi, and it can be found by linear algebra. We will throughout the
paper assume that � > 0.

We are interested in solving more general versions of the spline smoothing problem where the
domain is not an interval, but an arbitrary, compact surface in R3 . In this situation it is no longer
possible to exactly minimize (a generalized version of) the spline functional 2.2, and we will have
to be content with approximations. We introduce some of the pertinent ideas here, in the context
of smoothing on the line.

The basic idea is simple. Suppose that we have a multiresolution sequence of function spaces in
W2([a; b]), i.e. a nested sequence of �nite dimensional subspaces

V 0 � V 1 � V 2 � � � � �W2([a; b])

whose union is dense in W2([a; b]). We can then computed approximations to the smoothing spline
f� by choosing a resolution level J and restricting the functional E to V J . These approximations
converge to f� as J approaches in�nity. Minimizing the spline functional over V J is a �nite
dimensional optimization problem that can be solved by linear algebra.

2.1. Nested spaces of univariate splines. There are many ways of constructing such a mul-
tiresolution sequence. We will now discuss a particular choice that can be generalized to surfaces.
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Let V 0 be the restriction of the space of cubic splines with knots at the integers to the interval
[a; b]. This space is spanned by the integer translates of a single basis function �00(x), shown in
Figure 2(d). The basis function �00(x) is the unique C

2, piecewise cubic polynomial supported on
the interval �2 � x � 2, such that it and its integer translates �0�(x) = �00(x� �) form a partition
of unity: X

�

�0�(x) = 1 :

The space V J at resolution J is spanned by scaled and translated versions of �00:

�J�(x) = �00
�
2Jx� �

�
:

The union of the V J is dense in W2([a; b]).

2.2. Computing �nite element approximations of smoothing splines. To �nd an approxi-
mate minimum for E[f ], we choose a resolution level J and express f(x) as a �nite sum

f(x) =

p1X
�=p0

f��J�(x)

where the index ranges over the basis functions whose support intersects the interval [a; b]. Substi-
tuting into the formula for the spline functional E[f ] yields the identity

E[f ] =
1

n

X
i

 
yi �

X
�

f��J�(xi)

!2
+ �

X
�;�

f�f�B�;� ;

where the entries of the penalty matrix B are B�;� =
R b
a (�

J
�)
00(�J�)

00dx. This shows that the spline

functional E[f ] restricted to V J is a quadratic function of the coeÆcients f�, and therefore the
minimum can be found by solving the linear system

(2.3)
�
XtX + n�B

�
� f = Xt � y ;

where

X =

0
BBB@
�Jp0(x1) �Jp0+1(x1) : : : �Jp1(x1)

�Jp0(x2) �Jp0+1(x2) : : : �Jp1(x2)
...

...
...

�Jp0(xn) �Jp0+1(xn) : : : �Jp1(xn)

1
CCCA ;

f = (fp0 ; : : : ; fp1), and y = (y1; : : : ; yn).

2.3. Computing univariate splines by subdivision. We now describe a method for construct-
ing piecewise linear approximations to functions in V J . This method, called subdivision, dates back
to the early days of computer graphics when computers were slow and had only integer arithmetic.
While subdivision is no longer of great practical relevance for computing univariate splines, we
introduce it here because we will later use it to generalize splines to more complex domains.

Note �rst of all that functions in V J are scaled versions of functions in V 0. We may therefore
without loss of generality assume that J = 0.

Let �̂00 be the standard hat function shown in Figure 2(a). We denote the scaled and shifted versions

of the standard hat function by �̂J�. Let f =
P

� f
0;��0�(x) be a function in V 0. The piecewise
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Figure 2. The subdivision process applied to the hat function �̂00 (a) yields a
sequence of piecewise linear functions (b, c) that converges to the cubic spline basis
function �00(x) (d).

linear function

f0PL(x) =
X
�

f0;��̂0�(x)

with vertices at (�; f0;�) is called the control net of f at resolution level J = 0. As V 0 is a subset
of V 1, f can also be expressed in terms of the basis �1�(x):

f(x) =
X
�

f1;��1�(x) :

The corresponding control net is

f1PL(x) =
X
�

f1;��̂1�(x) :

We can repeat this process to obtain a sequence of control nets fJPL(x).

Because the basis functions of V J can be expressed in terms of the basis functions of V J+1, there
are formulas, called subdivision rules, relating level J coeÆcients to level (J + 1) coeÆcients or,

equivalently, the control nets fJPL and fJ+1PL :

fJ+1;2�+1 =
1

2

�
fJ;� + fJ;�+1

�
and fJ;2� =

1

8
fJ;��1 +

6

8
fJ;� +

1

8
fJ;�+1 :

As J ! 1, the control nets fJPL converge to the spline f (Lane and Riesenfeld 1980). This is

illustrated in Figure 2. Figure 2(a) shows the standard hat function �̂00, which by de�nition is the
level J = 0 control net of the spline basis function �00 in Figure 2(d). Figures 2(b) and 2(c) show
the level J = 1 and level J = 2 control nets of �00, indicating that these control nets indeed converge
to �00.

Repeated subdivision of control nets is a computationally eÆcient way to approximate f . There is
an alternative way of describing the subdivision process: Resample the level J control net at the
grid points of the level J +1 grid. Then smooth the resulting function on the level J +1 grid by a
moving average with weights (1=4; 1=2; 1=4).
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3. Spline smoothing in the plane

To generalize spline smoothing from the line to the plane we need a measure of roughness to replace
(f 00)2. To approximate smoothing splines with the �nite element method we also need a nested
sequence of function spaces whose union is dense in an appropriate Sobolev space playing the role
of W2([a; b]).

3.1. Measuring roughness of functions in the plane. For a bivariate function f(x1; x2), the
analogue of f 00 is the Hessian

Hf =

�
fx1;x1 fx1;x2
fx1;x2 fx2;x2

�
:

We want the roughness measure to be rotationally invariant. This limits the choice to the trace of

powers of the Hessian tr
�
Hk
f

�
and functions thereof (Weyl 1946). The trace, itself, is not useful,

because the integral of the Laplacian � f = fx1x1+fx2x2 = tr (Hf ) vanishes for any f with compact
support.

The next simplest functions are the square of the Laplacian of f :

(tr (Hf ))
2 = (� f)2 = (fx1x1 + fx2x2)

2

and the standard \thin-plate" energy:

tr
�
H2
f

�
= (fx1x1)

2 + 2 (fx1x2)
2 + (fx2x2)

2 :

Either one could be used as a roughness penalty. In our exposition we choose the square of the
Laplacian, although the techniques developed in the rest of the paper are equally applicable to the
thin plate energy.

With this choice of penalty, the univariate spline smoothing functional generalizes to

(3.4) E[f ] =
1

n

X
i

(yi � f(xi))
2 + �

Z
R2

(� f)2 dx :

Note that, in contrast to the univariate case, the smoothing spline f� minimizing E[f ] is not a
piecewise polynomial function.

3.2. Nested spaces of quartic triangular B-splines. There are many ways of generalizing the
multiresolution sequence V 0 � V 1 � � � � � W2([a; b]) of univariate spline spaces to the plane. For
instance, we could use tensor products of univariate splines. For our purposes, it is more convenient
to use the quartic triangular B-splines of Sabin (1976), which we now describe. See Loop (1992)
or Loop and DeRose (1990) for a more detailed discussion.

Consider the hexagonal lattice of triangles shown in Figure 3(a). As in the univariate case, the
space V 0 is spanned by translates of a basis function �00(x

1; x2) to the vertices of the lattice. The
basis function, shown in Figure 4, is the unique function satisfying the following conditions: (i)
it is quartic polynomial on each triangle; (ii) it is C2; (iii) it has minimum support; and (iv) its
translates form a partition of unity.
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(a) (b)

Figure 3. Panel (a): Hexagonal lattice in the plane; Panel (b): Lattice after one
4-1 split.

Figure 4. Hexagonal lattice with quartic triangular B-spline basis function �00.
The support of the basis function consists to the 24 triangles enclosed by the solid
hexagon.

Again as in the univariate case, the space V J at resolution J is spanned by the functions �J�
obtained by scaled and translated vesions of �00:

�J�(x
1; x2) = �00(2

Jx1 � �1; 2Jx2 � �2) :

3.3. Constructing quartic triangular B-splines by subdivision. As in the univariate case, we
can construct a sequence of piecewise linear approximations to any function in V 0 (and therefore
in V J) using subdivision. We now review this process (for details see (Stollnitz et al. 1996 or

Loop 1992). Let
P

� f
0;��0� be a function in V 0, and let f0PL =

P
� f

0;��̂0� be the corresponding
level J = 0 control net. The level J = 0 control net f0PL is a piecewise linear function on the level
J = 0 hexagonal lattice shown in Figure 3(a).

Because f can also be expressed in terms of level J = 1 basis functions: f =
P

� f
1;��1�, the level

1 coeÆcients f1;� can be expressed in terms of the level 0 coeÆcients, and therefore the level 1
control net f1PL =

P
� f

1;��̂1� can be expressed in terms of the level 0 control net.
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In close analogy to the univariate case, we can obtain f1PL from f0PL by an interpolation step
followed by a smoothing or averaging step. We �rst interpolate the values of f0PL to the new (edge)
vertices of the level 1 lattice shown in Figure 3(b). We then replace the value at each vertex of
the level 1 lattice by a weighted average of its neighbors. Let v0 be a vertex of the lattice, and let
v1; : : : ; vn be its neighbors. Then

(3.5) fJ+1PL (v0) =
1

4
fJPL(v0) +

1

8

X
i

fJPL(vi) :

The same rules can be used to obtain the level (J + 1) control net from the J control net. The
sequence of control nets converges to f , so repeated subdivision of controls nets is a computationally
eÆcient way to approximate f .

Figure 5. The subdivision process applies to the hat function �̂00 (left) yields
a sequence of piecewise linear functions that converges to the quartic triangular
B-spline basis function �00 (right).

4. Measuring roughness of functions defined on smooth surfaces

Let M � R
3 be a smooth surface. A standard way of de�ning a roughness measure for functions

on M is to extend the concepts of the Hessian and the Laplace operator.

Consider a point p 2 M . Without loss of generality, we may assume that p is the origin and the
tangent plane at p is the (u1; u2)-plane. Then near p the surface has the local parameterization

M = fx : x = F(u1; u2) = (u1; u2; F (u1; u2))g

where F (u1; u2) is a scalar function with vanishing value and gradient at the origin, and any function
on M can be regarded as a function f(u1; u2).

The Hessian of f at p is just the matrix of second derivatives of f with respect to u1 and u2 at the
origin, and the value of the Laplace-Beltrami operator �M at p is the trace of the Hessian.

4.1. Computing the Laplace-Beltrami operator for a parametrized surface. Although
conceptually simple, the de�nition of the Hessian and Laplace-Beltrami operator given above is not
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useful operationally: we need explicit formulas expressing them in terms of a general parameteri-
zation

F : R2 !M � R
3 : (u1; u2) 7! F(u1; u2) :

To state such formulas, we introduce some standard notation from di�erential geometry (Do Carmo
1976). Let TpM � R

3 be the tangent space to M at p. The partial derivatives Fua(u
1; u2), a = 1; 2

form a basis of the tangent space. The �rst fundamental form is the symmetric matrix of inner
products

(4.6) I =

�
g1;1 g1;2
g2;1 g2;2

�
;

where

(4.7) ga;b = hFua ;Fubi :

The quantities ga;b denote the entries in the inverse matrix of I�1. The Riemann-Christo�el symbols

are the quantities

�cab =

2X
d=1

gc;d�ab;d ;

where

�ab;c = hFua;ub ;Fuci :

The Hessian of f is the quadratic form

Hf : TpM � TpM ! R ;

de�ned by the formula

(4.8) Hf (X;Y ) =
�
X1 X2

�
�

�
fj1;1 fj1;2
fj1;2 fj2;2

�
�

�
Y 1

Y 2

�
;

where fja;b is the so-called covariant derivative

fja;b = fua;ub �

2X
c=1

�ca;bfuc :

In these formulas we have abused notation and replaced f Æ F by f .

As in the Euclidean case, the invariants of Hf can be expressed in terms of the trace (Weyl 1946).
But because the vectors Fua do not form an orthonormal basis of the tangent space, the trace of
any quadratic form B : TpM � TpM ! R is given by the formula

tr (B) :=
X
a;b

ga;bBa;b :

The Laplace-Beltrami operator is the trace of the Hessian and is given by

�M f =
X
a;b

ga;b
�
fua;ub � �ca;bfuc

�
:

In the Euclidean case, where F(u1; u2) = (u1; u2; 0), the matrix I is the identity matrix and the
Riemann-Christo�el symbols vanish, and therefore the Laplace-Beltrami operator reduces to the
Laplace operator.
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4.2. Integration over a surface. Having generalized the measure of roughness to functions on
surfaces, we now need to generalize the notation of integration. The metric on R3 induces an area
measure on M , which we denote by dA. In local coordinates dA can be expressed in two ways:

dA =
p
det(I) du1du2 = jFu1 � Fu2 j du

1du2 :

5. Spline smoothing on surfaces parameterized over a planar region

We now consider spline smoothing in the case where the topology of the surface is simple but the
geometry is non-Euclidean (Greiner 1994). Let 
 � R

2 be a region in the plane, and suppose
that M is given by an embedding F : 
 ! R

3 of this region into R3 . The data is a collection
f(xi; yi) 2M � Rg, where xi = F(u1i ; u

2
i ), 1 � i � n.

We want to �nd the function on M that minimizes the functional

E[f ] =
1

n

X
i

(yi � f(xi))
2 + �

Z
M
(�M f)2dA ;

where �M is the Laplace-Beltrami operator de�ned in Section 4. Since F is a di�eomorphism, f
can be regarded as a function of (u1; u2), so E[f ] assumes the form

E[f ] =
1

n

X
i

(yi � f(u
1
i ; u

2
i ))

2 + �

Z


(�M f(u1; u2))2dA :

We call the function f� minimizing E[f ] a smoothing spline on M .

As in Section 2 we can use the �nite element method to approximate f�. We choose a resolution level
J and minimizeE[f ] over functions in V J . Kowalski and Krzysztof (1990) show that the union of the
spline spaces V J de�ned in Section 3.2 is dense inW2(R

2 ). They also give results on approximation
order. Therefore, for suÆciently large J our solution f�;J will be close to f� = argminf2W2(R2)E[f ].

We express f as a �nite sum

(5.9) f(u1; u2) =
X
�

f��J�(u
1; u2)

where the indices range over all basis functions whose support intersects 
. Substituting into the
formula for E[f ] yields the identity

(5.10) E[f ] =
1

n

X
i

 
yi �

X
�

f��J�(u
1
i ; u

2
i )

!2
+ �

X
�;�

f�f�B�;�

where

(5.11) B�;� =

Z
R2

�M (�J�)�M (�J�) dA :

As in the univariate case, E[f ] is a quadratic function in the coeÆcients of f .

To see what is involved in computing B�;�, recall the de�nitions of �M and dA:

�M f =
X
a;b

ga;b
�
fua;ub � �ca;bfuc

�
and dA = jFu1 � Fu2 j du

1du2 :
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Consequently the integral involves derivatives of both the basis functions and the functionF de�ning
the surface. Even in the simple case where F is polynomial, the integrand is a complicated algebraic
expression that cannot be integrated analytically, so we have to resort to numerical quadrature.

6. Subdivision functions: a generalization of splines to topologically complex

domains

In the previous section we considered estimation of functions de�ned on a surface which is an
embedding of a planar region. We now want to move to more general domains, while preserving as
much as possible the avor of the previous section.

First observe that to represent a surface by an embedding of a parameter domain into R3 , the
parameter domain has to be of the same topological type as the surface. We choose parameter do-
mains, called simplicial surfaces, that are generalizations of the triangular lattice in the plane. This
allows us to construct generalizations of quartic triangular B-splines, called subdivision functions,
and immediately leads to a multiresolution sequence of function spaces.

6.1. Simplicial surfaces. Roughly speaking, a simplicial surface is a union of triangles glued
together along their edges. More formally, a simplicial complex K consists of a (�nite)) set Vert (K),
called the vertices of K, and a collection of non-empty subsets of Vert (K), called simplices, such
that (i) each of the one point sets fvg, for v 2 Vert (K), is a simplex and (ii) if � is a simplex of
K and �0 is a non-empty subset of � then �0 is also a simplex of K. A simplex containing q + 1
vertices is called a q-simplex, and it is customary to identify the 0-simplex fvg with the vertex v,
itself (i.e. fvg = v).

The topological realization of a simplicial complex K with m vertices is the topological subspace
jKj � R

m de�ned as follows: Identify the vertices of K with the canonical basis vectors of Rm . If
� = fv0; : : : ; vqg is a q-simplex of K let j�j � R

m denote the convex hull of its vertices. Then

jKj = [�2K j�j :

If � is a 1-simplex, we will sometimes call j�j an edge of jKj. And if � is a 2-simplex, we will call
j�j a triangle of jKj. A simplicial surface is a simplicial complex whose topological realization is
homeomorphic to a compact, two dimensional manifold. For simplicity, we only consider manifolds
without boundary.

6.2. Subdivision functions on simplicial surfaces. Notice that, just as we did in the plane,
we can subdivide a simplicial surface by performing four-to-one splits on each of its faces. This
suggests that we can formally extend the subdivision construction for splines on the plane to any
simplicial surface. We now describe the basic idea. For a more detailed exposition see Reif (1995),
Stollnitz et al. (1996), and Zorin (1998). Suppose K is a simplicial complex, and let KJ be the J
times subdivided complex, with K0 = K. We can identify the topological realizations

��KJ
�� with

jKj in the obvious way. From now on we will also abuse notation and no longer distinguish between
a simplicial complex and its topological realization; it will be clear from context which one is meant.
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In parallel to the construction of spline functions on the plane, we construct a subdivision function
as the limit of a sequence of piecewise linear functions or control nets

fJPL : K ! R ;

where fJPL is a piecewise linear function on the subdivided complex KJ .

We now describe the subdivision rules that de�ne fJ+1PL in terms of fJPL. Because f
J+1
PL is piecewise

linear with respect to KJ+1, we only have to specify its values on the vertices of KJ+1. The vertices
of KJ+1 consist of the vertices of KJ and the new edge vertices introduced by subdivision.

We proceed in close analogy to the planar case. We �rst interpolate the values of fJPL to the new

(edge) vertices of KJ+1. We then replace the value at each vertex of KJ+1 by a weighted average of
its neighbors. For vertices of valence 6, the weights are exactly the same as in the planar case. Note,
however, that an argument using Euler's formula shows that any triangulation of a surface other
than the torus must have vertices of valence other than 6; such vertices are called extraordinary

vertices.

Specifying the averaging rules at extraordinary vertices of KJ+1 is a delicate matter. We use
the rules invented by C. Loop (Loop 1987, Loop 1992,Loop-DeRose 1990). Let v0 be a vertex of
valence n, and let v1; : : : ; vn be its set of neighboring vertices, which are edge vertices introduced
by subdivision. Then

(6.12) fJ+1PL (v0) = !(n)fJPL(v0) +
(1� !(n))

n

X
i

fJPL(vi) ;

where

!(n) =
(3 + 2 cos 2�n )

2 � 8

32
Notice that for vertices of valence n = 6, the formula assigns weight 1=4 to the central vertex and
weight 1=8 to the surrounding vertices, as in the planar case.

Loop (1987) shows that for any choice of the initial control net f0PL, the sequence of control nets

fJPL converges to a continuous function on K. See also Reif (1995) and Zorin (1998). We denote
the linear space of all such limits by V 0. More generally, we can specify an initial control net at
any level subdivision level J and compute the limit of the sequence, fJ+kPL . Again the sequence

converges to a continuous function and the set of all such functions forms a vector space V J , which
we call the space of level J subdivision functions. By construction, these spaces are nested:

V 0 � V 1 � � � � � V J � : : :

In parallel with the planar case, each of the spaces V J is spanned by a set of basis functions �J�,
where the index � ranges over the vertices of KJ . The basis function �J� is the limit of the sequence

of control nets generated by the hat function �̂J� centered at the vertex �.

The basis functions have the following easily veri�ed properties:

� They are non-negative: �J� � 0.
� They form a partition of unity:

P
� �

J
� = 1.
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� The support of �J� is contained in the \two-ring" of triangles of KJ centered at �.

Moreover, away from the extraordinary vertices, subdivision functions at any level are locally
quartic triangular B-splines. To see this, consider a subdivision function f 2 V J . Recall that f is
the limit of a sequence of control nets:

f = lim
k!1

fJ+kPL ;

and that fJ+k+1PL depends only on fJ+kPL for all k. Notice also that the values of f on any triangle

of KJ+k depend only on the values of fJ+kPL at the vertices of the one-ring of KJ+k surrounding
the triangle. Choose a point p of K that is not an extraordinary vertex (Figure 6(a)). After a
suÆciently large number of subdivisions, the one-ring of triangles surrounding p will only contain
vertices of valence 6 (Figure 6(b)) and it therefore can be mapped (in an essentially unique way)
into the regular hexagonal lattice of equilateral triangles in the plane (Figure 3). From then on,
the subdivision process on the triangle containing the point coincides with the subdivision process
in the plane, and the latter converges to a quartic triangular B-spline.

6.3. Representing submanifolds of R3 by subdivision surfaces. A subdivision surface M is
the image of an embedding

F : K ! R
3

where the components of F are subdivision functions.

Rather than treat each component of F separately, we view F as the limit of a sequence of vector-
valued control nets

FJ
PL : K ! R

3 :

Because FJ
PL is piecewise linear on the subdivided complex KJ , it is determined by its values on

the vertices of KJ . The image of FJ
PL is a polyhedron MJ � R

3 with triangular faces, which we
call the control mesh of F at level J . (See Figure 6.)

We can picture the subdivision process as operating on the initial control mesh M0. At each
subdivision step, we �rst perform four-to-one splits on each of the triangles of the current control
mesh; we then reposition the vertices of the subdivided mesh according to the subdivision rules
described in Section 6.2.

7. Smoothness properties of subdivision functions

Subdivision functions are de�ned on simplicial surfaces, which are 2-dimensional piecewise linear
manifolds. So it is not obvious what it means for a function on a simplicial surface to be di�eren-
tiable. In our context, however, we clearly need a notion of smoothness to make sense of expressions
like �M f .

7.1. De�nition of smoothness for functions on topological surfaces. To address this issue,
we �rst review how smoothness of functions on a topological manifold M is de�ned. Let U � M
be an open set. A chart (or local coordinate system) is a homeomorphism

' : U ! R
2
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M0

(a)

M1

(b)

M2

(c)

M3

(d)

Figure 6. The subdivision surface M = F(K) is the limit of the sequence of
control meshes MJ = FJ

PL(K)
.

onto an open subset of R2 . The component functions 'a : U ! R, a = 1; 2 are called coordinate

functions or local coordinates. A �nite atlas for M is a �nite collection

f'� : U� ! R
2 : � = 1; : : : ;mg ;

of charts such that fU�g is an open cover of M . The maps

'�;� = '� Æ '
�1
� : '� (U� \ U�)! '� (U� \ U�)

are called transition functions. We say that the atlas is of class Ck if the transition functions are
all of class Ck. A topological surface with a Ck atlas is called a Ck-surface, and the atlas itself is
sometimes referred to as a Ck structure on M . Similar de�nitions apply to any smoothness class of

functions de�ned on regions in the plane. For instance, a Ck;1
loc -structure is an atlas whose transition

functions lie in the space Ck;1
loc of Ck functions whose k-th order derivatives are locally Lipschitz.

Let M be a Ck surface. A Cr-function f : M ! R
q , r � k, is a function such that f Æ '�1� :

'�(U�) ! R
q is Cr for all �. Let f : M ! R

q be a Cr-function. The rank of f at a point p 2 M
is de�ned as follows. Let ' : U ! R

2 be a Ck coordinate chart with p 2 U , and let �f = f Æ '�1.
The rank of f at p is de�ned to be the rank of the derivative d �f : R2 ! R

q at '(p). A Cr, r > 0
function f : M ! R

q is called an immersion if f has rank 2 at all points. An injective immersion
is called an embedding.

7.2. De�nition of smoothness for functions on simplicial surfaces. To de�ne the notation
of smoothness on a simplicial surface K we need to de�ne a suitable atlas on K. Our choice of
atlas has to produce a de�nition of smoothness that agrees with the obvious one on the interiors
of triangles. We can accomplish this by including in the atlas the aÆne maps from the interior of
each triangle to the interior of an equilateral triangle in the plane. Notice that because each edge of
K is adjacent to exactly two triangles, we can de�ne charts on the interior of the union of any two
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adjacent triangles by mapping it in the obvious way to the interior of the diamond shaped region
formed by two adjacent equilateral triangles.

The charts that we have de�ned so far cover all of K, except the vertices. The neighborhood of
each valence 6 vertex naturally maps to the regular hexagon made of six equilateral triangles. This
chart is obviously compatible with the charts de�ned previously. Moreover, because the subdivision
functions are piecewise polynomial away from extraordinary vertices, they are C2 functions with
respect to the charts so far de�ned.

To complete our construction to a C2-atlas, we have to de�ne charts in the neighborhood of the
extraordinary vertices. The simple recipe of mapping the neighborhood of a valence n extraordinary
vertex to a regular n-gon in the plane is incompatible with the previously de�ned charts. A suitable
completion of the atlas was given by Schweitzer (1996) and Zorin (1996), using results of Reif (1995).
See also Arden (2001).

For each vertex v the characteristic chart is a map 'v : Uv ! R
2 , where Uv is the interior of the

union of the triangles of K containing v. Characteristic charts are de�ned in terms of subdivision
functions; for details see Arden (2001) and Zorin (1996). Figure 7 shows a characteristic chart for
the base complex modeling the statuette of the elephant.

'v
 �

F
�!

Figure 7. The �gure above illustrates the subdivision surface that models the
statuette of the elephant. The domain Uv about a vertex v of valence 7 is the
interior of the union of triangular faces adjacent to v (grey region in center). The
image of the characteristic chart 'v : Uv ! R

2 is a region in the plane (left). The
surface, itself, is the image of the map F : K ! R

3 (right). A function f : K ! R
n

is de�ned to be a Cr function if f Æ '�1v is smooth for each vertex v. The function
F is C1 everywhere and C2 away from extraordinary vertices.

This atlas has several useful properties: (i) Subdivision functions are of class C1 (and in a sense that
can made precise) almost C2; (ii) Subdivision functions have square integrable second derivatives;
(iii) For generic control values, subdivision maps from K into R3 have maximal rank, making them
suitable for modeling smooth surfaces. Because the atlas is of class C2, the notion of the Sobolev
space W2(K) of functions on K with square integrable derivatives up to order 2 is well-de�ned
(Arden 2001). Arden also shows that V J is a subset of W2(M) for all J and that [JV

J is dense in
W2(M).



16 TOM DUCHAMP AND WERNER STUETZLE

Figure 8. The graph of the function �1v Æ '
�1
v centered at vertices of valence 3, 6

and 9, respectively. Notice the particularly high curvature of the graph of the basis
function centered at a vertex of valence 3.

8. Spline smoothing on subdivision surfaces

Suppose we are given a subdivision surface M � R
3 , which is the image of an embedding F : K !

R
3 , together with a collection of n observations (xi; yi) 2 M � R. Each point xi is the image of a

point ui 2 K.

As in Section 3, a smoothing spline is a function on K that minimizes the functional

(8.13) E[f ] =
1

n

X
i

(yi � f(ui))
2 + �

Z
K
(�M f)2 dA :

One can show that there is a unique smoothing spline f� for each choice of � > 0. An interpolating

spline is the limit f0 = lim�!0 f� (Dyn et al. 1997; Kim 2001).

We can use the �nite element method to compute approximate smoothing splines exactly as de-
scribed in Section 2.2. We have a nested sequence of spaces of subdivision functions

V 0 � V 1 � � � � � V J � � � � �W2(K)

whose union is dense in W2(K). We choose a resolution level J and restrict E to V J . Substituting
the expansion

f =

pX
�=1

f� �J�

into the formula for E[f ] and simplifying yields the expression

(8.14) E[f ] =
1

n

X
i

 
yi �

pX
�=1

f��J�(ui)

!2
+ �

X
�;�

f�f�B�;� ;

where

(8.15) B�;� =

Z
K
�F(�

J
�)�F(�

J
�) dA :

As before this is a quadratic function in the coeÆcients f�.
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8.1. Evaluating the entries of the penalty matrix B. We want to evaluate integrals of the
form

B�;� =

Z
K
�M (�J�)�M (�J�) dA :

As already pointed out in Section 5, this has to be done by numerical quadrature. We subdivide
the base complex K a �xed number of times beyond the subdivision level J of the �nite element
approximation. Let Jquad be the subdivision level. The integral is then the sum of integrals over
triangles of the subdivision:

B�;� =
X

T2K
Jquad

Z
T
�M (�J�)�M (�J�) dA :

On each triangle T , we approximate the Laplacians �M �J� and �M �J� by linearly interpolating

their values at the vertices, and we assume that the area density dA = jFu1 � Fu2 j du
1du2 is

constant on T . We then integrate the approximation.

There is a slight complication when one of the vertices of T is an extraordinary vertex: the map
F is singular at such a vertex, and therefore the Hessian and the Laplace-Beltrami operator are
not de�ned. This is not a fundamental problem because we know that the Laplacian of every
subdivision function is square integrable (Arden 2001) and therefore the integral is well de�ned.
Rather than ignoring such triangles altogether, we evaluate the Laplacian at the barycenter of
T and linearly extend to the extraordinary vertex. Note that the only extraordinary vertices of
KJ are the extraordinary vertices of the original complex K, because every vertex introduced by
subdivision has valence 6.

This process is not as computationally intensive as it might seem at �rst glance because the support
the basis functions, on average, is contained in only 24 triangles and the number of triangles of KJ

is 4J times the number of triangles of K.

9. Experimental results

We present the results of two experiments that were conducted with di�erent goals in mind. In
the �rst experiment we applied the �nite element method to a smoothing problem on the unit
sphere where the smoothing spline de�ned by Equation (8.13) can be found exactly (Wahba 1990;
Wendelberger 1982). The goals of this experiment were to validate our code and to understand
how the choice of subdivision level inuences the accuracy of the �nite element approximation.

The goal of the second experiment was to demonstrate the use of spline smoothing for estimat-
ing functions de�ned on the elephant shown in Figure 1(b) and to provide some evidence that
generalized cross-validation (Wahba 1990) is an e�ective way for choosing the optimal smoothing
parameter �.

Computing �nite element approximations to smoothing splines requires solving large systems of
linear equations. For our examples we used a preconditioned conjugate gradient method (Golub
and Van Loan 1996, Section 10.3). However, the subdivision framework has an intrinsic multi-
resolution structure, making it amenable to adaptive methods (Grinspun et al. 2002).
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9.1. Comparison of exact smoothing splines and �nite element approximations on the

sphere. Our �nite element approach to spline smoothing assumes that the estimation domain is
a subdivision surface. We therefore approximated the unit sphere S2 by a subdivision surface
M . The control mesh of M has the connectivity of a �ve times subdivided tetrahedron. Using
a procedure similar to the one described in Hoppe et al. (1994) we positioned the vertices of the
control mesh to best approximate the sphere. The approximation is extremely close: the maximum
radial deviation is only about 0.05%.

We then generated 100 random points x1; : : : ; x100 unifomly distributed over the sphere and 100
random y-values y1; : : : ; y100 from a standard Gaussian distribution, and computed the exact inter-
polating spline ftrue.

Next we generated test samples (x1; y1); : : : ; (xn; yn) for n = 100; 200; 400. The xi were again
uniformly distributed over the sphere, and yi = ftrue(xi). By radially projecting the xi onto M we
obtained corresponding data sets on the subdivision surface M .

For each of the three test samples we found the exact smoothing splines f� for a set of values of
� spanning essentially the entire range between interpolation and averaging. We also computed
the �nite element approximations f�;J for subdivision levels J = 3; 4; 5; 6. In all cases we used
subdivision level Jquad = 7 for computing the entries of the penalty matrix B. (Level Jquad = 7
was the largest subdivision level that led to computational problems tractable on the hardware
available to us.)

Our goal was to understand the dependence of the approximation error on the subdivision level
and on the amount of smoothing. The latter is controlled by the smoothing parameter �. However,
� is not a very \intuitive" parameter; for example, when presented with a dataset and a smoothing
spline, one would be hard pressed to guess even the order of magnitude of �. A more intuitive
measure of the amount of smoothing is the e�ective number of parameters or the number of degrees

of freedom of the spline. Spline smoothing is a linear operation, meaning the vector ŷ of �tted
values depends linearly on the observed response vector y: ŷ = H y for some matrix H. The
number of degrees of freedom is de�ned as the trace of H (see Hastie and Tibshirani 1990, Chapter
3.5). This de�nition of \degrees of freedom" agrees with the usual one in the case of linear least
squares, where H is a projection matrix.

Figure 9 shows relative approximation error

kf� � f�;Jk2
kf�k2

=

�R
M jf�(x)� f�;J(x)j

2dA
�1=2�R

M jf�(x)j
2dA

�1=2
as a function of the number of degrees of freedom used by the exact spline, for test sample size
n = 200.

For �xed subdivision level, the error increases as the number of degrees of freedom increases and we
get closer to interpolation. This is not surprising; after all, the approximations f�;J lie in a �nite
dimensional function space and therefore cannot be expected to reproduce the \high frequency"
components of f�. Those high frequency components get bigger as we get closer to interpolation,
leading to an increase in error.
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For �xed smoothing parameter, on the other hand, we see that the error decreases exponentially
with the subdivision level. This is in agreement with Theorem 2 of Arden (2001). There are
two unusual points in the plot, corresponding to subdivision level 6, and 10 and 25 degrees of
freedom, where the error is larger than one would expect given the pattern in the rest of the plot.
We conjecture that this is due to insuÆcient accuracy in evaluating the entries of the penalty
matrix, and that the abnormality would disappear if we switched to subdivision level Jquad = 8 for
computing the entries of B.

The results for test sample sizes n = 100 and n = 400 look very similar to Figure 9; we do not
present them here.

50 100 150 200

0.0001

0.001

0.01

0.1

1

Figure 9. Relative error of approximate smoothing splines f�;J for J = 3; 4; 5; 6
(top to bottom), as a function of the number of degrees of freedom used by the exact
spline f�.

9.2. Spline smoothing on the elephant. We tested our procedure on a free form surface con-
structed from laser scans of a ceramic statuette of an elephant (Figure 1(b)). The elephant's trunk
loops around and touches the top of the head; the surface therefore has the topology of a torus.
Starting from an initial mesh with approximately 300,000 faces, we used a maps-like simpli�cation
procedure (Wood et al. 2000; Lee et al. 1998) to construct a simplicial complex K with 400 faces.
We then approximated the initial mesh by the image M = F(K) of a level-3 subdivision function
F : K ! R

3 .

9.2.1. Construction of random functions on the elephant. We now describe how we generated ran-
dom functions on the elephant with varying degrees of smoothness. The basic idea is to �rst
determine the analogue of a Fourier basis for functions on M , and then form a Fourier series with
random coeÆcients. Recall that the Laplace-Beltrami operator �M is a self-adjoint elliptic opera-
tor. It follows from the general theory of such operators (Warner 1983) that �M has a complete
orthonormal set of eigenfunctions:

�M  k + �k  k = 0

�0 = 0 � �1 � �2 � : : :
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with  0 = 1, where we have normalized the area element so that M has unit area. The eigen-
functions  k are the generalization of spherical harmonics to arbitrary compact surfaces. Notice
that Z

K
j�M  kj

2 dA = �2k ;

hence, the roughness of  k increases with increasing k.

We approximate the eigenfunctions  k by subdivision functions. Let pJ denote the dimension of
the space V J spanned by the level J basis functions �J�, and let A and C be the pJ � pJ matrices
de�ned by

A�� =

Z
K
�J� �

J
� dA

and

C�� =

Z
K
d�J� d�

J
� dA = �

Z
K
�J� ��J� dA ;

respectively. By construction, A and C are symmetric, A is positive de�nite, and C is positive. By
virtue of the results of (Arden 2001), the subdivision functions which are solutions of the generalized
eigenvalue problem

C v = �Av

converge to the eigenfunctions of the Laplace-Beltrami operator on M . Let  Jk : K ! R, k =
0; : : : ; pJ denote the k-th (approximate) eigenfunction. We computed the eigenfunctions  1k.

We then constructed four random functions f1; : : : ; f4 onM by forming random linear combinations
of the eigenfunctions:

f s =

pJX
k=0

Ak(s) 1k ;

with Ak(s) � N(0; �2k(s)), and

�2k(s) = tanh2(s=2) :

We normalized the test functions f s to have mean 0 and variance 1, and scaled the surface to have
unit area. The quantities

kf sk21 =

Z
K
jgrad f sj2 dA and kf sk22 =

Z
K
j�M f sj2 dA

shown in Table 1 are then reasonable measures of the complexity of fs. As expected, the complexity
increases with s. Figure 10 displays the normalized random functions on the elephant.

s kf sk21 kf sk22 min f s max f s

1 481 1.72e+7 -1.97 1.23
2 708 2.17e+7 -2.83 1.51
3 1.85e+3 1.02e+8 -3.01 1.98
4 7.19e+3 3.78e+8 -2.59 2.55

Table 1. Statistics for the normalized random functions on the elephant.
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f1 f2

f3 f4

Figure 10. Level 1 random functions f1; : : : ; f4 on the surface of the elephant.
Light areas indicate positive function value. Dark lines are isopleths.

9.3. Test data and results. For each of the test functions f s, s = 1; 2; 3; 4, we generated nine
test data sets Ssn;b with sample sizes n = 100; 400; 1600 and signal-to-noise ratios b = 1; 10; 100.
The predictor values x1; : : : ; xn in S

s
n;b are uniformly distributed over the surface, and the response

values are given by yi = f s(xi) + �i, where the �i are Gaussian random errors with mean 0. The
variance of the �i for test data set S

s
n;b is given by

�2 =
V ar(f s)

b
:

Here, V ar(f s) is the variance of f s with respect to the uniform distribution on M .

We then applied our spline smoothing procedure, using level-0 subdivision functions in the �nite
element method. Notice that the test functions f s are level 1 subdivision functions and are therefore
are not contained in the space of the �nite element approximations. For each triple (s; n; b), we
used generalized cross validation (GCV) to estimate the optimal smoothing parameter � and the
corresponding number of degrees of freedom (df).

We measured the estimation error between the approximate smoothing spline f�;0 and the test
function f s by

error =
jjf�;0 � f

sjj2

V ar(f s)

Our results are summarized in Figure 11. There are 12 panels corresponding to the di�erent com-
binations of s (determining the smoothness of the underlying function f s), and sample size n. Each
panel has three curves corresponding, from top to bottom, to signal-to-noise ratios b = 1; 10; 100.



22 TOM DUCHAMP AND WERNER STUETZLE

50 100 150 200

0.001

0.1

10

50 100 150 200 50 100 150 200

0.001

0.1

10

0.001

0.1

10

0.001

0.1

10

n = 100 n = 400 n = 1600

s = 1.0

s = 2.0

s = 3.0

s = 4.0

Figure 11. Relative estimation error when estimating f s from a sample of size n
by the approximate smoothing spline f�;0, as a function of the number of degrees of
freedom used by the spline. Filled circles indicate estimates chosen by generalized
cross-validation.

Each curve shows the estimation error as a function of the number of degrees of freedom used by
the smooth. The �lled circle on each curve indicates the number of degrees of freedom chosen
by generalized cross-validation. Qualitatively, the results are what one would expect. Error is
increasing in s | the more complex the true underlying function, the harder it is to estimate. It
is decreasing in n, and also decreasing in the signal-to-noise ratio b. Generalized cross-validation
does an excellent job in estimating the optimal degree of smoothing, at least for the 36 test data
sets we considered.

10. Discussion and future work

We have demonstrated a �nite element method for computing smoothing splines on (subdivision)
surfaces with complex topology and geometry. We now review related work, discuss its connections
to our approach, and point out some directions for future research.
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There is a considerable literature on function estimation on the sphere; see Fasshauer and Schu-
maker (1998) for a review. Some of these approaches have been generalized to star-shaped surfaces
(radially distorted spheres) (Alfeld et al. 1996).

Probably the earliest paper discussing function estimation on complex surfaces of arbitrary topology
is Mallet (1992). Mallet assumes that the domain is given as a triangular mesh M , and that the
observation sites xi are the vertices of the mesh. The estimate f is a piecewise linear function onM ,
de�ned by its values fi at the vertices. Roughly speaking, Mallet proposes to measure smoothness
of f by

�(f) =
X
i

0
@fi � 1

jNk
i j

X
xj2Nk

i

fj

1
A
2

;

where Nk
i is the set of vertices that can be reached form xi by traversing at most k edges. He then

�nds the function that minimizes the loss function

E[f ] =
1

n

X
(yi � fi)

2 + ��(f) :

The parameter � controls the amount of smoothing. A closely related approach was more recently
proposed by Joshi (1998, Section 3.2).

Mallet's approach is similar in spirit to spline smoothing, in that there is a loss function allowing
for a tradeo� between smoothness and �delity to the data, and the estimate minimizing the loss
function is found by solving a penalized least squares problem. The di�erences are that in Mallet's
approach the solution is not smooth, and the geometry of the domain enters only in a fairly crude
way through the connectivity of the domain mesh.

More recent work can be characterized as variations on the idea of \smoothing by di�usion" (Perona
and Malik 1990). The idea is easiest to describe on the line. Suppose we have an initial estimate
f(x; 0) interpolating or closely approximating the data (x1; y1); : : : ; (xn; yn). We can then generate
a family f(x; T ) of smoothed versions of f(x; 0) by solving the heat equation

@f(x; t)

@t
�
@2f(x; t)

@x2
= 0

with initial value f(x; 0). The amount of smoothing is controlled by T | the larger T , the smoother
f(x; T ). The approach generalizes to functions on the plane or on general surfaces by replacing
the second derivative with the Laplace-(Beltrami) operator. Note that on the line or the plane
f(x; T ) can be obtained by convolving f(x; 0) with a Gaussian kernel whose width depends on T ,
and therefore on those domains there is not much di�erence between smoothing by di�usion and
kernel smoothing.

More interesting smoothers are obtained if the Laplace operator is replaced by a more general non-
linear operator D, leading to non-linear di�usion. For example, in the context of image denoising,
Perona and Malik (1990) propose to solve the PDE

@f(x; t)

@t
�rx � (g(krxfk) rxf) = 0

with

g(x) =
1

1 + x2

�
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The e�ect of this choice of operator is to change f(x; t) slowly where rxf is large, i.e. along sharp
edges. This prevents sharp features from being smeared out.

Smoothing by nonlinear di�usion is also the basic idea in the paper by Bajaj and Xu (2001).
Like (Mallet 1992) they assume that that the surface is given as a triangular mesh, and that the
observation sites xi are the vertices of the mesh. They treat the mesh as the base complex K of a
subdivision surface, and they consider the yi as the control values of a subdivision function f(x; 0)
over the base complex. They then smooth f(x; 0) by nonlinear di�usion, solving the corresponding
PDE using a �nite element method. The connection between the approach of Bajaj and Xu and our
implementation of spline smoothing is the use of subdivision functions in a �nite element method.
However there are basic di�erences. Spline smoothing minimizes a well de�ned and motivated
functional, and at least on simple domains the statistical performance of spline smoothing has been
thoroughly analyzed. Smoothing by anisotropic di�usion is more ad hoc and performance of such
procedures is less well understood.

On the other hand, spline smoothing is a linear method, whereas the di�usion method of Bajaj
and Xu (2001) is nonlinear. The distinction between linear and non-linear smoothing methods is
a fundamental one. For linear methods, the predicted values ŷi at the observation sites xi are a
linear function of the observed responses yi:

ŷ =W y

where the matrix W does not depend on y. Mallet's method, spline smoothing, and di�usion using
the heat equation all are linear methods. On a fundamental level, all linear smoothers are alike.
Consider, for example, function estimation on the circle, with regularly spaced xi. In this situation,
weight matrices for linear smoothers are circulant, for symmetry reasons. So these methods are
smoothing by convolution, and the di�erence between them merely lies in the properties of the
convolution kernel.

In contrast to linear smoothers, non-linear smoothers can be designed to locally adapt to discontinu-
ities and other special features of the underlying function ftrue by looking at the observed response
values yi. This can result in superior performance. For example, Donoho and Johnstone (1995)
have shown that their non-linear, wavelet based \SureShrink" method for function estimation on
the line achieves optimal convergence rates in a variety of function spaces containing non-smooth
functions.

Applications of nonlinear di�usion have been mostly in problem domains where the signal-to-noise
ratio is high. In this case it is possible to infer properties of the true underlying function ftrue at
some point x from the observed response values in a small neighborhood of x. It seems reasonable to
conjecture that this approach will be less successful when the signal-to-noise ration is low. Porting
the basic ideas of SureShrink to function estimation on surfaces is an interesting open problem.
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