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The generic prediction problem

Given: Training sample X = {(zy,v1),...,(Z,,,yn)}
assumed to be iid obs of (X, Y"), where
X: vector of predictor variables
Y: response variable

Goal: Generate prediction rule (or model) p(z; X)

to predict value of response Y
for predictor value
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Classification and Regression
Trees (Cart)

e Predict Y for predictor value z, by average response
of training observations in a neighborhood of x,.

e Neighborhoods are axis-parallel rectangles forming a
partitioning of the predictor space = model Is piecewise

constant over rectangles.

e Partitioning is constructed by a greedy search algorithm
attempting to minimize the average squared prediction error
for the training sample.

(Details not important here)
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Bagging (Breiman 1996)

e Draw Bootstrap samples A7, ..., Xg from training sample

o Generate prediction rules p(z; Xy), ..., p(x; X'g) from the
Bootstrap samples

o Average the rules: p’(z; X) = ave (p(z, X1),...,p(z; XB))

For euclidean response: ave = mean
For categorical response: ave = majority vote

Empirical evaluation:

Bagging effective in reducing the error rate of Cart classification
and regression.
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Illustration of Bagging

X ~ U0, 1]
Y =X +¢€¢ withe~ N(0,1)
n = 200

Partitition predictor space into two “rectangles.”
Draw 50 resamples for bagging.
(Simple example, but illustrates all the effects of bagging)

First consider a single training sample.

e Look at Cart model for training sample and for 10 resamples.

e [hen compare bagged and unbagged models.
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Training sample and true regressi
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Cart model for training sample
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Cart model for resample 1
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Cart model for resample 2

0.6 0.8

Xtrain

1.0



10/7/2002

Cart model for resample 3
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Cart model for resample 4
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Cart model for resample 5
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Cart model for resample 6
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Cart model for resample 7
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Cart model for resample 8
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Cart model for resample 9
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Cart model for resample 10
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Bagged (red) and unbagged (gree
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Next, compare bagged and unbagged models
for 9 more training samples.
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Bagged (red) and unbagged (gree
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Compare predictive performance of bagged
and unbagged models

Let f(z) = E(Y |z) be the true regression function, and
let o*(x) be the conditional variance of Y at x. Then

EvE y(Y(z) — p(z; X))Q — 02(x) +Ev(p(a; X) — f(a?))2
Expected squared prediction error(z) =

conditional variance(z) +

expected squared estimation error(z)

Ey(p(a; X) — f(2))" = Vap(z; X) + (Exp(z; X) — f(2))°
Expected squared estimation error(z) =

variance of model(z) +

squared bias of model(x)
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Squared bias
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In this example, bagged model has smaller bias
and smaller variance than unbagged model
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Breiman’s heuristic

Recall the formula for the expected squared prediction error:

EvE ¢ (Y(z) — p(z; X))* = o*(x) + Vap(z; X) + (Exp(z; X) — f(x))?

Suppose there was a “good fairy” giving us training samples A7,... &,
Instead of a single training sample X'.

We then could construct models p(x; Xy), ..., p(x; X)) and average them,
obtaining

p(x) = ave (p(r; 1), ..., plx; X)) -
Obviously
1
Vp(r) = —Vaple; o).

There i1s no “good fairy”, so use Bootstrap resamples instead of new samples.
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(Generalizations

1. Choose resample size m different from original
sample size n.

Space of
probability

measures

T(F)

T(Fn)

Resamples

ave = Tra (Fn)

1": Functional; " unknown distribution giving rise to observations
£, empirical distribution of observations

Standard approach: Estimate T'(F') by T'(F,)
Bagging: Estimate T'(F') by T%*(F),) = average of T over resamples.

Heuristic: Smaller resample size = resamples farther away from F),
= more averaging = smaller variance, larger bias (?7)
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(Generalizations continued

2. Draw resamples without replacement

Cuts computation in half.

10/7/2002

33



Theoretical analysis of bagging

Consider functionals of the form
T(F) = [ oi@)dF@)+ [ daler, 22 dF () dF (e5) +
/¢2(x1, vo,25) dF(21) dF (22) dF(25) + - - -

(finitely many terms).

The obvious (substitution) estimate of 7'(F') from a sample z,.... 2, is

1 1 1
T(Fn) — 5277&1(373) + E ng(ﬂf@‘j'ﬁj) -+ 5 ng(aféjxjjxk) 4+ ...

ik
Motivation

e Many statistics can be well approximated by expansions of this form.

e Can explicitly write down bagged version of T
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Bagging T'(F,)

Let W1, ..., W, be the frequencies of x¢,..., 2z, In a resample.

If we draw resamples of size m with replacement, then the
frequency vector W has a multinomial distribution.

If we draw resamples of size m without replacement, then W
has a hypergeometric distribution.

The bagged version of T'(F,,) is
bag 1 1
o) = By | =3 Wetn(w) + — 3 Wil do(as, @)
? [

1
+$Z mWJWk ¢3($i7 :Uj?xk) T )

ik

Key fact: T (F,) is of the same form as T'([},), just with different
kernels 1, 1q, .. ..
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Results

Want to compare bias and variance of T'(F},) — regarded as an estimate
of T'(}') — with bias and variance of 1" (F},).

Remember: 1% (F),) depends on resample size m and resampling
mode (with or without replacement).

(1) The effects of bagging on squared bias and variance are

of order O(1/n*) (7).

(2) Bagging always increases squared bias; squared bias increases
as resample size decreases.

(3) Whether or not bagging decreases or increases the variance
depends on the kernels 1,95, . ..
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Results (continued)

(4) For every resample size m,,, = oo n for resampling without
replacement there 1s a corresponding resample size
Moy = n for resampling with replacement that results in

@
11—

the same variance and squared bias up to O(1/n?)

e [he standard Bootstarp corresponds to half-sampling.

e There are situations where choosing m > n (for resampling with
replacement) or m > n/2 (without replacement) is beneficial.

10/7/2002
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Experimental results
X ~ U[0,1]
¢~ N(0,1)

Scenario 1: Y = ¢ (no signal)
Scenario 2: Y = [(X > 0.5) + ¢ (step function)
Scenario 3: Y = X + € (linear function)

Cart model with 2 leaves.
Bagging with 50 resamples.

Did simulations for more complex and realistic situations
(not presented here). They led to the same conclusions.
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A comment on bias

In the regression context, T'(F),) corresponds to the model p(z; X)
estimated from the training sample Y.

T'(F') corresponds to the model p™(z) for an infinite training sample.

In our theory, bias is defined as ET(F,) — T(F) ~ E yp(z; X) — p>(x)

In regression analysis, bias is typically defined as E yp(x; X') — f(z),
where f(x) is the true regression function.

We will refer to the former as estimation bias.

The theory predicts that estimation bias of bagged models is larger
then estimation bias of unbagged model, and decreases with increasing
resample size.
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squared estimation bias
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squared bias
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squared estimation bias
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Conclusion

Experiments confirm theoretical results that:

e Bagging always increases squared estimation bias.

e Bagging without replacement with resample size
Nawfo = Cylo N

has the same effect on squared estimation bias and variance as
bagging with replacement with resample size

Doy /o N

L — Ofw/o

Tyith —

In fact, agreement is good for individual training samples,
not just on average.

10/7/2002
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Conclusion (continued)

Experiments also support the heuristic that smaller resample size
means more smoothing and should lead to smaller variance.

Theory predicts that effect of bagging is O(1/n*) 7?
Still under investigation.

Thanks for your interest

10/7/2002
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Conclusion

Experiment confirms theoretical results that:

e Bagging without replacement with resample size
N fo = Ay fo N

has the same effect on squared (estimation) bias, variance, and mean
squared (estimation) error as bagging with replacement with resample

slze
QX fo

I — o

N .

Rowith —
¢ Bagging increases squared estimation bias.

In the examples bagging always decreased variance.

10/7/2002
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Experiment:
Bagging regression trees

Same setup as in Friedman and Hall

o X ~U([0,1]")
o ¥V = f(X)+ 0e with e ~ N(0, 1)

Three scenarions:

1. Constant: f(z)=0,0=1

2. Piecewise constant: f(z) = H?Zl 1(x; > 0.13), 0 = 0.5

3. Linear: f(z) = Z?lexj, oc=3

10/7/2002
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Training sample sizes N = 500 and N = 5000
Prediction rule: Cart tree with b0 leaves

Bagging with 50 resamples

Let p(z; ) be the rule built from an “infinite” training sample

(we use N = 500, 000)

Quantities of interest

e Variance E; (varyp(z; X))

e Squared estimation bias E,(Exp®(z; X') — p(z; X*°))?
e Squared total bias E, (Exp®(z; X) — f(2))?

e Mean squared error = variance + squared total bias

as a function of g = & = N _ 1

Nawith ﬂw/o

Note: Large ¢ means small resample size!
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Scenario 1 (f(z) =0), N = 500
Horizontal lines correspond to unbagged rule.

Note: There are two curves in each plot, for resampling with and
without replacement
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Scenario 2 (f(x) piecewise constant), N = 500

Horizontal lines correspond to unbagged rule.
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Scenario 3 (f(z) linear), N = 500

Horizontal lines correspond to unbagged rule.

Variance, scenario 3, n = 500 Squared estimation bias, scenario 3, n = 500
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Scenario 1 (f(z)=0), N = 5000
Horizontal lines correspond to unbagged rule.

Comment on increase in MSE
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Scenario 2 (f(z) piecewise constant), N = 5000

Horizontal lines correspond to unbagged rule.

Variance, scenario 2, n = 5000 Squared estimation bias, scenario 2, n = 5000
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Scenario 3 (f(z) linear), N = 5000

Horizontal lines correspond to unbagged rule.

Variance, scenario 3, n = 5000 Squared estimation bias, scenario 3, n = 5000
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