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1. Meanings of “clustering”

1. Meanings of “clustering”

The term “clustering” Is used to signify both dissection and concept
formation.

Dissection: Partition a collection of items into compact subsets.

Can for example quantify degree of compactness of a partition P, =
Py, ..., P by sum of squared distances of observations from their group
means:

rss (Py) = ZZH% zi||*.

1=1 j€F;

= K-means clustering; (locally) optimal partitions can be found with
the Lloyd algorithm.
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1. Meanings of “clustering”

Concept formation: Detect presence of distinct groups.

Definition of distinct groups (CG&J):

Contiguous, densely populated areas of feature space, separated by
contiguous, relatively empty regions.

%a% - (c): Distinct groups in the sense of CG&J;

d): not covered by definition.
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Note:

e Dissection and concept formation can

1. Meanings of “clustering”

result in different partitions.
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K-means with k = 2

e Several popular clustering methods (complete linkage, k-means) are

really dissection methods.

e [here are applications, like vector quantization, where disscection
makes sense, even If there are no distinct groups in the data.
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1. Meanings of “clustering”

e Dissection methods can be successful at concept formation if

(i) We guessed the right number of groups, and
(i) Groups are approximately spherical, with the same radius.

From now on will take “clustering” to mean
“concept formation”
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2. Statistical aproaches to clustering

2. Statistical approaches to clustering

ey * Detect that there are 5 or 6 distinct
co T groups.

% g :’*.;’*:, * Assign group labels to observations.
o 003 &‘ 0: i‘i . ’%;" ‘: “‘

T
40 45 50 55

Need to specify sampling model and population characteristic of inter-
est.

Without sampling model, concept of “cluster validity” does not make
sense.

Without well specified population characteristic it is impossible to eval-
uate and compare clustering methods = no “progress” .

Sampling model in this talk:

Feature vectors z4,...,x, are iid sample from some density p(z).
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2. Statistical aproaches to clustering

2.1 Parametric approach (model-based clustering)

Based on premise that each group ¢ i1s represented by density p, that
Is a member of some parametric family (e.g., multivariate Gaussian)
= p(z) is a mixture:

p(z) = Z_:l Ty Po()

For given number of groups (&, mle’s for group means and covariances
can be found using EM.

Alternatively, can used David Scott’s squared error criterion.

Number of groups (& can be estimated, for example by cross-validation

or BIC.

Observations can be labeled using Bayes’ rule.
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2. Statistical aproaches to clustering

Strength of model-based clustering:

e Intellectually coherent approach.

e Offers a way of estimating the number of groups.

e Can be extended (background noise, multinomial mixtures).

Weakness of model-based clustering:

e Can lead to unexpected results if Gaussianity assumption is violated.
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2. Statistical aproaches to clustering
2.2 Nonparametric approach

Based on premise that groups correspond to modes of density p(z).

Clustering methods should be able to “detect and resolve distinct data
modes, independently of their shape and variance” (Wishart 1969).

Feature histogram

Need to

300

e Estimate modes:

e Assign each observation to the | : :
“domain of attraction” of a mode. || | || : |||
| “\Illll““ ““\In...._

Will pursue nonparametric approach
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3. The cluster tree of a density

Structure of level sets is described by cluster tree

Density Cluster tree

0.5
0.15

0.10

0.10

005
005

[ ... S
=

Cluster tree Is easlest to define recursively:

Each node N of cluster tree
e represents a subset D(N) of feature space (high density cluster);
e is associated with a density level A(V).

Root node
e represents the entire support of the density;
e is associated with density level A(N) = 0.
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Density
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Cluster tree

To determine descendents of node N:

3. The cluster tree of a density

e Find lowest level \; for which L(A;p) N D(V) has two connected

components.

e |f there i1s no such A; then NV is leaf of the tree.
e Otherwise, create daughter nodes representing the connected
components, with associated level A;, and recurse.
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3. The cluster tree of a density

Density, cluster tree, and high density clusters
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Leaves of cluster tree correspond to modes of density.

Cluster tree i1s invariant under non-singular affine transformations of
feature space.

Cluster tree is (a) target population characteristic in non-
parametric clustering.
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4. Plug-in estimates of the cluster tree

4. Plug-in estimates of the cluster tree

Obvious 1dea:

e Estimate p by (nonparametric) density estimate p;

e Estimate cluster tree of p by cluster tree of p.

However, there are computational as well as statistical problems.

(i) Computational problem:

How can we compute level sets and their connected components?

(ii) Statistical problem:

How do we distinguish spurious components (modes) due to sampling
variability from real components reflecting the structure of the true
density?
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4. Plug-in estimates of the cluster tree

Computing level sets and their connected components

For density estimates p that are piecewise constant over (hyper-) rect-
angles:

ZC% (z € R;)

level sets, their connected components, and the cluster tree can be
computed exactly.

Example: Histograms, ASH estimates, piecewise constant approxima-
tions of other estimates.

Only viable in low dimensions (dim < 4 7)
Otherwise, have to use approximations (current research).

Notable exception: 1-NN density estimate.
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5. The cluster tree of the 1-NN density estimate

5. The cluster tree of the 1-NNN density estimate

Given: Observations X = z,...,z, € R ~ p(x).
1-NN density estimate:

ﬁl(i) ~ d(g,X) y

L(A;py) 1s union of open spheres around the z; with radius 1/A.

The cluster tree of p; is closely connected to the minimal spanning tree

(MST) T of X.

Let 7'(d) be threshold graph obtained by removing all edges of 7" with
edge length > d.

Prop (Hartigan 1985): The connected components of L(A;p;) are
the same as the connected components of 7'(2/A).
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5. The cluster tree of the 1-NN density estimate

Can compute cluster tree of nearest neighbor density estimate by
e Breaking longest MST edge, thereby splitting MST into two subtrees;

e Recursively applying splitting process to subtrees.

Cluster tree of nearest neighor density estimate Is isomorphic to single
linkage dendogram.

Problem

I-NN density estimate has singularity at every data point.

Therefore, cluster tree of 1-NN density estimate has leaf for every data
point and will be poor estimate for population cluster tree.

It has to be pruned.
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6. Runt pruning

6. Runt pruning

Consider split of high density cluster of p; “significant” if both daughter
nodes contain sufficiently many observations.

Size of smaller of the daughter nodes is called runt size of node.

Runt size threshold controls size of estimated cluster tree.

Maximum of runt sizes was used by Hartigan and Mohanty as test
statistic in a test for unimodality.
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6. Runt pruning

Define runt size of MST edge e:

e Break all MST edges with length > ||e

;
o 1,1, subtrees of T'(||¢||) rooted at endpoints of ¢.
o runtsize(e) = min(|71|, |15]).
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6. Runt pruning

Heuristic motivation / justification

Recall multi-fragment algorithm for MST construction:
e Define distance between groups as minimum distance between obs.
e [nitialize each obs to form its own group.
e Repeat {
e Find closest groups.
e Add shortest edge connecting them.
e Merge them.
+ Until only one group remains.
MST fragments will start and grow in high density regions, where dis-
tances are small.
Eventually, these fragments will be joined by edges.

Those edges will have large runt size.
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Weakly bimodal data
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6. Runt pruning

Unimodal data MST for unimodal data
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6. Runt pruning

Relationship between runt pruning and
single linkage clustering

Single linkage clustering = standard way of extracting clusters from

MST.

To obtain & clusters

e Break & — 1 longest MST edges or, equivalently

e Cut dendogram at a level resulting in k subtrees.

Bad idea - thanks, Jon, for pointing that out!
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6. Runt pruning

Problems with dendogram cutting:

Breaking longest edges tends to separate stragglers from the bulk of
the data and often results in one large and many small clusters.

Choosing a single threshold for edge length means we are finding the
connected components of L(X;py) for a single level A.

However, there might not be a single cut level that reveals all the
modes.

Therefore, problem with single linkage cannot be fixed by discarding
small clusters.

Instead, find all the dendogram nodes with runt size > threshold.
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7. llustration of Runt pruning

7. Illustration of Runt Pruning

Objects: 572 olive oil samples coming from 9 different areas, grouped

into 3 regions (1, 2, 3, 4) (5, 6) (7, 8, 9).
Features: Concentration of 8 different chemicals.

Question: How well can we recover the grouping into regions and
areas’

Note: To empirically evaluate performance of clustering methods, need
labeled data.

20 largest runt sizes:
168 97 595142423313 131211111110108888 7

Fairly clear gap: Choose runt size 33 as threshold.

Note: Situation not always that clear cut
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7. llustration of Runt pruning

Estimated cluster tree for Olive Oil data

16

14

level

12

10

Interpretation:

e Bottom split separates region 3 from regions 1, 2.
e Next split on left separates region 1 from region 2
e Not able to correctly partition region 1 into areas

June 11, 2005 Interface / CSNA Meeting St. Louis
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7. llustration of Runt pruning

Areas vs clusters
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Note able to recognize Areas 1 and 4 in Region 1.

Splits up Area 3.
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How well are Areas 1-4 separated?

7. llustration of Runt pruning

Draw projection onto first two discriminant coordinates.

Note: Only possible because we know labels.
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8. Current research

8. Current research

8.1 Computing the cluster tree for other density estimates

Idea: Approximate geometric problem of finding connected compo-
nents of level sets by graph problem.

Define p;; = mingepo 1P ((1 — ¢)z; + Lz;) and p; = p(x;).

Let (- be the complete graph over z,,...,z, with edge weights p;;
and vertex weights p;.

Let (G(A) be the threshold graph obtained from G by removing edges
with p;; < A and vertices with p; < A.

Apply recursive operations of thresholding and finding connected com-
ponents to the graph (& instead of feature space.

June 11, 2005 Interface / CSNA Meeting St. Louis
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8. Current research

Motivation:
Observations in the same connected component of (G(A) are in the
same connected component of L(X;p).

Observations in different connected components of G(A) might be in
the same connected component of L(X;p), but if j is smooth this is
unlikely.
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8. Current research
8.2 Clustering with confidence

Problem: Density estimates may have spurious modes due to sampling
variability.

|dea:
Compute Bootstrap density estimates.

Connected components present in most Boostrap estimates are prob-
ably “real”.

Note enough time to give detalls.
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9. Summary

9. Summary

The term “clustering” i1s ambiguous; need to distinguish between dis-
section and concept formation.

Goal of concept formation: detect presence of distinct groups.

Premise of nonparametric clustering: groups ~ modes of feature den-
sity.

Structure of collection of level sets is described by cluster tree; modes
~ leaves.

Cluster tree is defined recursively — suggests recursive partitioning
method for its computation.

For some density estimates, cluster tree can be computed exactly.

For others, cluster tree has to be approximated by solution of a graph
problem.

June 11, 2005 Interface / CSNA Meeting St. Louis
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9. Summary

Runt pruning is a simple attempt at eliminating spurious modes.

May be able to use Bootstrap for a more principled approacch.

Thank you for your interest.
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9. Summary

The term “clustering” is ambiguous; need to distinguish between dis-
section and concept formation.

Goal of concept formation: detect presence of distinct groups.

Premise of nonparametric clustering: groups ~ modes of feature den-
sity.

Structure of collection of level sets is described by cluster tree; modes
~ leaves.

Cluster tree i1s defined recursively — suggests recursive partitioning
method for its computation.

For some density estimates, cluster tree can be computed exactly.

For others, cluster tree has to be approximated by solution of a graph
problem.

May be able to use Bootstrap for distinguishing between “real” and
“spurious’ modes.

Thanks for your interest.
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5. Computing connected components of level sets

5. Computing the cluster tree for piecewise
constant density estimates

Suppose that density estimate p is piecewise constant over disjoint
(hyper-) rectangles forming a partition of feature space:

p(}\g) = ici I[(x € R;).

Example: Histograms, ASH estimates, Cart estimates, kernel estimates
with hyper-rectangular kernels (careful !).

In this case, level sets, their connected components, and the cluster
tree can be computed exactly.

Basic idea: Convert geometry problem into graph problem.
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5. Computing connected components of level sets

Define weighted graph G-

e Vertices represent rectangles R;;
e Edges encode adjacency: (¢, ) is an edge if I?; is adjacent to R;;
o Weight of vertex ¢ is value of density in rectangle i: w; = ¢;

o Weight of edge (¢, 7) is minimum of density in the two (adjacent)
rectangles: w;; = min(¢;, ¢;).

Define threshold graph G()):

e Remove all vertices with w; < A;

e Remove all edges with w;; < A.

Connected components of level set L(A;p) correspond to connected
components of threshold graph G/(A).
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5. Computing connected components of level sets

Finding connected components of (7(\) is a standard graph problem:

1. Start graph traversal at an arbitrary vertex and mark all visited
vertices:

2. Remove visited vertices and their incident edges;

3. Repeat (1) and (2) until no more vertices remain.
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5. Computing connected components of level sets

The cluster tree can be computed recursively:

e Each node represents a sub-graph of (¢ and the corresponding
subset of feature space;

e The root node represents the entire graph (& and the support of
p;

e To find the descendents of a node NV representing a graph H we
find the smallest value of A for which H(\) has two connected
components;

e |f there is no such A then /V i1s a leaf of the tree;

e Otherwise we create daughter nodes representing the connected
components of H{(A) and recurse;
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5. Computing connected components of level sets

What about more general density estimates?

Exact computation of level sets seems daunting; how would we even
represent them?

In low dimensions (< 4 7) can approximate p by piecewise constant
density p*:

e Put down grid;

o For grid cell R; with center u; define density ¢; = p(u;).

Then apply algorithm for piecewise constant estimate.
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4. Estimating the cluster tree of a density

Obvious plug-in approach:

e Estimate p by (nonparametric) density estimate p;
e Estimate cluster tree of p by cluster tree of p.

However, there are computational as well as statistical problems.

(i) Computational problem:

How can we compute the number of connected components
of a level set L(\;p)?

(ii) Statistical problem:

How do we distinguish spurious components (modes) due to sampling
variability from real components reflecting the structure of the true
density?

Will focus on problem (i)
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Digression: nonparametric density estimation

Given: Feature vectors z,,.... 2, ~ p(z).

Goal: Estimate p(z).

Histogram estimate:

e Partition feature space into (axis parallel rectangular) bins.
e Estimate density in bin by bin count / (n * bin volume)
Average shifted histograms (ASH) estimate:

e Compute histograms for several shifted versions of the grid.
e Average them.

(Will give smoother estimates.)

June 11, 2005 Interface / CSNA Meeting St. Louis
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Kernel and near-neighbor estimates:

Let S(z,r) be sphere in feature space with radius r, centered at z.

Assuming p(z) is roughly constant over S(z,r), expected number kof
sample points in S(z,r) is

k=~ np(x)Vol(S(z,r)), or p(z)~k/(n Vol(S(z,r)).
Kernel estimate:

Fix radius r; k& = # of sample feature vectors in S(z,r).

k-NN estimate:

Fix count k; r =smallest radius for which S(z,r) contains k sample
feature vectors.

Many refinements have been suggested.

Many other estimates: Projection Pursuit, Cart, . ...
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Estimating the cluster tree of a density

Easy to compute cluster tree of histogram or ASH estimate, but
Histogram and ASH estimates only viable in low dimensions.

Cluster tree of 1-NN density estimate can be computed exactly but
needs to be pruned.

For other kernel and near-neighbor estimates, projection pursuit esti-

mates, etc, exactly computing cluster tree seems hard geometry prob-
lem.

Instead, solve closely related graph problem.

June 11, 2005 Interface / CSNA Meeting St. Louis
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5. Runt pruning

Given: Observations X' = z,...,2, € R™ ~ p(z).
1-NN density estimate:

Define
1

A = (— )i
") = ()
Level set L(X;py) is union of open spheres around the x; with radius
r(A):
L(x;pr) = U S(@ir(d).

June 11, 2005 Interface / CSNA Meeting St. Louis
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Computing the cluster tree of the nearest neighbor density
estimate

Let 1" denote the Euclidean Minimal Spanning Tree of X'

Let 7'(d) be threshold graph obtained by removing all edges of T" with
edge length > d.

Prop (Hartigan 1985): The (sample) connected components of L(A; py)
are the same as the connected components of 1'(2r())).

Can compute cluster tree of nearest neighbor density estimate by

e Breaking longest MST edge, thereby splitting MST into two subtrees;
e Recursively applying splitting process to subtrees.

Cluster tree of nearest neighor density estimate is isomorphic to single
linkage dendogram.
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Problem

1I-NN density estimate has singularity at every data point.

Therefore, cluster tree of 1-NN density estimate has leaf for every data
point and will be poor estimate for population cluster tree.

It has to be pruned.

Idea:

Consider split of high density cluster of p; “significant” if both daughter
nodes contain sufficiently many observations.

Size of smaller of the daughter nodes is called runt size of node.

Runt size threshold controls size of estimated cluster tree.

June 11, 2005 Interface / CSNA Meeting St. Louis
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Define runt size of MST edge e:

e Break all MST edges with length > ||e

;
o 1,1, subtrees of T'(||¢||) rooted at endpoints of ¢.
o runtsize(e) = min(|71|, |15]).

June 11, 2005 Interface / CSNA Meeting St. Louis
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generate_cluster_tree_node (mst, runt_size threshold) {

node = new_cluster tree_node

node.leftson = node.rightson = NULL

node.obs = leaves (mst)

cut_edge = longest_edge with_large runt_size (mst, runt_size threshold)

If (cut_edge) {
node.leftson = generate_cluster_tree_node (left_subtree (cut_edge), runt_size threshold)
node.rightson = generate_cluster_tree _node (right_subtree (cut_edge), runt_size threshold)

}

return (node)
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Heuristic motivation

Recall multi-fragment algorithm for MST construction:
e Define distance between groups as minimum distance between obs.
e [nitialize each obs to form its own group.
e Repeat {
e Find closest groups.
e Add shortest edge connecting them.
o Merge closest groups.
+ Until only one group remains.
MST fragments will start and grow in high density regions, where dis-
tances are small.
Eventually, these fragments will be joined by edges.

Those edges will have large runt size.
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Weakly bimodal data
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Unimodal data MST for unimodal data
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Relationship to single linkage clustering

Single linkage clustering = standard way of extracting clusters from

MST.
To obtain & clusters, break & — 1 longest MST edges.

Problems:

Breaking longest edges tends to separate stragglers from the bulk of the
data and often results in one large and many small clusters (chaining)

Choosing a single threshold for edge length means choosing a single
cut level for 1-NN density estimate.

However, there might not be a single cut level that reveals all the
modes =

Problem with single linkage cannot be fixed by discarding small clusters.

June 11, 2005 Interface / CSNA Meeting St. Louis
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6. Illustration of Runt Pruning

Objects: 572 olive oil samples coming from 9 different areas, grouped

into 3 regions (1, 2, 3, 4) (5, 6) (7, 8, 9).
Features: Concentration of 8 different chemicals.

Question: How well can we recover the grouping into regions and
areas’

Note: To empirically evaluate performance of clustering methods, need
labeled data.

20 largest runt sizes:
16897 5951424233131312111111101088887

Fairly clear gap: Choose runt size 33 as threshold.

Note: Situation not always that clear cut
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Estimated cluster tree for Olive Oil data

16

14

level

12

10

Interpretation:

e Bottom split separates region 3 from regions 1, 2.
e Next split on left separates region 1 from region 2
e Not able to correctly partition region 1 into areas
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Areas vs clusters
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Note able to recognize Areas 1 and 4 in Region 1.

Splits up Area 3.
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How well are Areas 1-4 separated?

Draw projection onto first two discriminant coordinates.

Note: Only possible because we know labels.
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7. Current research

7.1 Computing the cluster tree for other density estimates

Idea: Approximate geometric problem of finding connected compo-
nents of level sets by graph problem.

Define p;; = minyepoq1p ((1 — ¢)z; +tx;) and p; = p(z;).

Let (+ be the complete graph over z,,...,z, with edge weights p;;
and vertex weights p;.

Let (G(X) be the threshold graph obtained from (' by removing edges
with p;; < A and vertices with p; < A.

Apply recursive operations of thresholding and finding connected com-
ponents to the graph (& instead of feature space.
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Motivation:
Observations in the same connected component of (G(A) are in the
same connected component of L(X;p).

Observations in different connected components of G(A) might be in
the same connected component of L(X;p), but if j is smooth this is
unlikely.
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7.2 Clustering with confidence

Problem: Density estimates may have spurious modes due to sampling
variability.

|dea:
Compute Bootstrap density estimates.

Connected components present in most Boostrap estimates are prob-
ably “real”.

Note enough time to give detalls.
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8. Summary

The term “clustering” 1s ambiguous; need to distinguish between dis-
section and concept formation.

Goal of concept formation: detect presence of distinct groups.

Premise of nonparametric clustering: groups ~ modes of feature den-
sity.

Structure of collection of level sets is described by cluster tree; modes
~ leaves.

Cluster tree is defined recursively — suggests recursive partitioning
method for its computation.

For some density estimates, cluster tree can be computed exactly.

For others, cluster tree has to be approximated by solution of a graph
problem.

May be able to use Bootstrap for distinguishing between “real” and
“spurious’ modes.

Thanks for your interest.
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Cluster tree or density estimate may have spurious modes and will
have to be pruned.

Boostrapping may offer a way of deciding which branches are “real”.
Power?

Thank you for your patience
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General goals of research

Development of nonparametric methods for concept formation:

e Basics — what are we trying to estimate?
e Estimation methods and algorithms

e Diagnostics

e [heory

e Extension to other domains (discrete data, graphs)

Domain-specific adaptation — clustering microarray data, topic de-
tection and tracking.

Primary goal at the moment

Develop method for estimating the number of groups.
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2. Why are we interested in concept formation

General answer:

Concept formation ( “unsupervised learning”) is an important compo-
nent of cognition.

Most of human learning is unsupervised (semi-supervised?)

Specific example:

Generating a taxonomy of diseases from gene expression data.
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Generating a taxonomy of diseases from gene expression
data

DNA microarrays allow simultaneous measurement of expression levels
for 1000's of genes.

Patterns of expression might allow discovery and prediction of new
disease classes

¢ Independent of previous biological knowledge, and

¢ |n the absence of clearly distinct clinical symptom patterns.

Successful differentiation would allow class specific treatment that
might improve treatment success.
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Example: Data from Golub et al (Science, 1999)

3051 genes
Tumor RNA samples from 38 leukemia patients:
e 27 acute lymphoblastic leukemia (ALL) cases

e 11 acute myeloid leukemia (AML) cases

Questions:
e Can we find the two groups without using the labels?

e Are there other groups?

Seems like a challenging problem — 38 points in 3051-dimensional
space.

Not impossible, though!
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Sample analysis

Choose 500 genes with highest values of (mean * standard deviation).

Project onto two largest principal components.
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Sample analysis

Choose 500 genes with highest values of (mean * standard deviation).

Project onto two largest principal components.

PC2
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11 AML samples highlighted
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Dissection:

Given: Collection of n objects characterized by feature vectors z,, ...,z .

Goal: Partition collection into compact subsets.

The prototypical dissection method: K-means clustering.
Let P = P, ..., P be a partition of the objects into k groups.

Measure badness of partition by sum of squared distances of observa-
tions from their group means:

rss (Pr) = ZZ lz;

=1 5€PF;

Find optimal partition (for example with the Lloyd algorithm).
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generate_cluster_tree_node (mst, runt_size threshold) {

node = new_cluster tree_node

node.leftson = node.rightson = NULL

node.obs = leaves (mst)

cut_edge = longest_edge with_large runt_size (mst, runt_size threshold)

If (cut_edge) {
node.leftson = generate_cluster_tree_node (left_subtree (cut_edge), runt_size threshold)
node.rightson = generate_cluster_tree _node (right_subtree (cut_edge), runt_size threshold)

}

return (node)
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