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1. Goal of clustering

1. Goal of clustering

Detect presence of distinct groups.

Definition of distinct groups (Carmichael, George, and Julius):

Contiguous, densely populated areas of feature space, separated by
contiguous, relatively empty regions.

(a) - (c): Distinct groups in the sense of CG&J;
(d): not covered by definition.
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2. Statistical approaches to clustering

2. Statistical approaches to clustering

RS * Detect that there are 5 or 6 distinct
T groups.

] % P & t4a * Assign group labels to observations.
BILE o .3{.’ "
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Need to specify sampling model and population characteristic of inter-
est.

Without sampling model, concept of “cluster validity” does not make
sense.

Without well specified population characteristic it is impossible to eval-
uate and compare clustering methods = no “progress” .

Sampling model in this talk:

Feature vectors z,,...,x, are iid sample from some density p(z).
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2. Statistical approaches to clustering
Nonparametric approach

Based on premise that groups correspond to modes of density p(z).

Clustering methods should be able to “detect and resolve distinct data
modes, independently of their shape and variance” (Wishart 1969).

Feature histogram

Need to

e Estimate modes;
e Assign each observation to the |
“domain of attraction” of a mode. . ‘| ‘ : “|||“‘
S — |II|‘ “lllll“ “lllln._
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3. The cluster tree of a density

Structure of level sets is described by cluster tree

Density Cluster tree
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Cluster tree Is easlest to define recursively:

Each node N of cluster tree
e represents a subset D(N) of feature space (high density cluster);
e is associated with a density level A(V).

Root node
e represents the entire support of the density;
e is associated with density level A(N) = 0.
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Density

015

0.10

005

00

015

040

005

Cluster tree

To determine descendents of node N:

3. The cluster tree of a density

e Find lowest level \; for which L(A;p) N D(V) has two connected

components.

e |f there i1s no such A; then NV is leaf of the tree.
e Otherwise, create daughter nodes representing the connected
components, with associated level A;, and recurse.
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3. The cluster tree of a density

Density, cluster tree, and high density clusters
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Leaves of cluster tree correspond to modes of density.

Cluster tree i1s invariant under non-singular affine transformations of
feature space.

Cluster tree is (a) target population characteristic in non-
parametric clustering.
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4. Plug-in estimates of the cluster tree

4. Plug-in estimates of the cluster tree

Obvious idea:

e Estimate p by (typically nonparametric) density estimate p;

e Estimate cluster tree of p by cluster tree of p.

However, there are computational as well as statistical problems.

(i) Computational problem:

How can we compute level sets and their connected components?

(ii) Statistical problem:

How do we distinguish spurious components (modes) due to sampling
variability from real components reflecting the structure of the under-
lying density?
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4. Plug-in estimates of the cluster tree

Computing level sets for piecewise constant density esti-
mates

For density estimates p that are piecewise constant over (hyper-) rect-
angles:

Zc@ (x € R;)

level sets, their connected components, and the cluster tree can be
computed exactly.

Example: Histograms, ASH estimates, piecewise constant approxima-
tions of other estimates.

More in Rebecca Nugent's talk (Session 274, Tuesday, 10:35 - 12:15)
Problem: method only viable in low dimensions (< 47)

Otherwise, have to use approximations.

August 6, 2006 JSM Seattle

11



5. A graph based approach

5. A graph based approach for approximating
the cluster tree of a density (estimate)

Given: Observations X = z,,...,z, € R™ and density estimate p.

Define graph (& over observations with edge weights

pi; = min p((1 — t)z; + tz;)

te[0,1]

(minimum of estimated density along line segment [z;, z;]).

Sample level set L(\; p, X): subgraph of G obtained by removing all
edges and vertices with p;; < A.

Sample connected components: Connected components of graph
L(XA;p, X).
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5. A graph based approach

Note:

If z; and z; are in same connected component of L(\;p, X) then g,
and z; in same connected component of L (A; D).

(There is path connecting x; and z; along which p > X.)

Reverse not necessarily true.

— True Level Set
—— Sample Connected Component

Be
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5. A graph based approach

Sample connected components of L(X; p, X) for different \'s have tree
structure just like connected components of L(A;p).

Define sample cluster tree. Each node N

e represents a subgraph D(N) of G = L(0;p, X)
(sample high density cluster);

e is associated with a density level A(N).

Root node
e represents the entire graph G;
e is associated with density level A(N) = 0.

To determine descendents of node N:

e Find lowest level Ay for which L(X; p, X)N D(N) has two connected
components.

e If there is no such A\; then N is leaf of the tree.

e Otherwise, create daughter nodes representing the connected
components, with associated level A4, and recurse.
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5. A graph based approach

First Edge Break
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5. A graph based approach

Problem: The edge weights

Pij = tl’el’%g]p((l —t)z; +tz;)

are solutions of optimization problem.

“Hack” approach: Evaluate p on grid along segment |z;, z;].

More principled approach:

e To construct sample cluster tree we only need order of edge
weights;

e For many density estimates we can obtain upper bound on 2nd
derivative along line segment;

e |f we have upper bound on 2nd derivative we can obtain arbitrarily
tight bounds on p;; at the cost of additional evaluations of p and
its derivative.
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6. Connections to single linkage clustering

6. Connection to single linkage clustering

Prop: We can construct the sample cluster tree by applying the re-
cursive thresholding process to the maximal spanning tree of (i instead
of (7 itself.

Note:

e The maximal spanning tree of (G, {p;;}) is the minimal spanning
tree of (G,{1/pi;}).

e We construct the sample cluster tree by recursively breaking “long”
edges of the minimal spanning tree (edges with small p;;).

e Applying this process to the Euclidean minimal spanning tree is
single linkage clustering.
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6. Connections to single linkage clustering

There is also a mathematical connection.

Prop: The sample cluster tree of the nearest neighbor density estimate

1

p(z) ~ Az )

is the single linkage dendogram.
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6. Example

6. Example

Objects: 572 olive oil samples coming from 9 different areas, grouped
into 3 regions (1, 2, 3, 4) (5, 6) (7, 8, 9).

Features: Concentration of 8 different chemicals.

Question: How well can we recover the grouping into regions and
areas?

Note: To empirically evaluate performance of clustering methods, need
labeled data.

Gaussian kernel density estimate; bandwidth determined by CV.

Problem: Sample cluster tree has dozens of leaves: many spurious
modes.

Need diagnostic for assessing “significance” of modes.
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6. Example

For each split estimate runt excess mass

Density

eZCeSsSsS mass

Excess mass for interior nodes of sample cluster tree, in decreasing
order, expressed in number of observations:

162, 94, 43, 41, 40, 29, 12, 10,8, 8,7, 7 ,...
Gap between 29 and 12 = prune all branches with mass < 12.

Resulting tree has 7 leaves.
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6. Example

Sample cluster tree after pruning; leaves labelled with predominant
area.
Sample cluster tree for Olive Qil data
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Interpretation:

e Bottom split separates region 3 from regions 1, 2.
e Next split on left separates region 1 from region 2
e Not able to identify areas 1 and 4
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7. Summary

7. Summary

Goal of clustering: detect presence of distinct groups.

Premise of nonparametric clustering: groups ~ modes of feature den-
SIty.

Structure of collection of level sets is described by cluster tree;
modes ~ leaves.

Cluster tree is defined recursively — suggests recursive partitioning
method for its computation.

For some density estimates, cluster tree can be computed exactly.

For others, cluster tree has to be approximated by solution of a graph
problem =- Generalized single linkage clustering.
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7. Summary

Generalized single linkage clustering can be applied to any density es-
timate.

Number of modes ~ leaves of sample cluster tree depends on “band-
width” of density estimate.

We have diagnostics to measure “size” of modes.

More principled approaches to pruning sample cluster tree using Boot-
strap are under investigation.

Thanks for your interest.

August 6, 2006 JSM Seattle 23



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

