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Outline of talk

* What is 3D Photography, and what is it good for ?

* Sensors

» Modeling 2D manifolds by subdivision surfaces

e Parametrization and multiresolution analysis of meshes
» Surface light fields

 (Smoothing on 2D manifolds)

e Conclusions



1. What is 3D Photography
and what is it good for ?
Technology aimed at

e capturing

* Viewing

« manipulating

digital representations of shape and visual
appearance of 3D objects.

Could have large impact because 3D
photographs can be

« stored and transmitted digitally,

 viewed on CRTSs,

 used in computer simulations,

« manipulated and edited in software, and

 used as templates for making electronic
or physical copies




Modeling humans

» Anthropometry

» Create data base of body shapes
for garment sizing

» Mass customization of clothing
* Virtual dressing room
» Avatars

Scan of lower body Fitted template Full body scan

(Textile and Clothing Technology (Dimension curves drawn in (Cyberware)
Corp.) yellow)



Modeli ng artifacts Image courtesy of Marc Levoy and the
Digital Michelangelo project

» Archival

o _ Left: Photo of David’s head
* Quantitative analysis Right: Rendition of digital model

e Virtual museums (1mm spatial resolution, 4 million polygons)




Modeling artifacts Images courtesy of Marc Rioux and the
Canadian National Research Council

Nicaraguan stone figurine Painted Mallard duck



Modeling architecture Left image: Paul Debevec, Camillo Taylor,
« Virtual walk-throughs and walk- Jitendra Malik (Berkely)
arounds Right image: Chris Haley (Berkeley)

* Real estate advertising

* Trying virtual furniture

Model of Berkeley Campanile Model of interior with artificial lighting



Modeling environments

« Virtual walk-throughs and walk
arounds

 Urban planning

Two renditions of model of MIT campus
(Seth Teller, MIT)




2 . SenSO I'S Cyberware scanner

Need to acquire data on shape and “color”

Simplest idea for shape: Active light
scanner using triangulation

/ A\

Laser spot on object allows
matching of image points in the
cameras




A more substantial engineering effort:
The Cyberware Full Body Scanner




“Color” acquisition
Through digital photography

Need to register images to geometry

Watch out! “Color” can mean:
* RGB value for each surface point

 RBG value for each surface point and
viewing direction

« BRDF (allows re-lighting)

Will return to this point later



Output of sensing process

« 1,000’s to 1,000,000’s of surface points
which we assemble into triangular mesh

* Collection of ~700 images taken from
different directions

Mesh generated from fish scans



Interlude: What does 3D photography have to do
with this workshop?

» We estimate manifolds from data — 2D, but complex geometry and
topology.

* We use multi-resolution representation of shape and “color”,

* We estimate radiance — a function on surface with values in function space.
For every surface point we have function that assigns RGB values to
directions.

How did we come to work on this problem?

Earlier methodological work (with Trevor Hastie) on principal curves — find a
curve that “goes through the middle of a data set.”

Theoretical work on principal curves and surfaces using calculus of
variations.

Where might principal surfaces be useful??



3. Modeling shape

Why not stick with meshes ?

» Real world objects are often
smooth or piecewise smooth

* Modeling a smooth object by
a mesh requires lots of small
faces

« \Want more parsimonious
representation

Sensor data

Fitted subdivision surface



Subdivision surfaces
(Catmull — Clark, Loop)

Defined by limiting process, starting with
control mesh (bottom left)

Split each face into four (right)
Reposition vertices by local averaging

Repeat the process
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Remarks
* Limiting position of each vertex is weighted mean of control vertices.

* Important question: what choices of weights produce smooth limiting
surface ?

 Averaging rules can be modified to allow for sharp edges, creases, and
corners (below)

» Fitting subdivision surface to data requires solving nonlinear least
squares problem.







4. Parametrization and multiresolution analysis
of meshes

Idea:

A "'
e A"
"“Eurﬂmr

Decompose mesh into simple “base

mesh” (few faces) and sequence of ié’,};

correction terms of decreasing SSEES

magnitude (b) & (©
Wavelet coefficients Wavelet coefficienis

Motivation:

« Compression
* Progressive transmission

* | evel-of-detail control
- Rendering time ~ number of
triangles
- No need to render detall if screen

area is small Full resolution LoD control
70K faces 38K - 4.5K - 1.9K
faces




Procedure
(“computational differential geometry”)

* Partition mesh into triangular regions,
each homeomorphic to a disk

 Create a triangular “base mesh”,
associating a triangle with each of the
regions

» Construct a piecewise linear
homeomorphism from each region to the
corresponding base mesh face

* Now we have representation of original
as vector-valued function over the base
mesh

» Natural multi-resolution sequence of
spaces of PL functions on base mesh
induced by 1-to-4 splits of triangles.

e (Lot of work...)




Texture mapping

« Homeomorphism allows us to transfer
color from original mesh to base mesh

 This in turn allows us to efficiently color
low resolution approximations (using
texture mapping hardware)

 Texture can cover up imperfections in
geometry

Mesh doesn’t
much look like
face, but...

What would it
look like without
texture ?



5. Modeling of surface light fields

Motivation

e Real objects don't look the same
from all directions
(specularity, anisotropy)

e |gnoring these effects makes
everything look like plastic.

Goal

Generate compact model that
can be rendered in real time.

What we would see if we walked
around the object



Model

Appearance of object under fixed lighting i1s captured by surface light
field (SLF)
L:M—CS*R):p—1L,,

which assigns a function from the sphere into RGB to each surface
point.

Need to estimate function on manifold from scattered data.

From surface light field can synthesize image of object from any view
point.



Data

e Mesh representing geometry.

e Images taken from many different
viewpoints
Let x; be the vertices of the mesh.

Assoclate each vertex with
“data lumisphere” L;.

Data lumispheres =~ 500MB

Problems:

e Choose computational representation

of SLF;

e Fit surface light field to data
lumispheres.




Computational representation of SLF

Represent lumispheres by functions in C'pp (5%, R°) C C(5%, R?), the
space of piecewise linear functions on a 3-fold subdivided octahedron

(dim = 258).
Represent SLF by a piecewise linear function L : M — Cpr (5%, R?).

Fitting the SLF

Naive idea: For each vertex z., fit lumisphere L; € Cpr(S?, R®) to
data lumisphere L;.

Problem: Huge model size.



Fitting the SLF (11)

Better idea

Represent the lumispheres L; at the vertices by convex combinations
of a small number of prototypes F' = (Fy, ..., F,):

f/i = Z Ciy Fj
J
Define figure of merit E(F):

E(F)=)_ (argminCL,&- — > ¢ FjH2) +smoothness penalty for I''.
‘ J

Find /= argmin, E(F) by alternating optimization.

Note: Same idea as principal component analysis, but for irregular
sampling with missing data.



Results (1)

Real vs synthesized image.




Results (i1)

Uncompressed vs compressed.
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Pointwise fairing Function quantization Principal function
(177 MB) (3.4 MB) analysis (2.5 MB)




Comments and Conclusions

Principal component analysis results in huge compression without pre-
ceptible loss of quality.

Glossed over some important steps in compression, for example:

e Before compressing lumispheres, subtract out diffuse colors.

e [ransformed data using physical properties about reflectance.

Without these steps, which are motivated by the specific problem,
performance degrades signficantly.

Extensions

e Better methods for principal functions analysis;

e Improve estimated object geometry using image information (Faugeras,

Osher)
e 3D Photoshop



Thanks for your interest



Another example

Note automatic imputation of missing values




Naive idea: Associate color with direction of reflected light

Better idea: Associate color with direction of incoming light.
Higher coherence between points on surface
Lumisphere can be easily obtained by reflecting around normal.




Naive idea: Associate color with direction of reflected light

Better idea: Associate color with direction of incoming light.
Higher coherence between points on surface
Lumisphere can be easily obtained by reflecting around normal.




Reflected reparameterization

Before

After



Median removal

Median values Specular Result



Geometry (fish)

Reconstruction: 129,000 faces

Memory for reconstruction: 2.5 MB
Base mesh: 199 faces

Re-mesh (4x subdivided): 51,000 faces
Memory for re-mesh: 1 MB

Memory with view-dependence: 7.5 MB



Compression (fish)

Pointwise faired:
Memory =177 MB RMS error =9
FQ (2000 codewords)

Memory = 3.4 MB RMS error = 23
PFA (dimension 3)
Memory = 2.5 MB RMS error = 24

PFA (dimension 5)
Memory = 2.9 MB RMS error = ?



Breakdown and rendering (fish)

For PFA dimension 3...

Direction mesh: 11 KB

Normal maps: 680 KB

Median maps: 680 KB

Index maps: 455 KB

Weight maps: 680 KB

Codebook: 3 KB

Geometry w/o view dependence: <1 MB
Geometry w/ view dependence: 7.5 MB
Rendering platform: 550 MHz PIlI, linux, Mesa
Rendering performance: 6-7 fps (typical)



Data acquisition (ii)

Take photographs

Camera positions Stanford Spherical Gantry




6. Smoothing on 2D manifolds

Given: Training data (z,v1),---,(2,, ¥») With z, in some domain
M and y; € R.

Assumption: y; = fuue(z;) + €.
Goal: Estimate fiye.

Well established method for M = R.: spline smoothing
Smoothing spline f, minimizes
1
BIfl = - Y= f@)? + ) [ f'(@)de

T

in the Sobolev space of functions with square integrable second deriva-
tive.



Spline smoothing on 2D manifold M

Replace [” by Laplace-Beltrami operator Ay, f.

Find function f\ minimizing spline functional

BUI = 30— @)+ ) [ (Bupida

7
in the Sobolev space W5 (M) of functions with square integrable second
derivative.

No closed form solution except in special cases (line, sphere, torus)

= use finite elements.



Approximation of smoothing splines by finite elements

Suppose we have multi-resolution sequence of finite-dimensional func-

tion spaces
Vicvicvic. . c WaolM)

whose union is dense in Wo(M).

Can then approximate f by choosing resolution level J and minimizing
E[f] over V.



Nested spaces of subdivision functions
Suppose M is a subdivision surface parametrized over a polyhedron K
with triangular faces.

To define a resolution level 0 subdivision function, start with a function
f%; that is piecewise linear on K° — K, with values f, at the vertices.

The function f3; is piecewise linear on K’ (obtained by .J 4-1 splits
of KY).

The values of f5/1 at the vertices of K/*! are obtained by

e Up-sampling [}, to the vertices of K11,
e Local averaging.

The subdivision function defined by f%; is the limit of this process.

The resolution level 0 subdivision functions form a vector space V"
with dimension = number of vertices of K.



Resolution level J subdivision functions are obtained by

o fixing the values of a piecewise linear function at the vertices of K/
e running the subdivision process.

Averaging rules have to be carefully crafted to make subdivision func-
tions “smooth”.

If we embed K into R* using subdivision functions, the resulting surface
is smooth (essentially C%).



Approximate calculation of smoothing splines

To find an approximate minimum for £/|f|, choose a resolution level .J
and express f(x) as a finite sum

f(l‘) — Z faqbi(x) 3

where « ranges over the basis functions.

Substituting into the formula for the spline functional E|f]| gives

gLy (y 5> fadﬁi(wz-)) IAY fufoBus,
@ a,3

T .
7

with
Bog — f Andl Ayl dA.
M

We solve the resulting linear algebra problem using preconditioned con-
jugate gradients.



Numerical experiment

Spline smoothing on the sphere =
Know exact solution =
Can assess accuracy of finite element approximation.

1. Generate test function

e Generate 100 points uniformly over sphere

e Simulate 100 standard Gaussian function values
e Test function f;... = interpolating spline

2. Generate data

® Xq,...,ZLy Uniform over sphere

® Ui — [irue (Ez)

3. Find exact smoothing splines for range of values of A.



4. Approximate sphere by subdivision surface.

5. Find approximate smoothing splines by finite elements.

Figure shows relative approximation error W as a function of A
and subdivision levels J = 3,4,5,6
L | | |
—
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For fixed A error decreases exponentially with subdivision level (in
agreement with theoretical result by G. Arden (2001)

For fixed subdivision level error increases for decreasing A (moving right
on horizontal axis).
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