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1. The function estimation problem

Given: Training data (z,v1),---,(2,, Yn) With x; in some domain
M and y; € R.

Assumption: 1y; = fuwel(x;) + €.
Goal: Estimate fiye.

Well established method for M = R.: spline smoothing
Smoothing spline f\ minimizes
1
BIf = = (g~ f@)® + A [ f(2)%de

m

in the Sobolev space of functions with square integrable second deriva-
tive.

Spline smoothing has previously been extended to the plane, the torus,
and the sphere.
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Objective:

Generalize spline smoothing to situations where domain M is a surface
of complex topology and/or geometry.

ofol)

Original motivation:

3D photography - modeling shape and appearance of real-world objects
from sensor data.

(Un)fortunately, noise was low and smoothing proved to be unneces-
sary.
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2. Smoothing on the line, revisited

Given: Training data (x1,v1), .., (Zn, Yn) with
a=T1<XTo<--<xp,—>0and y; € R

Goal: Find function f, minimizing spline functional

Elf] = ! S (yi — fl@a)? + )\/: (x)*dz

m

in the Sobolev space Ws(|a,b]) of functions with square integrable
second derivative.

Will use this simple setting to introduce two (old) ideas:

e Approximation of f using a finite element method;

e Evaluation of spline functions using subdivision.
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Approximation of smoothing splines by finite elements

Suppose we have multi-resolution sequence of finite-dimensional func-
tion spaces
Vicvicvic. .- c Wyla,b])

whose union is dense in Ws(|a, b]).

Can then approximate fy by choosing resolution level J and minimizing
E[f] over V7.

Example for multi-resolution sequence:

V7 = restriction of space of cubic splines with knots on grid « 277 to
a, b].
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7Y is spanned by translates ¢2 of a single basis function ¢j:

[
o i =

[
[ =)

V' is spanned by translated and scaled versions ¢ of ¢p:

Galz) = ¢0 (2" 2 — a).
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To find an approximate minimum for £'| f|, choose a resolution level .J
and express f(x) as a finite sum

f($) : Zfaqbi(x) 3

where « ranges over the basis functions whose support intersects the
interval |a, b|.

Substituting into the formula for the spline functional F|f| gives

E[f] — %Z (yz — Zfa@i(ﬂ?z)) + A ZﬁfafﬁBa,ﬁa

7

with Bag = [ (¢2)"(¢})" du.

Determining the optimal coefficients f, is a linear algebra problem.
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Evaluation of splines by subdivision
Let f =3 f; ¢ be a spline in V.
Let %, be piecewise linear function on integer grid with f%, (1) = fi.

The function f%; can be regarded as a crude PL approximation to f.

Fact: We can obtain sequence of increasingly accurate PL approxima-
tions to the spline f by repeatedly

e Up-sampling the current PL approximation f3; to a regular grid
with half the spacing;

e Smoothing the values at the finer grid by a moving average with

weights 1/4,1/2,1/4.

-2 -1 O 1 3 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

[N -
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2. Spline smoothing on the plane, revisited
Need:

"2
e Replacement for f

e Multi-resolution sequence of spline spaces.

Replacements for f”gz

e Squared Laplacian of f:
(tT(Hf))Z — (Af)z — (f:cwl + fw2$2)25
e Thin-plate energy:

tT(HJ%) — (f-’lfwl)z + 2 (f$1$2)2 + (fﬂ?z-’rz)g .
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Multi resolution sequence of spline spaces

Many options. Will consider quartic triangular B-splines.

V70 is spanned by translates of a single basis function ¢9(z) to the
vertices of a hexagonal lattice.
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Basis function ¢ is unique function with following properties:

e |t is quartic polynomial on each triangle;
o Itis C%
e |t has minimum support;

e |ts translates form a partition of unity.

The space V7 at resolution J is spanned by scaled and translated
versions ¢ of ¢Y:

Cbi(&) — ¢8(2J33'1 — ai, 2JCU2 — Q).
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Basis functions of V! are centered at vertices of 4-1 subdivided lattice

for VY,
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Evaluation of quartic triangular B-splines by subdivision

Let f =3 fa ¢5 be a spline in V.
Let f2, be the piecewise linear function whose value at the center

vertex of @) is fa.

Fact: We can obtain a sequence of increasingly accurate PL approxi-
mations to the spline [ by repeatedly

e Up-sampling the current PL approximation f;; to the vertices of
a 4-1 subdivided version of the current lattice;

e Smoothing the values at the vertices of the subdivided lattice.
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Smoothing:

Let vg be a vertex of the subdivided lattice, and let vq,..., v, be its
neighbors. Then
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3. Abstract spline smoothing on smooth surfaces

Let M C R° be smooth surface and let f be function on M.
To generalize spline smoothing, need measure for roughness of f.

Consider point p € M. Wlog assume that that p is the origin and the
tangent plane at p is the (&1, z2)-plane.

Near p the surface has a local parameterization
M = {Q ‘Q — ($13$27 F(mlaaj?))} .

Any function on M can (locally) be regarded as a function f(x1,x2).
Hessian of [ at p = matrix of second derivatives of [ at the origin.

Value of Laplace-Beltrami operator Aj; at p — trace of the Hessian.
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Can now formally define spline smoothing problem on AM:

Goal: Find function f, minimizing spline functional

BUL = S [P+ ) [ (Au )

m

in the Sobolev space Wy (M) of functions with square integrable second
derivative.

No closed form solution except in special cases (line, sphere, torus).

To use finite elements, need

e Multi-resolution sequence of finite dimensional subspaces of W (M);

e Way of evaluating Ay f.
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4. Operational spline smoothing on surfaces

Suppose we had a polyhedron K with triangular faces that was homeo-
morphic to M. (Not a restriction - every surface can be triangulated.)

Subdivision functions on K are a natural generalization of quartic tri-
angular B-splines.

To define a resolution level 0 subdivision function, start with a function
f%, that is piecewise linear on K° — K, with values f,, at the vertices.

The function [7; is piecewise linear on K (obtained by J 4-1 splits
of K").

The values of f5]' at the vertices of K711 are obtained by

e Up-sampling f}, to the vertices of K1,

e Local averaging.
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The subdivision function defined by f3; is the limit of this process.

The resolution level 0 subdivision functions form a vector space V°
with dimension = number of vertices of K.

Resolution level J subdivision functions are obtained by fixing the val-
ues of a piecewise linear function at the vertices of K7 and running
the subdivision process.

Choice of weights for averaging is critical.

Rule for degree 6 vertices is the same as in the case of quartic trian-
gular B-splines = subdivision functions are quartic triangular B-splines
except at extraordinary vertices.
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Rules for extraordinary vertices have been carefully crafted to make
subdivision functions “smooth”: If we embed K into R® using subdi-
vision functions, the resulting surface is smooth (essentially C#).

We assume that surface M is a subdivision surface (an embedding of
a polyhedron whose coordinate functions are subdivision functions).

Then the function spaces V¥ are in W,(M) and their union is dense
in Wo(M).

Note:
Any smooth surface can be approximated by a subdivision surface.

There are algorithms to construct such approximations.
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Review:

We are given a subdivision surface M and data (z,v1),...,(Z,, Yn)
with z. € M and y; € R.

We want to approximate the function f, minimizing the spline func-

tional

B = = S0 — @) A [ (Aarf)da

T

in the Sobolev space W3 (M) of functions with square integrable second
derivative.

We assume that M is a subdivision surface =

We have a multiresolution sequence of subdivision function spaces
Vicvic. ... c Wo(M)
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To find an approximate minimum for £/|f|, choose a resolution level .J
and express f(x) as a finite sum

f(j") — Z faQﬁi(iU) 3

where « ranges over the basis functions.

Substituting into the formula for the spline functional F|f| gives

E[f] — %Z (yz — ;fa¢i(xz)) + A ZﬁfafﬁBa,ﬁa

3

with
Bus — / Ay Ay dA.
M

We solve the resulting linear algebra problem using preconditioned con-
jugate gradients.
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5. Concluding remarks:

In the paper we compare our method to the standard approach in the
case of the sphere where the splines can be computed exactly.

Error decreases exponentially with subdivision level and is decreasing
in A (not surprising).

We also have an example suggesting that generalized cross-validation
is a viable way of choosing the smoothing parameter A.

Our code only handles surfaces without boundary, but the ideas gen-
eralize.

Instead of choosing a fixed resolution level, could use wavelet methods.
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