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Abstract

Scatterplots are the method of choice for displaying the distribution of points in
two dimensions. They are used to discover patterns such as holes, outliers, modes, and
association between the two variables. A common problem is overstriking, the overlap
on the plotting surface of glyphs representing individual observations. Overstriking can
create a misleading impression of the data distribution. The variable resolution bivari-
ate plots ( Varebi plots) proposed in this paper deal with the problem of overstriking by
mixing display of a density estimate and display of individual observations. The idea
is to determine the display format by analyzing the actual amount of overstriking on
the screen. Thus, the display format will depend on the sample size, the distribution
of the observations, the size and shape of individual icons, and the size of the window.
It may change automatically when the window is resized. Varebi plots reveal detail
wherever possible, and show the overall trend when displaying detail is not feasible.

*Supported by DOE grant DE-FG06-85-ER25006 and NSF grant DMS-9114027
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Figure 1: Where is the mode?

1 Introduction and Motivation

Scatterplots are the method of choice for visualizing the distribution of points in two dimen-
sions. They are used to discover patterns such as holes (areas with few data points), outliers,

modes, association between the two variables, etc.

A common problem with scatterplots is overstriking, the overlap on the plotting surface of
glyphs representing individual observations. Overstriking can create a misleading impression
of the data distribution. As an example, consider Fig. 1. This scatterplot was produced
during the analysis of data on a colony of Magellanic penguins in Punta Tombo, Argentina.
The observations are penguin nest sites. The variables are ground composition at a site
(percentage of sand) on the vertical axis and vegetation coverage (percentage of bare ground)
on the horizontal axis. The displayed point pattern suggests the mode to be within the
rectangle defined by = = (30,80) and y = (0,15). However, Fig. 2, obtained by binning
the points into a 20 x 20 grid and encoding the counts into gray levels, reveals that the

visual impression is misleading and that there is a mode in the lower right corner of the plot.
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Figure 2: Same data as Figure 1; 2d histogram drawn by encoding bin counts in gray scale.

Overstriking is obvious if the data set is so large or the plotting surface so small that we
just see a solid blob of ink. (We use the term “ink” although most plots today are drawn
on a computer screen). However, as our example illustrates, it can be a problem even with
small data sets (hundreds or thousands of observations), where it is difficult to notice and

therefore more insidious.

A way of coping with the problem of overstriking is to abandon the idea of drawing individual
points and instead draw agglomerative glyphs representing collections of points. We can,
for example, bin the drawing area into rectangular or hexagonal bins and compute a two-
dimensional histogram (Carr et al, 1987). The histogram can be drawn as a perspective plot,

or we can encode the counts in gray scale (as in Fig. 2) or glyph size (Fig. 3).

Besides force of habit and inertia there are at least two other arguments against routinely

replacing scatterplots by two-dimensional histograms:

e The discretization inherent in a histogram smears out fine structure. As an illustration,
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Figure 3: Same data as Figure 1; 2d histogram drawn by encoding bin counts in rectangle
size.



Fig. 4 (a) shows a snapshot of 200 rotating 3D points whose coordinates were generated
by the infamous RANDU (Knuth, 1981) random number generator. See Tierney (1990)
for the particular implementation that we used. Fig. 4 (b), (c), and (d) show histograms
of the same 200 points, with different numbers of bins. None of the histograms reveals

RANDU’s lack of randomness as clearly as the scatterplot.

e Encoding counts into grey level or glyph size requires specification of a mapping. If we
want to judge on how many data points a feature of the histogram, like an apparent
mode, is based, we need to mentally invert this mapping. This process is not immediate,

and we want to avoid it whenever possible.

In this paper we present two suggestions for dealing with the problem of overstriking in

scatterplots:

1. We mix individual and agglomerative glyphs in the same plot.

2. We choose between drawing individual and agglomerative glyphs by analyzing the
actual amount of overstriking on the screen. The display format thus will depend on
the sample size, the distribution of points, the size and shape of the individual glyphs,

and the size of the drawing area.

Adapting the type of display to the size of the drawing area is particularly helpful and
effective when plots are displayed in windows on a screen, where they can be shrunk to free

up space and expanded again for closer inspection.

As an illustration, figures 5 and 6 show the same data set as figures 1 and 2 for different sizes
of the drawing area. Notice that the areas around (65,16) and (100, 16) in Fig. 5 displays
an agglomerative glyph and switch to displaying point glyphs in the bigger Fig. 6.

The rest of this paper is organized as follows: In section 2 we describe in detail how Varebi

plots are drawn. Section 3 contains additional examples. A discussion concludes the paper.
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Figure 4: 200 points generated by RANDU. Scatterplot (a) and 2d histograms with 5 x 5

(b), 10 x 10 (¢) and 20 x 20 (d) bins.
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Figure 5: Same data as Figure 1; plot size on a computer screen is 313 x 334 pixels.

2 Description of Varebi plots

We will first discuss Varebi plots on black and white displays and then describe a variation
designed for gray level displays. The gray level version can convey information better on the

data distribution when the drawing space is very small.

2.1 Varebi plots on black and white displays

Drawing a Varebi plot involves a sequence of steps:

1. Binning

We bin the data points into a regular grid with a default resolution of 20 x 20. This results
in bins with a side length on the order of 15 pixels for a 300 x 300 window, a size that we
frequently observed ourselves using. A bin size of 15 x 15 pixels is large enough to allow

drawing of agglomerative glyphs in at least five visually distinguishable sizes.
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Figure 6: Same data as Figure 1; plot size on a computer screen is 384 x 397 pixels.



Choosing a fixed number of bins, independent of the plot size on the screen, has the advantage
that the plot changes in predictable ways when the window is reshaped. FEnlarging the
window may change some bins from showing agglomerative glyphs to showing individual
observations, but never vice-versa. The analogous statement is true for reduction of the

window size.

2. Application of a transfer function

The basic tenet of binary Varebi plots is that the amount of ink actually deposited in a
bin should be a non-decreasing function of the number of observations in the bin (up to
some tolerance, as described in (3) below). Let s be the bin area on the screen (in pixels),
Nmae the largest bin count, and 7 the size of an individual point glyph (in pixels). (On
many displays single pixel dots are hard to see, requiring 7 > 1.) A non-decreasing function
T :[1: npax] — [1 ¢ 8] assigning an amount of ink to each bin count is called a transfer

function.

For small bin counts T has to be linear with slope 7, because we want to draw individual
observations in bins without overstriking. However, if 7 X n,,, > s, the simple choice
Ti(n) = 7 x n is not feasible. In this case we have to “blunt” T', i.e. flatten it out for counts
above some cutoff n..;;. There are many possible ways of doing so: any non-decreasing
function 7' will do as long as T'(n) =7 xn for 0 <n < ngi < [s/7], and T (npe) = s. We
chose a simple one, shown in Fig. 7. If we have to use the blunted transfer function 73, we
draw agglomerative glyphs in all bins with bin count n;; > n.., in order to avoid violating

the monotonicity condition.

It remains to discuss the choice of n..;;. Clearly, n..;; should increase when the size of the plot
and therefore the bin area s increases — we want to use additional screen space to improve
the resolution of the plot, i.e. draw more individual glyphs. We set n.u = |[$*/(T*nmax) |-
The motivation for this choice is that, as s — 7 X 1,4, the blunted transfer function 7

approaches T;. This makes for a smooth transition of display format when the drawing space



Figure 7: Blunted transfer function

increases to the point where we can switch to the linear transfer function.

3. Calculating the overplotting index and drawing

The final step in producing a Varebi plot is to decide, for each bin, whether to draw individual
glyphs or an agglomerative glyph. Let a;; be the amount of ink (number of black pixels) in the
corresponding bin on the screen if we simply drew the glyphs without paying any attention

to overplotting. We measure the amount of overplotting in a bin by the overplotting index
If we can use the linear transfer function 7;, we draw agglomerative glyphs for all bins for
which the overplotting index o;; is greater than some threshold o..;. If we have to use the
blunted transfer function 73, we draw agglomerative glyphs for all bins with n;; > n..; or
0ij > 0t In the examples, oy = 1.35. An agglomerative glyph is drawn as closely as
possible to the center of the mass within each bin while keeping the glyph completely inside
the bin. This has the additional benefit of breaking the artificial regularity imposed by the

grid (Carr et al, 1987).
2.2 Varebi plots on gray level displays

Varebi plots will loose their ability to convey an accurate image of the data distribution

when the size of the plotting area gets so small that there are only a few possible values
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for the size of an agglomerative glyph. If the display can show gray levels we can, however,

represent bin count by gray scale instead of glyph size.

Let n,,:, be the smallest bin count among all the bins with significant overstriking, i.e. with
0ij > 0Ocrit. Bins with n;; > n,,, are drawn in gray. The gray level is determined by a
nondecreasing function D : [Nuin, Nmas| — [d1, d2], where d; is lightest and d, is darkest. All
bins with n;; < n,;, display individual observations. Therefore, gray level bins always have
a higher count than bins showing individual observations. This is necessary, because it is
impossible to visually establish an ordering between amount of (black) ink in an area, and

gray level.

In the examples we switch to encoding counts by gray level instead of glyph size whenever
either bin width or bin height is less than 10 pixels. We do not use gray scale encoding oth-
erwise because we want as many bins as possible to display point glyphs, because perception
of gray level is affected by the surrounding area (Foley et al, 1990), and because comparing

gray levels is not easy, especially for objects positioned far apart.

2.3 Hexagonal versus rectangular bins

The Varebi plots were implemented using rectangular bins, rather than hexagonal bins as
advocated by Carr (1987). Hexagonal bins give slightly better density estimates and result
in more eye pleasing displays because they de-emphasize horizontal and vertical directions.

We chose rectangular bins for reasons of speed and ease of implementation.

Rectangular bins also have an advantage when Varebi plots are used in conjunction with
scatterplot brushing, or when we wish to encode an additional categorical variable in color.
In this situation it is not clear how to divide a hexagonal glyph into colored parts, whereas

we can convert rectangles into divided color bars.

11
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Figure 8: Same data as Figure 1; Varebi plot (a) and scatterplot (b) of size 205 x 212 pixels.

3 Varebi Plot Examples

We present three sets of examples:

e Figures 8a, 9a and Figures 8b, 9b show Varebi plots and conventional scatterplots,
respectively, of the same data displayed in Figure 1, for different window sizes. Over-
striking in this example is quite serious, so that even a large plot like the one shown
in Figure 9, which would take up a quarter of a 1000 x 1000 screen, displays many

agglomerative glyphs.

o Figures 10 — 12 show RANDU samples of sizes ranging from 400 to 6,400. Varebi plots
are on the left; two-dimensional histograms on the right. Note that, in contrast to the

bivariate histograms, all Varebi plots clearly reveal the lack of randomness.

e Figures 13 — 15 show 65,536 pairs of measurements from a 256 x 256 MRI (Magnetic
Resonance Imaging) image. The MRI data set has an enormous peak (38,455 points)
t (0,0), corresponding to the background of the image. The second highest peak

corresponds to 70 points. The scatterplot in Figure 13 fails to reveal the peak at the

12
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Figure 9: Same data as Figure 1; Varebi plot of size 480 x 485 pixels.
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Figure 9: Same data as Figure 1; scatterplot of size 480 x 485 pixels.

14




!
- LY
~
. .
" ' “
L] - ‘ .
L} b
. .
LY
"\
-
|
1 1 ]
~ .
.
. L
b L
L " -
*

-- -
"
.
L]
.-I
L}
L3
. '
n n ‘
LY [
N
.
LY
L]

(b)

Figure 10: 400 points generated by RANDU; Varebi plot (a) and 2d histogram (b).

(b)

Figure 11: 1600 points generated by RANDU; Varebi plot (a) and 2d histogram (b).
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Figure 12: 6400 points generated by RANDU; Varebi plot (a) and 2d histogram (b).

origin. The Varebi plot in Figure 14 shows the enormous peak, but has not much
resolution anywhere else. This is hard to avoid because the dynamic range is so large.
Figure 15 shows a Varebi plot with the background pixels removed. This plot gives a

much clearer picture of the rest of the data.

4 Discussion

There are a number of existing techniques attempting to deal with the problem of overstriking
in scatterplots. They tend to fall into one of two categories: those that display individual

data points, and those that display a density estimate.

Examples for techniques in the first category are jittering (Chambers et al, 1983) and use of

unfilled circles as plotting symbols (Cleveland, 1985).

Jittering was originally proposed to alleviate overstriking in plots of a euclidean variable
against a categorical variable. In scatterplots, points obscured by overplotting could be

offset by a small random displacement. (Of course, it would be necessary to remind viewers

16



Figure 13: Scatterplot of 65,536 points from a 256 x 256 MRI image.
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Figure 14: Varebi plot of 65,536 points from a 256 x 256 MRI image
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Figure 15: Varebi plot of 27,081 non-background points from a 256 x 256 MRI image
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that jittering was employed in producing the plot).

Using unfilled circles as plotting symbols helps as long as there are not too many exact ties.
The intersection of unfilled circles gives a geometric shape distinctly different from a circle.
Intersections of axis-parallel rectangles, on the other hand, again are rectangles, which makes

it hard to differentiate observations.

Those techniques clearly break down if the density of points in the drawing area gets too

large.

Techniques displaying a density estimate typically use a two-dimensional histogram with
rectangular or hexagonal bins. The histogram can be displayed as a three-dimensional per-
spective plot or a contour plot. Alternatively, bin counts can be encoded into size or grey
level of glyphs representing the bins. Cleveland and McGill (1984) propose representing bins
by sunflowers. The number of petals in a sunflower encodes the bin count. If the bin count
is 1, the sunflower degenerates to a point. Sunflowers can also be used with unbinned data

when exact overplotting occurs.

These techniques result in an unnecessary loss of detail in regions of the drawing area with

low point density, which could be the entire area if it is large, or if the sample size is small.

Carr et al (1987) propose a technique using both individual and agglomerative glyphs. They
compute a two-dimensional histogram density estimate with hexagonal bins, encode bin
count into the size of hexagons drawn into bins with four or more observations, and draw
individual glyphs in bins with three or fewer observations. This technique falls in between

the two categories.

The Varebi plots proposed and illustrated in this paper mix agglomerative and individual
glyphs, display of a density estimate and display of individual observations. The novel idea
is to determine the display format by analyzing the actual amount of overstriking on the

screen. Thus, the display format will depend on the sample size, the distribution of the

20



observations, the size and shape of the individual glyphs, and the size of the window. It

may automatically change when the window is resized. Varebi plots do not suffer from the

shortcomings of techniques using a fixed display format, and they can be used on binary

displays. They reveal detail wherever possible, and show the overall trend when displaying

detail is not feasible.
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