View-based Rendering: Visualizing Real
Objectsfrom Scanned Range and Color Data

Kari Pulli* Michael Cohen' Tom Duchamp*
Hugues Hoppe' Linda Shapiro* Werner Stuetzle*

“University of Washington, Sesttle, WA
"Microsoft Research, Redmond, WA

Abstract

Modeling arbitrary real objectsis difficult and rendering textured models typi-
cally does not result in realistic images. We describe a new method for displaying
scanned real objects, called view-based rendering. The method takes asinput a col-
lection of colored rangeimagescoveringthe object and createsacollection of partial
object models. Thesepartial modelsare rendered separately using traditional graph-
ics hardware and blended together using various weights and soft z-buffering. We
demonstrate interactive viewing of real, non-trivial objects that would be difficult
to model using traditional methods.

1 Introduction

In traditional model-based rendering a geometric model of a scene, together with sur-
face reflectance properties and lighting parameters, is used to generate an image of the
scene from a desired viewpoint. In contrast, in image-based rendering a set of images
of a scene are taken from (possibly) known viewpoints and used to create new images.
Image-based rendering has been an area of active research in the past few years because
it can be used to address two problems:

Efficient rendering of complicated scenes. Some applications of rendering, such as
walk-throughs of complex environments, require generation of images at inter-
active rates. One way to achieve thisisto render the scene from a suitably cho-
sen set of viewpoints. Images required during walk-through are then synthesized
from the images computed during the pre-processing step. Thisideaisbased on
the premise that interpol ation between images is faster than rendering the scene.

Three-dimensional display of real-world objects. Supposewewishto capturetheap-
pearance of a 3D object in away that alowsthe viewer to see it from any chosen
viewpoint. An obvious solution isto create a model of the object capturing its
shape and surface reflectance properties. However, generating realistic model s of
complex 3D objectsisanontrivia problem that wewill further discussbelow. Al-
ternatively, we can capture images of the object from a collection of viewpoints,
and then use those to synthesize new images.

The motivation for our work isredistic display of real objects. We present a method,
view-based rendering, that lies in between purely model-based and purely image-based
methods.

The constructionof afull 3D model needed for model-based rendering requiresanum-
ber of steps: 1) acquisition of range and color datafrom a number of viewpointschosen
to get complete coverage of the object, 2) registration of these datainto a single coor-
dinate system, 3) representation of al the data by a surface model that agrees with al
the images, 4) computation of a surface reflection model at each point of this surface
using the colors observed in the various images. Despite recent advances [4, 16], auto-
matically creating accurate surface models of complex objects (step 3) is still adifficult
task, while the computation of accurate reflection models (step 4) has hardly been ad-
dressed. Inaddition, therendered images of such modelsdo not look quiteasreadlistic as
photographsthat can capture intricate geometric texture and globa illumination effects
with ease.

Our ideaisto forgo construction of afull 3D object model. Rather, we create indepen-
dent model sfor the depth maps observed from each viewpoint, amuch simpler task. In-
stead of having to gather and mani pul ate a set of images dense enough for purely image-
based rendering, we make do with a much sparser set of images, but use geometric in-
formation to more accurately interpolate between them. A request for an image of the
object from a specified viewpoint is satisfied using the color and geometry in the stored
views. Thispaper describes our new view-based rendering algorithm and shows results
on non-trivial rea objects.

The paper is organized as follows. Section 2 casts image-based rendering as an in-
terpolation problem, where samples of the light field function are interpol ated to create
new images. Section 3 describes our view-based rendering approach. Section 4 presents
detail sof our implementation, including dataacquisition, view-based model generation,
and use of graphics hardware for efficient implementation, and some results. Section 5
coversrelated work. Section 6 discusses hardware accel eration and concludesthe paper.

2 Image-based rendering as an inter polation problem
The basic problem in image-based render-
ing is to compute an image of a scene as %%%
seen from some target viewpoint, using a
set of inputimages, their corresponding cam- %%%
era poses, and possibly additional associ-
ated information. A useful abstraction in %%%
this context isthe light field function (also
known as the plenoptic function). Levoy @ - O

.) . igure 1: (a) A pencil of raysdescribesthe colorsof
and Hanrahan [12] define the light field s visible points from a given point. (b) The light field
theradiance at a pointin agiven direction. function describesthe colors of all rays starting from
For our purposes, it is more convenient to & point.
definethe light field as the radiance a apoint from a given direction (see Figure 1).
More precisely, we define a ray to be a directed half-line originating from a 3D base-
point. We may therefore represent aray as an ordered pair (x,) € IR® x &, wherex is
its basepoint, i isitsdirection, and S denotes the unit sphere. The light field isthen a
functionf : IR x § — IR® which assignsto each ray (x, i) an RGB-color f (x, A). Thus,

f(x,N) measures the radiance at x in the direction —A. The collection of rays starting
from apoint is caled a pencil. If we had complete knowledge of the light field func-

tion, we could render any view from any location x by associating aray (or an average
of rays) in the pencil based at x to each pixd of avirtua camera

Thefull light field functionisonly needed to render entire environmentsfrom an arbi-
trary viewpoint. If we are content with rendering individual objectsfrom some standoff
distance, it suffices to know thelight field function for the subset of IR® x S of “inward”
rays originating from pointson a convex surface M that encloses
the object. Following Gortler et al. [9], we call thissimpler func-
tion alumigraph. We call the surface M that encloses the object £
the lumigraph surface. Figure 2 shows a schematic of the lumi-
graph domain for the case wherethelumigraph surfaceisasphere. ¥

The lumigraph contains al rays needed to synthesize an image
from any viewpoint exterior to the convex hull of the object being < =
modeled. Each pixel intheimage defines aray that intersectsthe Figure 2@ A spherical
lumigraph surface M a apoint, say x. If A isthe direction of that UM 9rah surface.
ray, then the RGB-color value assigned to the pixdl isf(x, fi).

2.1 Distancemeasuresfor rays

In practice we will never be able to acquire the full 5D light field function or even a
complete4D lumigraph. Instead wewill have adiscrete set of images of the scene, taken
at somefiniteresolution. In other words, we havethe values of thefunctionfor asample
of rays (really for local averages of the light field function). To render the scene from
anew viewpoint, we need to estimate the values of the function for a set of query rays
from its values for the sample rays. Thus, image-based rendering is an interpolation
problem.

In a generic interpolation problem, one is given the values of afunction at a discrete
set of sample points. Thefunctionvalueat anew query pointis estimated by aweighted
average of function values at the sample points, with weights concentrating on samples
that are close to the query point. The performance of any interpolation method is criti-
cally dependent on the definition of “closeness’.

In image-based rendering, the aim is to paint pixels on the image plane of a virtual
camera, and therefore the renderer looksfor rays close to the one associated with some
particular pixel. In the next two sections we examine two closeness measures.

211 Ray-surfaceintersection

Figure 3 shows a piece of alumigraph with several pencilsof rays. In Fig. 3(a) thereis
no information about the object surface geometry. In that case we have to concentrate
on pencilswhose originsare closeto the query ray and interpol ate between raysthat are
paralel tothe query ray. The denser the pencilsare on the thelumigraph surface M, and
the more rays in each pencil, the better the match we can expect to find.

Assuming that the object is a Lambertian reflector, the lumigraph representation has
ahigh degree of redundancy: there are many raysthat intersect the object surface at the
same point. Figure 3(b) shows a case where the precise object geometry is not known,
but there is an estimate of the average distance between the object surface and the lu-
migraph surface. We can estimate where the query ray intersects the object surface and
choose rays from nearby pencilsthat point to the intersection point. The expected error
inour estimate of f (x, 1) should now belessthanin case (a). Or, to obtainthesameerror,
we need far fewer samplerays (i.e. images).

Figure 3 The query ray is dotted; sample rays are solid. (a) Choose similar
rays. (b) Chooserayspointingtowherethe query ray meetssurface. (c) Choose
rays intersecting the surface where the query ray does.

Figure 3(c) illustrates the case where there is accurate information about the object
geometry. To estimate f(x, fi), we can locate the sample rays that intersect the object
surface a the same location as the query ray. With an accurate surface description it
ispossibleto find al the rays directed towards that location and even remove rays that
realy intersect some other part of the surfacefirst. Naturally, the expected error with a
given collection of raysis minimized.

2.1.2 Ray direction

To improve the estimate of the lighting function we can take into account the direction
and more heavily wei ght samplerayswhosedirectionisnear that of the query ray. There
arethreejudtificationsfor this. First, few surfacesreflect theincoming lightuniformlyin
every direction. A typica example of thisis specular reflections on shiny surfaces, but
theappearance of many materialssuch asvelvet or hair varies significantly with viewing
direction. In image-based rendering this suggests favoring rays with similar directions.

Second, undetected self-occlusionsmay cause ustoincorrectly concludethat two sam-
pleraysintersect the object surface at the same point and lead usto incorrectly estimate
the light field function. If the occlusion is due to a large-scale object feature, and we
have enough information about the surface geometry, we may be able to notice the self-
occlusion and cull away occluded rays (see Fig. 3(c)). However, if the occlusion is due
to small scale surface geometry, and we have only approximate information of the sur-
face geometry, the occlusion is much harder to detect, as shown in Fig. 4(a). Moreover,
if the object has thin features, asillustrated in Fig. 4(b), then rays may approach the ob-
ject surface from opposite directionsand intersect it at pointsthat are spatially near, yet
far apart with respect to distance as measured aong the surface. The likelihood of such
errors decreases by more heavily weighting sample rays whose directions are near the
direction of the query ray.

Third, as shown in Fig. 4(c), when the angle between the query ray and the sample
ray islarge, small errorsin the surface geometry can lead to large errorsin the estimate
of distance between the intersection pointswith the object surface. We get more robust
resultsby favoring rays with similar direction to that of the query ray.

3 View-based rendering

The preprocessing of theinput dataisdescribed in more detail in Section 4, but for clar-
ity wesummarizeit here. Theinputto our view-based rendering systemisaset of views,

Figure 4 (a) Detailed surface geometry can cause occlusionsthat make the sur-
face appear different from different directions. (b) Thinfeatures can cause adis-
crepancy between surface distance and spatial distance of intersection points.
(c) Themore parallel the rays the less damaging an error in an estimate of sur-
face distance.

i.e., colored rangeimages of an object. Registeringthe range maps into acommon coor-
dinate system gives us the camera locations and orientations of the colored images with
respect to the object. We replace each dense range map by a sparse triangle mesh that
closely approximates it. We then texture map each triangle mesh using the associated
coloredimage. To synthesize an image of the object from afixed viewpoint weindividu-
ally render the meshes constructed from three close viewpointsand blend them together
with a pixel-based weighting algorithm that uses soft z-buffering.

3.1 A smpleapproach

To better understand the virtues of our approach, it ishelpful to contrast it withasimpler
algorithm. If wewant to view the object from any of thestored viewpoints, we can place
avirtual camera at one of them and render the associated textured mesh. We can move
the virtual camera around by rendering the mesh from the new viewpoint. But as the
viewpoint changes, parts of the surface not seen from the origina viewpoint become
visible, opening holesin the rendered image. If, however, the missing surface parts are
seen from one or more other stored viewpoints, we can fill the holes by simultaneously
rendering the textured meshes associated with the additional viewpoints. The resulting
imageisa collage of severa individua images.

Theresultsaredisplayedin Fig. 10(a). Intermsof ray interpolation, thegraphicshard-
ware interpol ates the rays within each view, finding aray for each pixel that intersects
the surface approximately where the query ray of the pixel does. However, thereis no
interpol ation between the views, only the ray from the mesh that happens to be closest
to the camera at the pixel is chosen. With imperfect geometrical information and regis-
tration, we get alot of visibleartifacts.

We can improve on thisby interpolating rays between different views. The next sec-
tion describes how we use variouswei ghtsthat account for such factorsas viewing direc-
tions and surface sampling densities and how we blend rays correctly even in presence
of partial self-occlusions. The resultsof the better interpolation are shown in Fig. 10(b).

3.2 Threeweightsand soft z-buffering

We preprocess the viewing directions of the input views as follows. Each viewing di-
rection corresponds to a point on the unit sphere. The viewing directions thus define
aset of pointson the sphere and we compute the Delaunay triangulation of this set, as
illustrated in Fig. 5(a).

ews surrounding
the virtual camera

@ (b)

Figure5 (&) The weightswjs assigned to theviews at the verticesi, j, and k of
the Delaunay triangles containing the current view are its barycentric coordi-
nates. (b) The weight wy is the cosine of the angle ¢ between the normal and
the ray to the sensor.

To synthesize an image of the object from afixed viewpoint, we first select the three
viewscorrespondingtotheverticesof the Delaunay trianglecontainingthe current view-
ing direction of the virtual camera. The textured mesh of each selected view isindi-
vidually rendered from this viewpoint to obtain three separate images. Theimages are
blended into asingleimage by the followingweighting scheme. Consider asinglepixel.
Wesetc = Y0, wia/> 2, w where G isthe color value associated with that pixel in
thei" image and w; isaweight designed to overcome the difficulties encountered in the
naive implementation mentioned above. The weight w; is the product of three weights
Wi = Wg,i - Wgj - Wy i, Whose definitionisillustratedin Figs. 5 and 9. Self-occlusionsare
handled by using soft z-buffering to combine the images pixel by pixd.

The first weight, ws, measures the proximity of a chosen view to the current view-
point, and therefore changes dynamically as the virtual camera moves. We first cal cu-
late the barycentric coordinate /5 of the current viewpoint with respect to the Delaunay
triangle containing it (see Fig. 5(a)). 4 has three components between 0.0 and 1.0 that
sum to 1.0, each associated with one of the triangle vertices. The components give the
weightsthat linearly interpol atethe verticesto produce the current viewpoint. We define
the weight w;s of view i to be the component of 3 associated with that view.

The remaining two weights w,, and w., are pixel dependent but are independent of
the view direction of the virtual camera. The second weight w,,is a messure of surface
sampling density (see Figs. 5(b) and 9(b)) and it is constant within each trianglein a
mesh. Consider a point on a triangle in the mesh of view i corresponding to a given
pixel. A small region of area A about the point projectsto aregion of area Acos ¢ onthe
“image plang’ of thei™ sensor, where ¢ isthe angle between the normal to thetriangle
and theray from the point to the sensor. Weset w,, = cos¢. Darsaet al. [5] useasimilar
weight.

The third weight w., which we call the blend weight, is designed to smoothly blend
the meshes at their boundaries. Asillustrated by Fig. 9(c), the blend weight w., ; of view
i linearly increases with distance from the mesh boundary to the point projecting onto

the pixel. Whereas w; is associated with aview, and wy with the triangl es approximat-
ing the geometry of the view, w.,, is associated with color texture of the view. A similar
weight was used by Debevec et al. [6].

M ost self-occlusionsarehandled during rendering of individual viewsusing back-face
culling and z-buffering. When combining the view-based partial models, part of one
view’s model may occlude part of another view’smodel. Unlessthe surfaces are rela-
tively close to each other, the occluded pixel must be excluded from contributing to the
pixel color. Thisisdone by performing “soft” z-buffering, in software. First, we con-
sult the z-buffer information of each separately rendered view and search for the small-
est value. Views with z-values within a threshold from the closest are included in the
composition, others are excluded. The threshold is chosen to slightly exceed an upper
estimate of the combination of the sampling, registration, and polygonal approximation
errors.

Figure 6 illustrates a potential problem. In the picture the !
view-based surface approximation of the rightmost camera 7. ‘
has failed to notice a step edge due to self-occlusioninthe |
data, and hasincorrectly connected two surfaceregions. When T A
performing the soft z-buffering for the pixel correspondingto :
thedashed line, thewrongly connected step edge would be so)
much closer than the contributionfromtheother view that the Figure 6: Problems with un-
soft z-buffering would throw away the correct sample. How- detected step edges.
ever, while doing the soft z-buffering we can treat the weights as confidence measures.
If apixel with avery low confidence value covers a pixel with ahigh confidence value,
the low confidence pixel isignored altogether.

Rendering the registered geometry using graphics hardware and our soft z-buffering
findsrays that intersect the surface where the query ray of apixel does. Weightsw;; and
w, are used to favor good rays in the sense discussed in Section 2, whilew,, isused to
hide the effects of inevitableinaccuracies due to the use of real scanned data.

4 Implementation

4.1 View acquisition

Data acquisition. We obtain the range data from a stereo camera system that uses ac-
tivelight. Both cameras have been calibrated, and an uncalibrated light source sweeps
abeam (a vertical light plane) past the object in discrete steps. For each pixel on the
beam, we project its epipolar lineto the right camera’s image plane. The intersection of
the epipolar lineand the bright line gives apixel that sees the same surface point as the
original pixel fromtheleft camera. We obtain the 3D coordinates of that point by trian-
gulating the corresponding pixels. After the view has been scanned, we turn the lights
on and take a color picture of the object. The object isthen repositioned so we can scan
it from a different viewpoint.

View registration. Registering the views using the range data aligns the range maps
around theobject. A transformation applied to the range dataal so movesthe sensor with
respect to an object centered coordinate system, giving us the relative camera positions
and orientations. We perform the initial registration interactively by marking identifi-
able object features in the color images. Thisinitia registration is refined using Chen

and Medioni’sregistration method [3] modified to deal with multiple data sets simulta-
neoudly.

Triangle mesh creation. We currently create the triangle meshes interactively. The
user marks the boundaries of the object by inserting pointsinto the color image, while
the softwareincremental ly updates a Delaunay triangul ation of the vertices. The system
optimizesthe z-coordinates of al the vertices so that the least squares error of therange
data approximation is minimized. Trianglesthat are amost paralld to the viewing di-
rection are discarded, since they are likely to be step edges, not a good approximation
of the object surface. Triangles outside of the object are discarded as well.

We have begun to automate the mesh creation phase. First, we place a blue cloth to
the background and scan the empty scene. Points whose geometry and color match the
data scanned from the empty scene are classified as background. The adding of vertices
iseasily automated. For example, Garland and Heckbert [8] add verticesto image coor-
dinateswhere the current approximationisworst. The drawback of thisapproach isthat
if the data contains step edges due to self-occlusions, the mesh is likely to become un-
necessarily dense before agood approximationisachieved. To prevent thiswe perform
amesh simplification step using the mesh optimization methods by Hoppe et al. [10].

4.2 Rendering

Wehavebuiltan interactiveviewer for viewing thereconstructed images (see Figure 11).
For each frame, wefind three viewswhose view directionssurround the current view di-
rectiononaunit sphere. Thethreeviewsarethenrendered separatel y from theviewpoint
of thevirtual camera astextured triangle meshes and weighted using the barycentric co-
ordinates of the current view direction with respect to the chosen views.

Two of the weights, wy and w., are static for each view, as they do not depend on the
viewing direction of thevirtua camera. We apply both of these weights offlineand code
them into the alpha channels of the mesh color and the texture map. w, isthe weight
used to decrease the importance of trianglesthat are tilted with respect to the scanner. It
is applied by assigning the RGBA color (1,1, 1,w,) to each triangle. w.,, is the weight
used to hide artifacts at the mesh boundary of aview. It isdirectly applied to the alpha
channel of the texture map that stores the color information. We calcul ate the weights
for each pixel by first projecting the triangle mesh onto the color image and painting it
white on a black background. We then calculate the distance d for each white pixel to
theclosest black pixel. The pixelswith distancesof at least n get dphavauel; al other
pixelsget the value 4.

; H FOR EACH pixel
Figure7 givesthepseudo code ;" pixe

:= min_reliable_z(pixel)

for theview compositionalgo- pixel_color ~ :=(0,0,0)
. . pixel_weight =0
rithm. The function FOR EACH view
. . IFz min <= z[view,pixel] <=Zmin+thr soft z THEN
min reliable z() returnsthe weight 2 Wo* we * iy
minimum z for a given pixel, pixel_color += weight * color[view,pixel]

- . ixel_weight += weight
unlessthe closest pixel isalow ENDIE) 9

confidence (Wei ght) pOi nt that cEc’)\IloDr[pixel] := pixel_color / pixel_weight
wouldoccludeahighconfidence END
point, in which case the z for Figure7: Pseudo codefor color blending.
the minimum high confidence point is returned.
When we render atriangle mesh with the described col ors and texture maps, the hard-

ware cal cul ates the correct weights for us. The aphavauein each pixel iswy - w,. It
isaso possible to apply the remaining weight, wg, using graphics hardware. After we
render the views, we have to read in the information from the frame buffer. OpenGL
alows scaling each pixel while reading the frame buffer into memory. If we scale the
aphachannel by w;g, the resulting a pha value contains the final weight wjs - wy - w,.

4.3 Results

We haveimplemented our object visualization method on an SGI Maximum Impact with
a 250 MHz MIPS 4400. We first obtain a polygonal approximation consisting of 100—
250trianglesfor each view. Theuser isfreetorotate, zoom, and pan the object in front of
thevirtua camera. For each frame, we choosethreeviews. Thetexture-mapped polygo-
nal approximationsof theviews are rendered from the current viewpoint separately into
256 x 256 windows. The images are combined pixel by pixel into a composite image.

Figure 10 compares the simple approach of Section 3.1 to our view-based rendering
method that uses three weights and soft z-buffering (Section 3.2). In Fig. 10(a) three
views have been rendered repeatedly into the same frame from the viewpoint of the vir-
tual camera. The mesh boundaries are clearly visible and the result looks like a badly
made mosaic. In Fig. 10(b) the views have been blended smoothly pixel by pixel. Both
the dog and the flower basket are amost free of blending artifacts such as background
color showing at mesh boundariesand fal se surfaces dueto undetected step edgesinthe
triangle meshes.

Our current implementation can deliver about 8 frames per second. The execution
timeisroughly dividedinto thefollowingcomponents. Rendering thethreetexturemap-
ped triangle meshes takes 37%, reading the color and z-buffersinto memory takes 13%,
building the composite image takes 44%, and displaying the result takes 6% of the total
execution time.

4.4 Additional hardware acceleration

The only parts of our agorithm not currently supported by graphics hardware are the
weighted pixel averaging and the soft z-buffering. The weighted averaging would be
easy to implement by alowing more bits for the accumulation buffer, interpreting the
alphachannel value as aweight instead of the opacity value, and providing a command
that dividesthe RGB channels by the a pha channel value. An approximate implemen-
tation of the soft z-buffering in hardware would require adding, replacing, or ignoring
the weighted color and the weight (alpha vaue) depending on whether the new pixe’s
z value iswithin, much closer, or much farther from the old z-value, respectively. For
exact implementation two passes are required: first find minimum reliable z, then blend
using soft threshold based on that minimum z.

5 Related work
Chen[1] and McMillan and Bishop [15] model ed environmentsby storing thelight field
function around a point. The rays visiblefrom a point are texture mapped to a cylinder
around that point, and any horizontal view can be creasted by warping a portion of the
cylinder to theimage plane. Both systems allow limited rotations about a vertical axis,
but they do not support continuous trandl ation of the viewpoint.

Levoy and Hanrahan [12] and Gortler et al. [9] developed image synthesis systems

that use a lumigraph and that support continuous trandation and rotation of the view
point. Infact, theterm “lumigraph” that we use to describe the 4D dlice of thelight field
isborrowed from [9]. Both systems use a cube surrounding the object as the lumigraph
surface. To create alumigraph from digitized images of areal object, Levoy and Hanra
han moved the camerain a regular pattern into a known set of positions, and projected
the camera images back to the lumigraph cube. Gortler et al. moved a hand-held video
cameraaround an object placed on the capture stage. The capture stageis patterned with
aset of concentric circlesfor estimating the camera pose for each image. Theraysfrom
theimages are projected to the lumigraph walls, and the lumigraph isinterpolated from
these samples and stored as agrid of 2D images. In both systems, new images are syn-
thesized from a stored grid of 2D images by an interpolation procedure, but Gortler et
al. use additional geometric information to improve on ray interpolation. They create a
rough model fromthevisual hull of the object. Oneadvantage of thelumigraph methods
isthat they allow capturing the appearance of any object regardliess of the complexity
of its surface. A disadvantage is the difficulty of storing and accessing the enormous
[lumigraph representation.

The “algebraic”’ approach to image-based rendering using pairs of images and pixel
correspondencesin the two images was introduced by Laveau and Faugeras [11]. It has
since been used in severa other systems [15, 18, 7]. Given correct dense pixéel corre-
spondences one can calculate the 3D coordinates of surface points visiblein both im-
ages, and then project these to theimage plane of thevirtual camera. However, the pro-
jection can also be calculated directly without
3D reconstruction. Thisisillustrated in Fig. 8
which shows the stored images 1 and 2, and the
image plane of the virtual camera v. Since the
pixel marked in image 1 corresponds to the one
marked in image 2, their associated raysrq and LL
r, are assumed to intersect at the same location Figure 8: Two matching rays correspond to
on the object surface. That point projectsto the thepixel of thevirtual camerawherethe projec-
imagev at theintersection of theepipolar linese, tionsof the raysintersect.
and e, which are the projectionsof r; and r, ontoimagev. The color of the destination
pixel would be acombination of thecolorsof theinput pixels. Thepixel correspondence
mapping between the input images is not easy to do reliably, especially within regions
of homogeneous color. But fortunately, the regions where such pixels project have a -
most constant color, so aprojection error of afew pixelstypicaly doesnot cause visible
artifacts.

Chen and Williams[2] used similar methods to trade unbounded scene complexity to
boundedimage compl exity. They render alarge number of views of acomplicated scene
and obtain accurate pixel correspondences from depth values that are stored in addition
to the color at each pixel. The missing views needed for a walk-through of the virtua
environment are interpol ated from the stored ones. Max and Ohsaki [14] used similar
techniques for rendering trees from precomputed Z-buffer views. However, rather than
morphing the precomputed images, they reproject them pixel by pixel. Shadeet al. [17]
partition the geometric primitivesin the scene, render images of them, and texture map
the images onto quadrilaterals, which are displayed instead of the geometry. Debevec
et al. [6] developed a system that fits user-generated geometric models of buildingsto

digitized images by interactively associating image festures with model featuresand fit-
ting model parameters to images. The buildingsare view-dependently texture mapped
using the color images. The interpolation between different texture maps isimproved
by determining more accurate surface geometry using stereo from several input images
and morphing the texture map accordingly.

Two recent papers use similar techniques to ours. Mark et al. [13] investigate the
use of image-based rendering to increase the frame rate for remotely viewing virtua
worlds. Their proposed system would remotely render images from geometric modelsat
5 frames/sec and send them to alocal computer that warps and interpol atestwo consec-
utive frames at about 60 frames/sec. The 3D warp isdoneasin[2]. Using the z-values
at each pixel adense triangle mesh is constructed for the two views between which the
interpolationis performed. Normal vectorsand z-values at each pixel are used to locate
fal se connections across a step edge between an occluding and occluded surface. Darsa
et al. [5] describe another approach for rapidly displaying complicated environments.
The virtual environment is divided into cubes. From the center of each cube, six views
(one for each face of the cube) are rendered. Using the z-buffer, the geometry of the
visible scene is tessellated into a sparse triangle mesh, which is texture mapped using
the rendered color image. A viewer at the center of acube can ssimply view thetextured
polygon meshes stored at the cube walls. If the viewer moves, parts of the scene pre-
viously hidden become visible. The textured meshes from several cubes can be used to
fill the holes. Theauthorsdiscuss different weighting schemes for merging meshesfrom
several cubes.

6 Discussion

We have described a new rendering method called view-based rendering that liesin be-
tween purely model -based and purely image-based methods. Theinput to our methodis
asmall set of range and color images, containing both geometric and col or information.

An image can be rendered from an arbitrary viewpoint by blending the information
obtained from several of theseviews. This blending operation isaccomplished by three
weights determined by the view direction of the virtual camera, the surface sampling
density and orientation, and the distance from the mesh boundary. As arobust solution
tothevisibility problem, we proposethe use of asoft z-buffering techniqueto alow only
pointswithin athreshold to be included in blending. We have demonstrated interactive
viewing of two non-trivial real objects using our method.

Our view-based rendering has severa advantages over thetraditiona model-based ap-
proach of rendering full objects. It is much easier to model each view separately than it
isto create amode of the whole object, especialy if the object has convoluted geom-
etry. Our approach automatically gives view-dependent texturing of the object, which
produces more realistic images than can typically be obtained by static texturing.

The advantages over image-based rendering are twofold and are adirect consequence
of having explicit geometric information. First, significantly fewer input images are
needed for view-based rendering than for image-based rendering. Second, we can con-
struct composite objectsfrom several view-based models. In contrast, realistic compos-
ite images can be generated from image-based models only if their bounding boxes do
not intersect.

The disadvantage isthat our system shows the object in fixed lighting. Relighting of
synthetically created view-based modelsis possible if we store additional information
such as normals and reflectance properties for each pixel of the texture maps. For real
objects, normals could be approximated but obtaining reflectance propertiesis not triv-

ial.

References

(1

(2

(3

(4

(5

(6]

(8
(9
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

S. E. Chen. Quicktime VR - animage-based approach to virtual environment navigation. In SSGGRAPH
95 Conference Proceedings, pages 29-38. ACM SIGGRAPH, Addison Wesley, August 1995.

S.E. ChenandL. Williams. View interpolation forimage synthesis. In Computer Graphics(SIGGRAPH
'93 Proceedings), volume 27, pages 279-288, August 1993.

Y. Chen and G. Medioni. Object modelling by registration of multiple rangeimages. Image and Vision
Computing, 10(3):145-155, April 1992.

B. Curlessand M. Levoy. A volumetric method for building complex models from range images. In
SIGGRAPH 96 Conference Proceedings, pages 303-312. ACM SIGGRAPH, Addison Wesley, August
1996.

L.Darsa, B. C. Silva, and A. Varshney. Navigating static environmentsusing image-spacesimplification
and morphing. In Proc. 1997 Symposiumon Interactive 3D Graphics, pages 25-34, April 1997.

P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A
hybrid geometry- and image-based approach. In SSGGRAPH 96 Conference Proceedings, pages 11-20.
ACM SIGGRAPH, Addison Wesley, August 1996.

T. Evgeniou. Image based rendering using algebraic techniques. Technical Report A.l. MemoNo. 1592,
M assachusetts I nstitute of Technology, 1996.

M. Garland and P. Heckbert. Fast polygonal approximation of terrains and height fields. Technical Re-
port CMU-CS-95-181, Dept. of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1995.

S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. Thelumigraph. In SSGGRAPH 96 Conference
Proceedings, pages 43-54. ACM SIGGRAPH, Addison Wesley, August 1996.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. In Computer
Graphics (S GGRAPH ' 93 Proceedings), volume 27, pages 19-26, August 1993.

S. Laveau and O. D. Faugeras. 3-d scene representation as a collection of images and fundamental ma-
trices. Technical Report RR 2205, INRIA, France, 1994. Available from ftp://ftp.inriafr/INRIA/tech-
reportyRR/RR-2205.ps.gz.

M. Levoy and P Hanrahan. Light field rendering. In SGGRAPH 96 Conference Proceedings, pages
31-42. ACM SIGGRAPH, Addison Wesley, August 1996.

W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In Proc. 1997 Symposium on
Interactive 3D Graphics, pages 7-16, April 1997.

N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer views. In EurographicsRendering
Workshop 1995, pages 74-81;359-360. Eurographics, June 1995.

L. McMillan and G. Bishop. Plenoptic modeling: Animage-based rendering system. In SSGGRAPH 95
Conference Proceedings, pages 39-46. ACM SIGGRAPH, Addison Wesley, August 1995.

K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuetzle. Robust meshes from mul-
tiple range maps. In Proc. |EEE Int. Conf. on Recent Advancesin 3-D Digital Imaging and Modeling,
May 1997.

J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical image cachingfor accelerated
walkthroughsof complex environments. In SIGGRAPH 96 ConferenceProceedings, pages75-82. ACM
SIGGRAPH, Addison Wesley, August 1996.

T. Werner, R. D. Hersch, and V. Hlava. Rendering real-world objectsusing view interpolation. In Proc.
IEEE Int. Conf on Computer Vision (ICCV), pages 957-962, June 1995.

@ (b) (c)

Figure9 (a) A color image of atoy dog. (b) Weight w, isapplied to each face
of the triangular mesh. (c) Weight w., smoothly decreases towards the mesh
boundary.

Figure 10 (a) Theresult of combining three views by repeatedly rendering the
view-based meshes from the viewpoint of the virtual camera as described in
Section 3.1. (b) Using theweightsand soft z-buffering described in Section 3.2
produces a much better result.

Figure 11 Our viewer shows the three view-based models rendered from the
viewpoint of the virtual camera. The final image is on the bottom right.

