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Abstract

This paper discusses two basic principles for inter-
active visualization of high dimensional data: focusing
and linking. The paper and the accompanying video
give ezamples of how graphical data analysis methods
based on focusing and linking are used in applications
including linguistics, geographic information sysiems,
time series analysis, and the analysis of multi-channel
images arising in radiology and remote sensing.

1 Introduction

Most work in scientific visualization is concerned
with high quality rendering of three-dimensional ob-
jects representing scalar or vector valued functions of
R3. Displays are typically created in batch mode, and
interaction with the displays is limited.

In contrast, research in statistical graphics has con-
centrated on methods for visualizing high-dimensional
data, using real time motion and interaction. For an
overview, see Cleveland and McGill [11]. We have re-
cently abstracted out from this research two concepts,
which we refer to as focusing and linking [9], that seem
to unify much of this diverse methodology.

To display complicated information, like a large
program, an automobile and all its parts, or some mul-
tivariate statistical data, a common instinct is to draw
a picture that is equally complicated, such as printing
the program on the screen in a small font, rendering
the automobile and its parts as transparent solids, or
presenting the data as a tableau of Chernoff faces [10].
Attempts at such dense encoding are seldom success-
ful. It is usually more eflective to construct a number
of simple, easy to understand displays, each focused
clearly on a particular aspect of the underlying data.

Focusing techniques may involve selecting subsets,
dimension reduction, or some more general manipula-
tion of the layout of information on the page or screen.
Examples of subset selection techniques are panning
and zooming [8], and slicing [17]. Examples of di-
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mension reduction techniques are projection and false
coloring of multi-channel images (18,19].

Techniques for more general layout manipulation
include univariate data transformations, logical zoom-
ing (demonstrated in the accompanying video) [9], and
a variety of techniques from human-computer interface
research for adapting to a user’s “focus of attention”
or “point of interest”[24], such as generalized fisheye
views [16,13], Rooms [20], and Cone Trees [32].

Methods for focusing can be automatic, or inter-
active, or some combination of the two. An example
of automatic focusing is exploratory projection pur-
suit as originally proposed by Friedman and Tukey
[15]. The Prim-9 [14] and Orion [28,25,26] systems
provided interactive versions of projection pursuit.

A consequence of focusing is that each view will
only convey partial information about the data. We
can compensate for this fact by displaying multiple
views. Multiple views, however, should not be re-
garded in isolation. They need to be linked so that the
information contained in individual views can be inte-
grated into a coherent image of the data as a whole.

How views can be linked depends on whether they
are displayed in sequence over time, or in parallel, si-
multaneously.

The principal mechanism for linking views over
time is through smooth change in the position of ob-
jects on the screen. Examples for this kind of link-
ing are rotating three-dimensional point clouds and
a higher dimensional generalization, the Grand Tour
[3,6]. More generally, any smooth animation can be
considered as a set of linked multiple views, spread
out over time.

There are a number of techniques for displaying
multidimensional point data through simultaneous
multiple views that are linked by drawing lines con-
necting the points in the different views correspond-
ing to the same observation. Examples are Andrews’
plots [2], parallel coordinate plots [23,34], and m-and-
n plots [12]. The window “wiring diagrams” in Rooms
[20} are an example of linking corresponding objects
by lines in a very different context.



Painting multiple views is an alternative linking
technique that is at least as effective for multidimen-
sional point sets and is more easily generalized to other
types of data. Painting multiple views integrates scat-
tered information by marking corresponding parts of
multiple displays with color (or some other form of
highlighting). It is a generalization of “scatterplot
brushing”, which dates to the late 70’s [30,28,26,29,4].

In this paper and the associated video we demon-
strate a number of graphical methods that are exam-
ples of focusing and linking in applications, including
linguistics, geographic information systems, time se-
ries analysis, and the analysis of multi-channel images
arising in radiology and remote sensing.

2 Scatterplot brushing in geographic
information systems

Figure 1 shows two plots of data from the Places
Rated Almanac [5], a map of the 300 “places” in the
right pannel, and a scatterplot of climate versus hous-
ing cost in the left panel. There is a cluster of places
with mild climate and expensive housing in the up-
per right part of the scatterplot. To find out where
they are located, we “painted” the cluster in the scat-
terplot, changing the glyphs representing the corre-
sponding places. Glyphs representing the same places
in the map have changed as well; they all lie on the
California coast.

The map and the scatterplot convey two data di-
mensions each; by linking the two plots, we perceive
four-dimensional structure. Linking views is crucial
since seeing separate two-dimensional views is not
enough to reconstruct four-dimensional data.

It is natural for a user to think of painting op-
erations as a direct manipulation of the underlying
database [22,29]. With this model in mind, the user
expects painting in one view to change other views.

3 Painting discrete data

Viewing painting as direct manipulation suggests
generalizing scatterplot painting to other kinds of data
displays, for example tables of discrete data.

Figure 9 shows a collection of interactively painted
plots produced by the Antelope system [27]. The data
displayed were obtained from Mieko Ogura and Bill
Wang of the Project on Linguistic Analysis at UC
Berkeley [31]. In the upper left hand corner of the
screen is a scatterplot of the latitudes and longitudes
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of 311 sites in England (and the Isle of Man). The plot
on the lower left shows the villages classified accord-
ing to the pronounciation of the word great. Simi-
larly, the plot in the lower middle shows the villages
classified according to the pronounciation of the word
beans. Each cell in a table represents the subset of
villages using a particular pronounciation. In the two-
dimensional table on the right, a cell represents those
villages with a particular pair of pronounciations for
the two words. The size of the colored rectangle in
each cell is proportional to the number of villages
which use the corresponding pronounciation or pair
of pronounciations.

Painting a cell in a table is equivalent to chang-
ing the color attribute of all the villages in the cell’s
subset. Cells display the colors of their subset’s cases
(when they are not all the same color) using a divided
color bar. The percentage of a divided color bar that
is, e.g., green is the same as the percentage of green
cases in the subset.

In this example, painting reveals spatial coherence
of the pronunciation — in other words, regional di-
alects.

4 Focusing and linking in time series
analysis

We next illustrate how focusing and linking can be
used in time series analysis. The data consist of 900
measurements of tidal levels, taken at 45 minute in-
tervals, covering about 27 days.

First we examine the data using panning and zoom-
ing, which are simple examples of interactive focusing.

In the top panel of figure 2, the tidal levels are
plotted against time. The plot reveals patterns among
low and high tides. There are two kinds of high tides,
and also two kinds of low tides, a low one of each and
a high one of each. The low high tides and the high
high tides approach each other and ultimately cross
and change roles; the same is true for the low low and
high low tides.

The middle panel shows the same data, after rescal-
ing by stretching the horizontal axis and shrinking the
vertical axis. It makes the quasi-periodicity and the
smoothness of the series apparent. It is also easier to
see that the usual sequence of tides is “high high”,
“low low”, “low high”, “high low”. However, it is
harder to see the crossing pattern.

Next, in the bottom panel, we expand both axes to
zoom in on a 20 hour section. Panning horizontally, we
discover a segment of the series containing an outlier
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Figure 1: Plots of Places Rated data: metropolitan areas with mild climate and expensive housing highlighted.

Figure 2: Panning and zooming tidal data.
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that is invisible in the other two plots.

Next we use painting to have a closer look at the
periodicities in tidal levels. The two left panels of
figure 3 show tidal level plotted against time, whereas
the right panels display a lag plot of the present tidal
level versus the level three hours earlier.

The lag plot features a peculiar double loop pattern,
and a natural question is to ask how it relates to time.
We can answer this question by linking the time series
plot with the lag plot; We paint time intervals in the
time series plot and observe the corresponding points
in the lag plot. Painting a time interval towards the
beginning of the series (top panels of figure 3) shows
that those observations lie on a double loop running
along the periphery of the lag plot, while observations
towards the end (bottom panels of figure 3) lie along a
double loop in the interior. The properties of the lag
plot revealed by painting give qualitative indications
of facts which can otherwise only be detected with
spectral analysis: the double loop indicates that there
are two basic frequencies, one double the other. The
shift in orbits is due to the presence of a very low
frequency component.

5 Painting multi-channel image data

Our next example is from medical imaging. We
examine a magnetic resonance image of a human head
(obtained from David Haynor, Dept. of Radiology,
U. of Washington). The image, shown in figure 10,
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Figure 3: Lag plot of tidal data.

consists of 256x256 pixels. For each pixel we have 2
spatial coordinates (the pixel’s location in the image),
and the values of three variables, proton density, t1,
and t2, that depend on the response of the tissue at
this location to the imaging process.

On the left side of figure 10 is a grey scale image of
the proton density channel. On the right is a scatter-
plot of t1 versus t2. The scatterplot is highly struc-
tured, having a number of well defined clusters. Link-
ing the scatterplot to the image by painting makes it
possible to see how the clusters in the scatterplot are
related to the anatomy displayed in the image. Figure
11 shows the result of painting three of the clusters.
We see that the red cluster corresponds to grey mat-
ter in the brain, the green cluster to white matter,
and the blue cluster to corneal and spinal fluid. Alter-
natively, we could paint anatomical structures in the
image and see where the corresponding pixels fall in
the scatterplot.

6 Grand Tour and painting in the anal-
ysis of remote sensing data

Our final example shows how the Grand Tour, an
interactive focusing method, can be used together with
painting in the analysis of multispectral image data.
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Figure 12 shows a Landsat MSS image of the con-
fluence of the Rio Solimdes and the Rio Negro near
Manaus, Brazil, taken by Landsat 2 on July 31, 1977.
The plate was produced by the WISP image process-
ing system [33]. WISP has an interface that allows
image pixels to be selected for analysis with the Data
Viewer [7,8,21], a system for displaying multivariate
data using a variety of techniques based on real time
motion and interaction, including painting.

Among other things, WISP supports analysis of
multispectral images using mixing models {1]. The
basic idea of a mixing model is to decompose the ob-
served spectrum of a pixel (which, in Landsat MSS,
covers approximately an 80 meter square) into a com-
bination of a small number of known (laboratory-
measured) spectra of “pure” substances. One issue ad-
dressed with the Data Viewer and painting is whether
a (convex) linear combination of spectra is sufficient or
a more complex, non-linear mixing model is required.

In our example, we selected pixels from 5 rectangu-
lar areas in the image for examination with the Data
Viewer: the small square in the upper part of the im-
age covers pixels that are forest vegetation; the square
in the lower right is grasslands; the square in the lower
left is muddy water of the Rio Solimdes; the square in
the middle left is dark water of the Rio Negro; and
the long narrow rectangle in the middle is a transect
across the confluence (mixing) of the muddy and dark
water.

Each selected pixel becomes a case in a Data Viewer
data set, with six attributes, namely the z and y co-
ordinates in the image, and the values for the four
Landsat MSS spectral bands. We are specifically in-
terested in whether the pixels in the transect can be
represented as a convex combination of muddy and
dark water spectra. This is true if the transect pixels
lie along a line between the muddy and dark water
pixels, in the four dimensional spectral space.

The selected pixels are displayed in two Data
Viewer windows, shown in Figure 4: The left window,
labeled Brushing shows a scatterplot of the original x
and y pixel coordinates. The right plot shows a still
from a Grand Tour [3,6) through the four-dimensional
spectral space.

A Grand Tour surveys structure in multidimen-
sional spaces by rapidly (10 frames per second) dis-
playing a smooth sequence of projections of the data
onto two-dimensional subspaces. Because the pro-
jection plane varies smoothly over time, we can fol-
low individual points or clusters of points. Three-
dimensional rotation is a special case of a Grand Tour.

Watching a dynamic Grand Tour, as shown in the
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Figure 6: The top of the confluence.
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Figure 5: Highlighting clear water.

accompanying video [9], we can verify that the rod
(the linear structure in the bottom left of the Grand
Tour still) is in fact linear in four-dimensional space,
because it remains linear in all projections.

In figures 4 and 5, known muddy and clear water
pixels are highlighted, to show where they fall in this
projection of the four dimensional spectral space. Fig-
ures 6 through 8 show a sweep across the transect of
the confluence, confirming that these pixels are in fact,
convex linear combinations of dark and muddy water
pixels.
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Figure 8: The bottom of the confluence.



7 Conclusions

Focusing and linking are principles that offer a so-
lution to the problem of visual overload. Instead of
maximizing the information in a single view, it is bet-
ter to provide tools for quickly generating multiple
views, each focussed on a different aspect of the data.
Multiple views, however, should not be regarded in
isolation. Linking makes it possible to integrate par-
tial information contained in individual views into a
coherent image of the data as a whole.
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Figure 9: A map and contingency tables of English Figure 10: A proton density image and a
vowel data. scaiterplot of t1 vs 2.

Figure 11: The proton density image and scatterplot Figure 12: Landsat MSS image of the confluence
of 11 vs t2 after painting. of the Rio Solimdes and the Rio Negro near
Manaus, Brazil.

(See color plates, page 419.)
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