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This paper reviews and illust,rates a direct manipula 
tion approach to visualization of complex objects called 
paiidiilg mulliple views. We describe a progra.mming 
model for direct manipulation in general alld for pa.int- 
ing in particular, based on simple constra.ints between 
entities in an the underlying scientific database a.nd the 
components of displays used to examine the data. With 
this model, the original notion of “brushing sca.tter- 
plots” is easily extended. 
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1 Introduction 

Suppose you want to display something complicated, 
like a large program, an automobile and a.11 its parts, 
or some multivariate statistical da.ta. A natural first 
thought is to draw a picture that’s equa.lly complicated, 
such as printing the entire program on the screen in a. 
really small font, rendering the automobile and its parts 
as transparent solids, or presenting the data. as a tableau 
of Chernoff faces [6]. 

Attempts at such dense encoding seldom work well. 
It’s usually more effective to construct a number of sim- 
ple, easy to understand displays, ea.ch focused clea.rly on 
a particular aspect of the information you are trying to 
convey. However, you then risk losing track of the rela- 
tionships between isola.ted pieces of information, 

The purpose of painting multiple views is to help 
t,he user to integrate sca.ttered information-by marking 
corresponding parts of multiple displays with color (or 
some other form of highlighting). 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, and notice is given 
that copying is by permission of the Association for Computing 
Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
@ 1990 ACM 089791-41 l-2/90/0010-0245...$1.50 

1990 

For example, consider some experimental tools for 
browsing CLOS [25] programs, shown in figure 1. The 
windows are displaying a small part of Cactus, a sys- 
tem for numerical linear algebra and optimization [16]. 
The original motivation for constructing these displays 
wa.s to understand some unexpected behavior observed 
when composing trivial Identity mappings with oth- 
ers. The edit,or, on the left, displays a few methods 
for t,he generic function compose. The class graph, at 
the upper right, focuses on the inheritance relations be- 
tween a small subset of the Mapping classes; it makes 
the overall structure easy to grasp in a way that is not 
possible scrolling through definitions in the editor. At 
the lower right is an attempt at joint display of both 
class inheritance and methods for the generic function 
compose. 

The exact na.ture of the problem with Identity is 
not relevant here. The point is that we are interested in 
the class Identity, there are references to it in all three 
windows, but, to find ah the references, we have to read 
the displays carefully-their loca.tions are not obvious 
from a quick glance at the screen. 

It would help to have an easy way to highlight all 
references to Identity, wherever they appear on the 
screen. One way to do this is to allow the user to dip a 
mouse-controlled paint brush into a pallette of highlight- 
ing paint, which can be a.pplied to the class Identity 
by moving the brush over any visible reference to that 
class. The result, using a highlighting paint correspond- 
ing t,o a large italic font, is simulated in figure 2. (The 
figures in this paper were produced on a Symbolics Lisp 
ma.chine. Figure 2 is simulated because we have not im- 
plementSed an editor; we are faking the result using the 
Zmacs editor [as].) 

We genera.lly find painting with color more effective. 
Here we are restricted to black and white illustrations, 
so we will highlight by change of font and/or size, which 
is less dra.matic, but still useful. 

Linking multiple views by highlighting or painting is 
a straightforward, if not obvious, application of direct 
manipulation. From our perspect,ive, the key properties 
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(defmethod compose ((to Linear-llapp,ng) (,I Llnear- 
&key rcsw) 

(assert (oql (domain 10) (codcmain tt))) 
Ccond ((eq result 10) (composa-laltl t0 11)) 

((eq re*ult 11, (c*mp*se-rlgh,, 1” 11)) 
(1 (compose-toI to 11 resutt,)), 

ldefmetnod compose ((to Identlty) (II happing) 
hkey result) 

(asoarr (aq (domam 10) (codomaan tl))) 
icond ((eq resutt tl) ,I, 

((““I, r.ru,t, (copy 11)) 
(1 (copy ,I :r**utt renult),)) 

dafmethod compoo. ((to Mapplng) (I, Identity) 
hkey result) 

(armrt (eq (domain 10) (codomaln ~1))) 
(cond (Iaq r.sult 10, to) 

((null result, (copy to,, 
(t (copy to :rdf”lt res”lt,,)) 

defm.thod compor. ((to Idaotlty) (tt Lln.a~-Mappl~g) 
8key result) 

(assert (eq (domain to, (codoma~n 1,))) 
icond ((eq re*“lt 11) 11, 

((null re~“lt) (copy 1, )) 
(1 (copy 11 :,*sutt resrr‘t):)) 

defmethod compose ((10 Linear-capping) (tl Idsntity) 
hkey re*w, 

(assert (eq (domaln to) (codomain tt ))) 
(and ((eq result 10) to) 

((““II result, (copy to,, 
(I (copy to :resldt rsr”rt,),) 

Figure 1: Experimental CLOS browsing tools. 

defmethod compose ((to /dentifM (11 Mapping) 

&key result) 
(assert (eq (domain to) (codomain 11))) 
(COM ((eq result 11, 11) 

((““II result, (COPY ,l)) 
(1 (copy ,I :result result,,,) 

dofmethod compose ((to Map&g) (11 Identity) 
hk.Y result) 

(SEPW~ (.q (domain to) (codcmain tl))) 
(cond ((aq rssdt to) to) 

((ml,, result) (copy 10)) 
(, (copy to :,esu,t r..surt)))) 

(assert (eq (domain 10) (codomain tl))) 
(cond ((aq result II, tl, 

((null result, (copy 11)) 
(I (copy 11 :resu,t rrsult,,)) 

dsfmethod compass ((to Linear-Mapping) (,I lden iitn 
8.k.y rerult) 

(assert (eq (domaln to) (cc&main 17))) 
(cond ((eq result 10) to) 

((null res”lt) (copy IO), 
(1 (copy to vesult rosut1,,,, 

Figure 2: Simulation of painting the chss Identity. 
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direct manipulation interface are: 

Displays are built out of visible (graphical or text) 
presentations of subjects. The subjects are entities 
in some underlying program or database. 

The appearance of a presentation changes automat- 
ically to reflect changes in the state of its subject. 

The presentation serves as a locus for graphical in- 
put that causes changes in the state of its subject. 

To implement painting using direct manipulation, we 
assume that the state of subject includes or can be an- 
notated with parameters that determine the color, font, 
size, etc., of its presentations. Mouse input to some pre- 
sentation changes these display parameters in the sub- 
ject, which causes all presentations to be re-drawn with 
the new color, font, size, etc. 

Whether it’s thought of as direct manipulation or 
not, this kind of interface architecture is common in 
object-oriented programming environments. Exa.mples 
of systems that have or can easily support this st8ructure 
are: LOOPS (Active Values) [4], Coilab [2G], Pogo [29], 
Garnet [18], Smalltalk (Model View Controller) [22], 
Thinglab [ll], Animus [lo], and Unidraw [31], a.mong 
many others. 

2 Brushing Scatterplots 

One of the simplest applications tha.t benefits from 
painting multiple views is statistical multivaria.te data 
analysis. In fact, our notion of “painting multiple views” 
arose as a generalization of an idea from intera.ctive data 
analysis graphics, sometimes called “brushing sca.tter- 
plots,” which dates to the la.te 70’s [19,15,3,2]. 

The statistician’s multivariate data set is essentially 
a relation with n records a.nd p Attributes, where each 
Attribute takes on floating point va.lues. More geometri- 
cally, we can then think of it as a collection of 11 points- 
a point cloud-in a p dimensional euclidean spa.ce. 

A fundamental problem in data analysis is to provide 
tools for seeing and understanding the p dimensional 
sha.pe of such point clouds, without relying too heavily 
on preconceived notions of what might be going on in 
the data. This is intrinsically difficult, beca.use human 
perception and imagination are designed for a world of 
one time dimension and 3 spatia.1 dimensions. 

The basic tool for looking at point, clouds is the sca.t- 
terplot, which can be thought of geometrically as a. pro- 
jection of the p dimensional points onto a two dimen- 
sional plane. There is a. long history of attempts to 
encode more information in scatterplots. One a.lterna- 
tive is encoding additional Attributes in the glyph or 
plotting symbol used for ea.ch data. point. Another is to 
use realtime motion to encode one or more additional 
va.riables. An example is using rotation to displa,y three 

dimensional point clouds. See [S] for a review and some 
recent exa.mples of both these approaches. 

“Brushing scatterplots” displays high dimensional 
point clouds by linking a number of simultaneous scat- 
terplots. The linking is constructed interactively and 
dyna,mically modified by painting points in one scatter- 
plot; all corresponding points in other scatterplots auto- 
matically take on the same color. This idea has become 
a standard part of many commercially available statisti- 
cal graphics systems (e.g., MacSpin [9], Data Desk [30]). 

To provide a better sense of how painting multiple 
views can be used, we next consider an example from 
the analysis of multispectral images. Figure 3 shows a. 
Landsat image of the confluence of the Rio Solim6es and 
the Rio Negro near Manaus, Brazil, taken by Landsat 
2 on July 31, 1977. The full image consists of approx- 
imately 1000x1000 pixels, with intensities measured in 
four spect,ral ba.nds for each pixel. Thus the image can 
be considered a G dimensional point cloud, with a point 
corresponding to each pixel, 4 dimensions correspond- 
ing to the 4 spectra.1 bands and 2 dimensions to the x 
and y loca.tion of the pixel in the ima.ge. 

Figure 3 was produced by the WISP image process- 
ing system [24]. WISP supports analysis of multispec- 
tral images using mixing models [1,23]. One purpose 
of mixing models is to infer what’s on the ground from 
the spectral data recorded by the satellite. A mixing 
model decomposes the observed spectrum of a pixel 
(which, in La.ndsat MSS, covers a.pproximately an 80 
meter square) into a combination of a small number of 
spect,ra. of “pure” substances. The idea is to estimate 
wha.t proportions of the 80 meter square are covered by 
substances of interest (eg. rain forest vs. grassland). 
The issue addressed by this example is whether a sim- 
ple (convex) linear combina.tion of spectra is sufficient 
or a more complex, non-linear mixing model is required. 

WISP has an interface that allows a subset of the pixel 
point cloud to be selected for analysis with the Data 
Viewer [5,13], a system for a.nalyzing multivariate data 
using a va.riety of techniques based on realtime motion 
and interaction, including painting. One would prefer 
to analyze the whole image’s point cloud, but the Data 
Viewer (and its hardware platform, a Symbolics 36xx 
series workstation) gives adequate interactive response 
with data sets of up to about 2 thousand points. 

The image in figure 3 is overlaid with 5 small white 
rectangles (which may be difficult to see in black and 
whit,e xerographic reproduction), outlining the pixels se- 
lected for examination with the Data Viewer: the small 
square in the upper part of the image covers pixels that 
are forest vegetation; the square in the lower right is 
gra.ssla.nds; the square in the lower left is muddy water 
in the Rio SolimGes; the square in the middle left is da.rk 
water in the Rio Negro; and the long narrow rectangle in 
the middle is a transect across the confluence (mixing) 
of the muddy and da.rk water. 
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The selected pixels are displayed in two Data Viewer 
windows, shown in figure 4: The left window, with 
its label Brushing obscured by the menu that begins 
Highlight all, shows a scatterplot of the original x 
and y pixel coordinates. The viewing transformation 
for this window has been chosen so that only the muddy 
water, dark water, and transect pixels are visible. The 
right plot, labeled Variable Plots, shows a scatterplot 
of Band-5 vs Band-6 for all 5 groups of pixels. (Land- 
sat was originally intended to have 7 spectral bands; 
due to a malfunction, the satellite only returns bands 4 
through 7.) The key question to be answered is whether 
the pixels in the transect can be represented as a convex 
combination of muddy and dark water spectra. This is 
true if the transect pixels lie a.long a line between the 
muddy and dark water pixels in the four dimensional 
spectral space. 

In figure 4, muddy water pixels, in the left bottom 
of the Brushing window, are highlighted, by covering 
them with the paint brush (the small rectangle). Un- 
highlighted pixels are drawn as horizontal dashes a.nd 
highlighted pixels are drawn as vertical dashes. The 
muddy water pixels fall at the top of the linear struc- 
ture on the left of the points in the Variable Plots 
window. 

In 5, dark water pixels, at the far left of the Brushing 
window, are highlighted. The dark water pixels turn out 
to be at the bottom of the 1inea.r structure. 

Figures 6 and 7 show a sweep across the transect of 
the confluence, which produces a corresponding sweep 
across the linear structure in the Variable Plots win- 
dow, confirming that these pixels are in fact, convex 
combinations of dark and muddy water pixels. 

3 Implementation 

The need to solve concrete scientific and engineering 
problems is a tremendous stimulant of creativity, espe- 
cially in ways of displaying and intera.cting with spe- 
cialized kinds of information. It follows that an ideal 
system for visualization should help users to improvise 
new kinds of displays quickly, including new modes of 
interaction with those displays. Failing that, a good 
system should permit experts to implement small ex- 
tensions of existing functionality quickly. For this to be 
true, it must be possible to implement a change t1~a.t 
seems small to the user by a small change to the pro 
gram. This implies that the abstractions used in the 
program must correspond closely to the way the users 
think about the underlying problem. 

It ma.y seem that we are belaboring a.n obvious point, 
but it is rare in scientific computing to find systems 
whose programming abstra.ctions are at all simi1a.r to 
the underlying problem they are intended t,o solve. 

Consider, for example, what we will ca.11 the “stan- 

dard” implementation model for brushing scatterplots. 
In the standa.rd implementation, each scatt8erplot has 
an N x 2 array holding the X and Y coordinates of the 
points. This array is created typically by extracting 
two-dimensional records from an underlying database 
and applying a viewing transformation to get window 
coordinates. In addition, there is a color array of length 
N that is shared by all plots. When brushing, the pro- 
gram examines the XY array to find the indices of the 
points under the mouse, changes, if necessary, the val- 
ues in the corresponding locations in the color array, alld 

redraws points at the coordinates in the corresponding 
locations in all the XY array. 

This implementation strategy is natural for a pro- 
gra.mmer with experience in conventional scientific com- 
puting; Fortran subroutine libraries often represent im- 
portant information purely by location in arrays. Nearly 
all implementations of brushing scatterplots of which 
we are aware, including our own early work, share the 
essent,ial feature (and failing) of this model, which is 
that the correspondence between plots is represented 
by matching array indices. Unfortunately, it precludes 
even the most trivial extensions. For example, suppose 
the user wishes to simultaneously analyze three data 
set,s: all the patients in a clinical trial of some drug, 
the male patients in the trial, and the female patients. 
Typical commercial implementa.tions of brushing scat- 
terplots either restrict the user to a single data set, or 
brush separate data sets separately, ie., brushing in a 
plot of all pa.tients has no effect on plots of male pa- 
tients or plots of female pa.tients. 

If we think of brushing sca,tterplots in terms of direct 
manipulation, then it’s obvious what wrong with the 
“sta.nda.rd” implementation: There’s no reliable repre- 
senta.tion for the identity of the underlying entity tha.t’s 
being brushed. 

We next present an implementation model for paint- 
ing multiple views based on direction manipulation. 
The following discussion is based primarily on the An- 
telope system [14,17] and to a lesser degree on the Plot 
Windows [27] and Data Viewer [5,13] systems. The 
model presented here is not an accurate description of 
a.ny of these systems; it reflects what we have learned 
from what wa.s wrong with them. It is the basis for 
a new, more portable system, currently under develop- 
ment . 

To successfully support direct manipulation, our pro- 
gra.mming model has several components that are im- 
plicit in a conceptual model of direct manipulation (see 
Figure 8): 

l Subjects in a Database 

There is a.n object (a Subject) in the programming 
environment representing ea.ch abstract entity (eg., 
a multispectral image pixel) that the user might 
wa.nt to examine, select with the mouse, and ma- 
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Figure 3: The confluence of the Rio Solim6es and the Rio Negro 
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nipulate. 

Each Subject has associated with it a set of At- 
tributes; an Attribute has an ident#ity independent 
of any particular Subject. We can evaluate an At- 
tribute for any Subject for which it is defined and 
we can change the value for some, if not a.11, At- 
tributes. We can also define new Attributes for a 
given Subject at runtime. This is simi1a.r to the 
data model proposed in 1211. 

Mutable Attributes are required to support the mu- 
table appearances of the Subject’s Presenta.tions. 
Having an extensible set of Attributes allows dif- 
ferent Presentations to behave differently in ways 
decided at runtime (see section 4.2 below). 

In some object-oriented programming languages, it 
is straightforward to represent Subjects by objects 
and Attributes by the slots (instance variables) of 
the Subject objects. Unfortuna.tely, in many la.n- 
guages and databases, it may too expensive or not 
even possible to have mutable slots or to a.dd slots 
at runtime. However, we can use essentia.lly the 
same programming model as long as Subject,s ha.ve 
unique identities and we can build mut,able tables 
that map Subject identities to colors or other ap- 
pearance parameters. We can then generalize our 
notion of Attribute to include both slots that are 
intrinsically part of each Subject and these mutable 
tables, defined at runtime. 

The key points are tha.t we ca.n: (1) get values for 
any defined Subject-At,tribute pa.ir (2) set values 
for all Subjects and some Attributes and (3) define 
new mutable Subject-Attribute pa.irs at runtime. 

Our programming model also presumes that Sub- 
jects can be organized into structured Collections, 
like the Collection classes of Smalltalk [12], eg. 
lists, directed graphs, or dictionaries. We also pre- 
sume that new types of Collections can be defined 
- if not by a random user, then at least by a 
programmer sophisticated enough to develop new 
kinds of plots. 

0 Presentations in a Scene 

The Scene consists of a directed acyclic graph (usu- 
ally a tree) of objects (Scene Nodes) representing 
geometric shapes (including text), in a two or three 
dimensional Scene Space, The Scene is rendered 
onto a display surface by standard computer graph- 
ics techniques. Some nodes in the Scene are visi- 
ble representations or Presentations of some of the 
Subjects. (Our use of the word “Presentation” is 
simila,r, but not identical to [7].) 

A Subject determines the position and appearance 
of its Presentations through an output Lens (see 
below). The hierarchical or graph structure of the 
Scene will often reflect a similar hierarchy in the 
Subjects; in other words, a Presentation of a Col- 
lection may have children that are Presentations of 
the elements of the Collection. 

l Links 

There must be a mechanism for linking Presenta- 
tions and their Subjects. There are three kinds of 
connections between Presentations and Subjects: 

- Lenses for output filt,ering 
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Figure 8: A diagmm of the programming model. 

A Lens maps from Subjects to be visualized 
into draw-able colored geometric shapes (in- 
cluding text) in the Scene space; it computes 
the position and appearance of a Presentation 
from the Attributes of its Subject. 

In general, each Presentation could ha,ve its 
own unique Lens, computing position, sha.pe, 
size, color, texture, etc., from its Subject how- 
ever it likes. However, the standard pa.int- 
ing operation-and most of the interesting 
variations-can be implemented with a small 
number of simple Lenses, shared across Pre- 
sentations and across plots as well. 

- Input-Translators 

An Input-Translator maps input events re- 
ceived by a Presentation to operations on its 
Subject. 

- Consistency-Constraints 

A Consistency-Constraint ensures that the 
Scenes always reflect the current state of the 
Subjects. 

To implement a simple version of painting for scat- 
terplots, we first suppose the Subjects (the records in 
the multivariate dataset) have p quantitative Attributes 
and one color Attribute. We also suppose the records 
are organized into Data-Set collections; a Data-Set is es- 
sentially a list of records, with perhaps additional (sum- 
mary) information about its records and Attributes. 

In a scatterplot, the Scene is a tree. A Scatterplot- 
Root node typically has four children: a Label node 
that is a Presentation of a Data-Set, X-Axis and Y-Axis 
nodes, and a Point-Cloud node (another PresenMion of 
the Data-Set). An Axis node has a Label node (a Pre- 
sentation of a continuous Attribute) and a. Ruler node 
as children; a Ruler has Tic and possibly Tic-Label chil- 
dren. A Point-Cloud has Point-Glyph children, each of 

which is a Presentation of an element of the Data-Set. 
A scatterplot uses a simple scatterplot Lens with two 

component sub-Lenses: (1) a Projection-Lens that maps 
a high dimensional record to a position in 2D Scene 
space and (2) a Color-Lens that reads the value in the 
color slot in the record object. The Projection-Lens 
varies from plot to plot, but is the same for all Point- 
Glyph Presentations in a given plot. All the Point- 
Glyphs in all plots share the same Color-Lens, so that 
all Point-Glyphs always have the same color as their 
Subjects. 

Painting input events received by a Point-Glyph are 
tra.nsla.ted to the operation of changing the color At- 
tribute of the glyph’s Subject record. The Consistency- 
Constraint’s ensure that all visible Point-Glyph’s are 
redrawn when their Subject’s color Attribute changes. 

4 Small extensions of brushing 
scatterplots 

In this section, we present a number of small variations 
on the basic idea of “brushing scatterplots.” in the next 
section we discuss the slightly larger extension to dis- 
plays of discrete data. There are several reasons for do- 
ing so. One is to present a small sample of the range of 
applications of painting multiple views, all of which are 
natural consequences of the user’s thinking in terms of 
direct manipulation of some underlying database. An- 
other is to give some sense of how rapidly small new 
ideas can arise, given the stimulation of new problems 
and a simple but powerful conceptual model. This is 
more evidence of the importance of improvisation in vi- 
sualiza.tion systems. Finally, we wish to demonstrate 
that our simple programming model easily supports im- 
plementation of these few explicit examples and, by im- 
plication, ma.ny other sma.11 extensions as well. 
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4.1 Connecting points by lines 

Our programming model supports a number of varia- 
tions of painting using Collections that have more struc- 
ture than simple lists of record objects. 

The basic idea of linking multiple scatterplots by 
changing the appearance of points was first invented 
by Newton in 1978 [19]. Newton’s system provided an 
interesting variation on painting: a user could connect 
pairs of points by lines; the lines would be drawn in all 
plots. 

but it is sometimes necessary to get fast-enough feed- 
back. This is important if, for example, one imple- 
ments painting on images without subsetting. It can 
be thought of as a variation on the idea of markup, that 
is, the user gets a chance to see what the result will look 
like before committing to a change in the database. 

This operation makes most sense if we consider our 
plots to be views of directed graphs, whose nodes are 
records. Instead of multiple scatterplots, we have mul- 
tiple graph editors. The operation of adding and delet- 
ing edges in a graph may overstretch the “painting” 
metaphor somewhat, but it is fully consistent with “di- 
rect manipulation”: Adding an edge is a modification of 
an object in the underlying database (the graph), and 
is therefore reflected automatically in all views of that 
object. 

Suppose one Input Translator is shared by all the Pre- 
sentations in a plot. It can collect and save painting 
input events, and cause the Presentations that receive 
them to be redrawn, without notifying or modifying 
the Subjects in the underlying database and without 
triggering the possibly expensive consistency constraint 
mechanism. When a commit event is received, the paint- 
ing operations can be forwarded to the database, possi- 
bly re-packaged in a more efficient form (e.g., multiple 
re-painting of the same Subject can eliminated). If a 
cancel event is received, the Translator can discard the 
saved events and cause the Presentations to be redrawn 
with their original appearance (possibly by triggering 
the constraint mechanism). 

4.2 Painting Rings 

Certain variations of painting can be easily implemented 
using simple, but differing Color-Lenses in different 
plots. 

5 Painting tables of discrete 
data 

For example, some painting systems require plots to 
be explicitly linked, permitting the definition of dis- 
joint painting rings; painting ca.n be done between plots 
within a ring, but not across rings. Our model supports 
this by having multiple color Attributes in the subjects, 
one for each plot ring, and a distinct Color-Lens for each 
ring. 

Scatterplots are the display of choice for continuous At- 
tributes, like height, weight, or blood pressure. Statis- 
ticians, however, often encounter data with calegoricnl 
Attributes, that is, Attribut(es that take on a small num- 
ber of discrete values, like (ma.le, female} or {Cadillac, 
Ford, BMW, . . . }. 

4.3 Shadow Highlighting 

Becker and Cleveland’s shadow highlight [3,2]. operation 
offers another variation. In shadow highlight mode, all 
records are drawn as either highlighted or lowlighted in 
the active plot (the one containing the brush). In ot,her 
plots, only the records corresponding to the highlighted 
points in the active plot are drawn; records correspond- 
ing to lowlighted points are not drawn (or are drawn 
with invisible paint). 

Our next example concerns some categorical data ob- 
tained from Mieko Ogura and Bill Wang of the Project 
on Linguistic Analysis at UC Berkeley [20]. Early in 
this century, linguists recorded, in each of 311 villages 
in England, the principal vowel sound (or reflex) used 
in the pronunciation of each of 181 words. Altogether, 
there a.re 113 possible vowel reflexes. However, the data 
is somewhat simplified by being grouped into families, 
like the 35 EA words (eg. great, beans). Within ea.& 
family, only a subset of the possible reflexes occurs. For 
example, only 20 distinct reflexes are used for EA. 

Shadow highlighting can be implemented by using the 
standa.rd Lens in the plot conta.ining the mouse and a. 
Lens that translates lowlighted to invisible in all 
the other plots. 

4.4 Markup and commit 

Taking just the 35 EA words, we could represent this 
data, by a collection of 311 village record objects, with 
37 Attributes-2 continuous Attributes corresponding 
t,o latitude and longitude and 35 categorical Attributes, 
one for ea.ch of the EA words. A scatterplot of latitude 
vs. longitude for the villages is shown in the lower right 
of figure 9 (among a collection of windows produced by 
the Ant,elope system [14]); the points fill out the outline 
of England. 

One example of the use of the Input Translator is to Categorical data is often summarized by contingency 
allow temporary violation of the direct manipulation tables. A one-way, or, better, one dimensional contin- 
model, which assumes that all redrawing of windows is gency t.able merely counts t,he number of records that 
done to reflect changes in the underlying da.ta.base. De- have ea.ch possible value of a given categorical Attribut,e. 
layed satisfaction is a violation of the conceptual model, A two dimensional contingency table counts the number 
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Figure 9: English Vowel data. 
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Figure 10: English Vowel data. after painting. 
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of records that have each possible pa.ir of values for a 
given pair of Attributes. 

Figure 9 shows graphical representations of 3 contin- 
gency tables. 

In the bottom left corner, is a one dimensional con- 
tingency table for the word great. There is one cell in 
the table for each of the twelve reflexes that are used 
to pronounce great somewhere in England. The area 
of the white rectangle is proportional to the number of 
villages that use that reflex; the most common reflex is 
the one that’s labeled d. (The reflex labeling is a fairly 
a.rbitrary translation of phonetic symbols into one or 
two ASCII characters.) 

Just to the right of the great table is a similar table 
for beans. Fifteen different reflexes are used to pro- 
nounce beans; the two most common are labeled id 
and ix. 

In the upper right corner is a two dimensional con- 
tingency table, with the value of great plotted on the 
horizontal and the value of beans plotted on the verti- 
ca.l. Here, the area of the white rectangle is proportional 
to the number of villages that use a particular pa,ir of 
pronunciations for great and beans. The most com- 
mon pair is labeled d for great and id for beans; the 
(fi,i%) pair is almost as common. 

An obvious question is how pronuncia.tion is related to 
spatial distribution in the latitude-longitude scatterplot. 
This can be answered easily by painting both points 
in the scatterplot and cells in the contingency tables. 
The result is figure 10, which shows spa.tial coherence in 
pronunciation, ie., regional dialects. 

Painting a point in a sca.tterplot changes the color of 
one record. Painting a cell in a table is equivalent to 
cha.nging the color Attribute of all the records tl1a.t fa.11 
in that cell. 

A point in a scatterplot is a presentation of a single 
record. A cell in a table is a presentation of a set of 
records, which are usually not all the same color. Cells 
display the colors of their records using a divided color 
ba.r; the proportions of the rectangle that are black and 
white are the same as the proportions of bla.ck and white 
records in the set that the cell represents. 

6 Conclusion 

There is a natural tendency to attempt to con- 
vey complex information with displays of equivalent 
complexity-in other words, to encode as much as pos- 
sible in a single picture. However, such dense encoding 
is not always possibIe. When it is possible, it may not 
he the most effective way to present what’s important. 
Indeed, there is often more than one way to present the 
same informat,ion; which wa.y is preferred depends on 
the task to be accomplished. 

Thus, it is often better (or, at least, easier) to present 

complex information in a number of simple, separate, 
easy-to-comprehend pictures, each focused on a partic- 
ula,r aspect of the larger information system. 

Linking multiple views by painting is an effective 
method for visualizing complex information. Painting 
is best thought of as direct manipulation of the under- 
lying entities. This paradigm, if suitably refined, leads 
to a programming model whose components consist of 
(1) manipulated Subjects in a database, (2) graphi- 
cal Presentations of Subjects, ‘and (3) Links which (a) 
map a Subject to the appearance of a Presentation, (b) 
translate input events into operations on Subjects, and 
(c) update Presentations in response to changes in the 
database. 
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