
Painting multiple views of complex objects

John Alan McDonald
Werner S tuetzle

Department of Statistics, University of Washington
Andreas Buja

Statistics Research Group, Bellcore

Abstract

July 4

This paper reviews and illust,rates a direct manipula
tion approach to visualization of complex objects called
paiidiilg mulliple views. We describe a progra.mming
model for direct manipulation in general alld for pa.int-
ing in particular, based on simple constra.ints between
entities in an the underlying scientific database a.nd the
components of displays used to examine the data. With
this model, the original notion of “brushing sca.tter-
plots” is easily extended.

Keywords: direct manipulation interfaces, exploratory
data analysis.

1 Introduction

Suppose you want to display something complicated,
like a large program, an automobile and a.11 its parts,
or some multivariate statistical da.ta. A natural first
thought is to draw a picture that’s equa.lly complicated,
such as printing the entire program on the screen in a.
really small font, rendering the automobile and its parts
as transparent solids, or presenting the data. as a tableau
of Chernoff faces [6].

Attempts at such dense encoding seldom work well.
It’s usually more effective to construct a number of sim-
ple, easy to understand displays, ea.ch focused clea.rly on
a particular aspect of the information you are trying to
convey. However, you then risk losing track of the rela-
tionships between isola.ted pieces of information,

The purpose of painting multiple views is to help
t,he user to integrate sca.ttered information-by marking
corresponding parts of multiple displays with color (or
some other form of highlighting).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1990 ACM 089791-41 l-2/90/0010-0245...$1.50

1990

For example, consider some experimental tools for
browsing CLOS [25] programs, shown in figure 1. The
windows are displaying a small part of Cactus, a sys-
tem for numerical linear algebra and optimization [16].
The original motivation for constructing these displays
wa.s to understand some unexpected behavior observed
when composing trivial Identity mappings with oth-
ers. The edit,or, on the left, displays a few methods
for t,he generic function compose. The class graph, at
the upper right, focuses on the inheritance relations be-
tween a small subset of the Mapping classes; it makes
the overall structure easy to grasp in a way that is not
possible scrolling through definitions in the editor. At
the lower right is an attempt at joint display of both
class inheritance and methods for the generic function
compose.

The exact na.ture of the problem with Identity is
not relevant here. The point is that we are interested in
the class Identity, there are references to it in all three
windows, but, to find ah the references, we have to read
the displays carefully-their loca.tions are not obvious
from a quick glance at the screen.

It would help to have an easy way to highlight all
references to Identity, wherever they appear on the
screen. One way to do this is to allow the user to dip a
mouse-controlled paint brush into a pallette of highlight-
ing paint, which can be a.pplied to the class Identity
by moving the brush over any visible reference to that
class. The result, using a highlighting paint correspond-
ing t,o a large italic font, is simulated in figure 2. (The
figures in this paper were produced on a Symbolics Lisp
ma.chine. Figure 2 is simulated because we have not im-
plementSed an editor; we are faking the result using the
Zmacs editor [as].)

We genera.lly find painting with color more effective.
Here we are restricted to black and white illustrations,
so we will highlight by change of font and/or size, which
is less dra.matic, but still useful.

Linking multiple views by highlighting or painting is
a straightforward, if not obvious, application of direct
manipulation. From our perspect,ive, the key properties

October 21-25. 1990 ECOOP/OOPSLA ‘90 Proceedings

246

(defmethod compose ((to Linear-llapp,ng) (,I Llnear-
&key rcsw)

(assert (oql (domain 10) (codcmain tt)))
Ccond ((eq result 10) (composa-laltl t0 11))

((eq re*ult 11, (c*mp*se-rlgh,, 1” 11))
(1 (compose-toI to 11 resutt,)),

ldefmetnod compose ((to Identlty) (II happing)
hkey result)

(asoarr (aq (domam 10) (codomaan tl)))
icond ((eq resutt tl) ,I,

((““I, r.ru,t, (copy 11))
(1 (copy ,I :r**utt renult),))

dafmethod compoo. ((to Mapplng) (I, Identity)
hkey result)

(armrt (eq (domain 10) (codomaln ~1)))
(cond (Iaq r.sult 10, to)

((null result, (copy to,,
(t (copy to :rdf”lt res”lt,,))

defm.thod compor. ((to Idaotlty) (tt Lln.a~-Mappl~g)
8key result)

(assert (eq (domain to, (codoma~n 1,)))
icond ((eq re*“lt 11) 11,

((null re~“lt) (copy 1,))
(1 (copy 11 :,*sutt resrr‘t):))

defmethod compose ((10 Linear-capping) (tl Idsntity)
hkey re*w,

(assert (eq (domaln to) (codomain tt)))
(and ((eq result 10) to)

((““II result, (copy to,,
(I (copy to :resldt rsr”rt,),)

Figure 1: Experimental CLOS browsing tools.

defmethod compose ((to /dentifM (11 Mapping)

&key result)
(assert (eq (domain to) (codomain 11)))
(COM ((eq result 11, 11)

((““II result, (COPY ,l))
(1 (copy ,I :result result,,,)

dofmethod compose ((to Map&g) (11 Identity)
hk.Y result)

(SEPW~ (.q (domain to) (codcmain tl)))
(cond ((aq rssdt to) to)

((ml,, result) (copy 10))
(, (copy to :,esu,t r..surt))))

(assert (eq (domain 10) (codomain tl)))
(cond ((aq result II, tl,

((null result, (copy 11))
(I (copy 11 :resu,t rrsult,,))

dsfmethod compass ((to Linear-Mapping) (,I lden iitn
8.k.y rerult)

(assert (eq (domaln to) (cc&main 17)))
(cond ((eq result 10) to)

((null res”lt) (copy IO),
(1 (copy to vesult rosut1,,,,

Figure 2: Simulation of painting the chss Identity.

ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990

of a

.

direct manipulation interface are:

Displays are built out of visible (graphical or text)
presentations of subjects. The subjects are entities
in some underlying program or database.

The appearance of a presentation changes automat-
ically to reflect changes in the state of its subject.

The presentation serves as a locus for graphical in-
put that causes changes in the state of its subject.

To implement painting using direct manipulation, we
assume that the state of subject includes or can be an-
notated with parameters that determine the color, font,
size, etc., of its presentations. Mouse input to some pre-
sentation changes these display parameters in the sub-
ject, which causes all presentations to be re-drawn with
the new color, font, size, etc.

Whether it’s thought of as direct manipulation or
not, this kind of interface architecture is common in
object-oriented programming environments. Exa.mples
of systems that have or can easily support this st8ructure
are: LOOPS (Active Values) [4], Coilab [2G], Pogo [29],
Garnet [18], Smalltalk (Model View Controller) [22],
Thinglab [ll], Animus [lo], and Unidraw [31], a.mong
many others.

2 Brushing Scatterplots

One of the simplest applications tha.t benefits from
painting multiple views is statistical multivaria.te data
analysis. In fact, our notion of “painting multiple views”
arose as a generalization of an idea from intera.ctive data
analysis graphics, sometimes called “brushing sca.tter-
plots,” which dates to the la.te 70’s [19,15,3,2].

The statistician’s multivariate data set is essentially
a relation with n records a.nd p Attributes, where each
Attribute takes on floating point va.lues. More geometri-
cally, we can then think of it as a collection of 11 points-
a point cloud-in a p dimensional euclidean spa.ce.

A fundamental problem in data analysis is to provide
tools for seeing and understanding the p dimensional
sha.pe of such point clouds, without relying too heavily
on preconceived notions of what might be going on in
the data. This is intrinsically difficult, beca.use human
perception and imagination are designed for a world of
one time dimension and 3 spatia.1 dimensions.

The basic tool for looking at point, clouds is the sca.t-
terplot, which can be thought of geometrically as a. pro-
jection of the p dimensional points onto a two dimen-
sional plane. There is a. long history of attempts to
encode more information in scatterplots. One a.lterna-
tive is encoding additional Attributes in the glyph or
plotting symbol used for ea.ch data. point. Another is to
use realtime motion to encode one or more additional
va.riables. An example is using rotation to displa,y three

dimensional point clouds. See [S] for a review and some
recent exa.mples of both these approaches.

“Brushing scatterplots” displays high dimensional
point clouds by linking a number of simultaneous scat-
terplots. The linking is constructed interactively and
dyna,mically modified by painting points in one scatter-
plot; all corresponding points in other scatterplots auto-
matically take on the same color. This idea has become
a standard part of many commercially available statisti-
cal graphics systems (e.g., MacSpin [9], Data Desk [30]).

To provide a better sense of how painting multiple
views can be used, we next consider an example from
the analysis of multispectral images. Figure 3 shows a.
Landsat image of the confluence of the Rio Solim6es and
the Rio Negro near Manaus, Brazil, taken by Landsat
2 on July 31, 1977. The full image consists of approx-
imately 1000x1000 pixels, with intensities measured in
four spect,ral ba.nds for each pixel. Thus the image can
be considered a G dimensional point cloud, with a point
corresponding to each pixel, 4 dimensions correspond-
ing to the 4 spectra.1 bands and 2 dimensions to the x
and y loca.tion of the pixel in the ima.ge.

Figure 3 was produced by the WISP image process-
ing system [24]. WISP supports analysis of multispec-
tral images using mixing models [1,23]. One purpose
of mixing models is to infer what’s on the ground from
the spectral data recorded by the satellite. A mixing
model decomposes the observed spectrum of a pixel
(which, in La.ndsat MSS, covers a.pproximately an 80
meter square) into a combination of a small number of
spect,ra. of “pure” substances. The idea is to estimate
wha.t proportions of the 80 meter square are covered by
substances of interest (eg. rain forest vs. grassland).
The issue addressed by this example is whether a sim-
ple (convex) linear combina.tion of spectra is sufficient
or a more complex, non-linear mixing model is required.

WISP has an interface that allows a subset of the pixel
point cloud to be selected for analysis with the Data
Viewer [5,13], a system for a.nalyzing multivariate data
using a va.riety of techniques based on realtime motion
and interaction, including painting. One would prefer
to analyze the whole image’s point cloud, but the Data
Viewer (and its hardware platform, a Symbolics 36xx
series workstation) gives adequate interactive response
with data sets of up to about 2 thousand points.

The image in figure 3 is overlaid with 5 small white
rectangles (which may be difficult to see in black and
whit,e xerographic reproduction), outlining the pixels se-
lected for examination with the Data Viewer: the small
square in the upper part of the image covers pixels that
are forest vegetation; the square in the lower right is
gra.ssla.nds; the square in the lower left is muddy water
in the Rio SolimGes; the square in the middle left is da.rk
water in the Rio Negro; and the long narrow rectangle in
the middle is a transect across the confluence (mixing)
of the muddy and da.rk water.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 247

The selected pixels are displayed in two Data Viewer
windows, shown in figure 4: The left window, with
its label Brushing obscured by the menu that begins
Highlight all, shows a scatterplot of the original x
and y pixel coordinates. The viewing transformation
for this window has been chosen so that only the muddy
water, dark water, and transect pixels are visible. The
right plot, labeled Variable Plots, shows a scatterplot
of Band-5 vs Band-6 for all 5 groups of pixels. (Land-
sat was originally intended to have 7 spectral bands;
due to a malfunction, the satellite only returns bands 4
through 7.) The key question to be answered is whether
the pixels in the transect can be represented as a convex
combination of muddy and dark water spectra. This is
true if the transect pixels lie a.long a line between the
muddy and dark water pixels in the four dimensional
spectral space.

In figure 4, muddy water pixels, in the left bottom
of the Brushing window, are highlighted, by covering
them with the paint brush (the small rectangle). Un-
highlighted pixels are drawn as horizontal dashes a.nd
highlighted pixels are drawn as vertical dashes. The
muddy water pixels fall at the top of the linear struc-
ture on the left of the points in the Variable Plots
window.

In 5, dark water pixels, at the far left of the Brushing
window, are highlighted. The dark water pixels turn out
to be at the bottom of the 1inea.r structure.

Figures 6 and 7 show a sweep across the transect of
the confluence, which produces a corresponding sweep
across the linear structure in the Variable Plots win-
dow, confirming that these pixels are in fact, convex
combinations of dark and muddy water pixels.

3 Implementation

The need to solve concrete scientific and engineering
problems is a tremendous stimulant of creativity, espe-
cially in ways of displaying and intera.cting with spe-
cialized kinds of information. It follows that an ideal
system for visualization should help users to improvise
new kinds of displays quickly, including new modes of
interaction with those displays. Failing that, a good
system should permit experts to implement small ex-
tensions of existing functionality quickly. For this to be
true, it must be possible to implement a change t1~a.t
seems small to the user by a small change to the pro
gram. This implies that the abstractions used in the
program must correspond closely to the way the users
think about the underlying problem.

It ma.y seem that we are belaboring a.n obvious point,
but it is rare in scientific computing to find systems
whose programming abstra.ctions are at all simi1a.r to
the underlying problem they are intended t,o solve.

Consider, for example, what we will ca.11 the “stan-

dard” implementation model for brushing scatterplots.
In the standa.rd implementation, each scatt8erplot has
an N x 2 array holding the X and Y coordinates of the
points. This array is created typically by extracting
two-dimensional records from an underlying database
and applying a viewing transformation to get window
coordinates. In addition, there is a color array of length
N that is shared by all plots. When brushing, the pro-
gram examines the XY array to find the indices of the
points under the mouse, changes, if necessary, the val-
ues in the corresponding locations in the color array, alld

redraws points at the coordinates in the corresponding
locations in all the XY array.

This implementation strategy is natural for a pro-
gra.mmer with experience in conventional scientific com-
puting; Fortran subroutine libraries often represent im-
portant information purely by location in arrays. Nearly
all implementations of brushing scatterplots of which
we are aware, including our own early work, share the
essent,ial feature (and failing) of this model, which is
that the correspondence between plots is represented
by matching array indices. Unfortunately, it precludes
even the most trivial extensions. For example, suppose
the user wishes to simultaneously analyze three data
set,s: all the patients in a clinical trial of some drug,
the male patients in the trial, and the female patients.
Typical commercial implementa.tions of brushing scat-
terplots either restrict the user to a single data set, or
brush separate data sets separately, ie., brushing in a
plot of all pa.tients has no effect on plots of male pa-
tients or plots of female pa.tients.

If we think of brushing sca,tterplots in terms of direct
manipulation, then it’s obvious what wrong with the
“sta.nda.rd” implementation: There’s no reliable repre-
senta.tion for the identity of the underlying entity tha.t’s
being brushed.

We next present an implementation model for paint-
ing multiple views based on direction manipulation.
The following discussion is based primarily on the An-
telope system [14,17] and to a lesser degree on the Plot
Windows [27] and Data Viewer [5,13] systems. The
model presented here is not an accurate description of
a.ny of these systems; it reflects what we have learned
from what wa.s wrong with them. It is the basis for
a new, more portable system, currently under develop-
ment .

To successfully support direct manipulation, our pro-
gra.mming model has several components that are im-
plicit in a conceptual model of direct manipulation (see
Figure 8):

l Subjects in a Database

There is a.n object (a Subject) in the programming
environment representing ea.ch abstract entity (eg.,
a multispectral image pixel) that the user might
wa.nt to examine, select with the mouse, and ma-

248 ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990

Figure 3: The confluence of the Rio Solim6es and the Rio Negro

) Glyph-Brushing 1

Pick Glyph

Color-Brushing
n

Pick Color

Undelete All

Undelete-Brushing

October 21-25, 1990

Figure 4: Hi&li&ting muddy water,

ECOOPlOOPSLA ‘90 Proceedings

Variable Plots
+

AT-
- - -

&!z -
-IS+- -- - -
-t --- --

- -

- ------ --

- - - - --- _- ---

--- - -__---

- _- -- - --

- _ - __m-----me

_ ----- -- -

- --- - ____--- -d- -

-- ___--- - ---- -

--- --

--- - - -

-- --- a_

--

- -

anaus Landsat Pixels

249

Highlight All bg Highlight All kg

111 Unhighlight All Unhighlight All 1

> Glyph-Brushing

Pick Glyph I

Color-Brushing

Pick Color

Undelete Al'1

Undelete-Brushing

III ~ Delete-Brushing Delete-Brushing 1

111 Sticky -> Non-stick+ Sticky -> Non-stick!,

Return Return pat Pixels at Pixels

Variable Plots

- - - - --

Y-CoorJ

Band-4

y I

Band-5
x

-

Band-6

-- - -

--

a.“-

--

--

-- - -

e-m

e-w

-

-- --

- - __----

__ -- - --

- -

-
_- _--- -- -

- ---- -- _-- - _

--- - -- - - --

- __ -- - --

- _ _ __--a - -m-c

_ - _ _ __ - _ -
_ _ _ _ _ - ______ - _ _ -

-- ___ _ _ _ - - -- - -
++- --
,m+- - - -
-- --- --

III - .
111 -

Band-7 Manaus Landsat Pixels

-- ___ -

Figure 5: Highlighting dark water

250

Unhighlight All

> Glyph-Brushing

Pick Glyph

Color-Brushing

Pick Color

Undelete All

Undelete-Brushing

Delete-Brushing

Sticky -> Non-stick:)

Highlight All kg

.

Return at Pixels

X-Coorl

Y-Coot-3

Band-4

y I

Band-S
x

-

Band-6

Band-7

Variable Plots

- - - - -- -- --- -
-- - -

-- - -

m-m

-

-- --

- ------ - -- -- - --
- -

- ------ -- -

Mm- - - - --- -- e-m
I II - --- - --

lllrnl -- -- - --
I, II II - - -_-----m-m

-I(1111111 -- ---- -- -
,111 - - - - ------- --- -

-,$f,, -----_ - --- - -
lP*+ --
z; - --- - - -

I_
-1 - -

Manaus Landsat Pixels

Figure 6: Highlighting the top of the confluence.

ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990

Highlight All

Unhighlight All

> Glyph-Brushing

Pick Glyph

Color-Brushing

Pick Color

Undelete All

Undelete-Brushing

Delete-Brushing

Sticky -> Non-stick

Return

I n

sat Pixels

r, II I X-Coor 1

Y-Coor j

Band-4

* I

Band-5
x

-

Band-6

Band-7

Variable Plots

II 111 II I, - ----- -- -

,111 - - - - ------- --- -

I M II -,“” - ---- r
n-n I

--

-VP+-4 - - -
-wilt, --- --

-I
- s

Manaus Landsat Pixels

Figure 7: Highlight~ing t#he whole confluence.

nipulate.

Each Subject has associated with it a set of At-
tributes; an Attribute has an ident#ity independent
of any particular Subject. We can evaluate an At-
tribute for any Subject for which it is defined and
we can change the value for some, if not a.11, At-
tributes. We can also define new Attributes for a
given Subject at runtime. This is simi1a.r to the
data model proposed in 1211.

Mutable Attributes are required to support the mu-
table appearances of the Subject’s Presenta.tions.
Having an extensible set of Attributes allows dif-
ferent Presentations to behave differently in ways
decided at runtime (see section 4.2 below).

In some object-oriented programming languages, it
is straightforward to represent Subjects by objects
and Attributes by the slots (instance variables) of
the Subject objects. Unfortuna.tely, in many la.n-
guages and databases, it may too expensive or not
even possible to have mutable slots or to a.dd slots
at runtime. However, we can use essentia.lly the
same programming model as long as Subject,s ha.ve
unique identities and we can build mut,able tables
that map Subject identities to colors or other ap-
pearance parameters. We can then generalize our
notion of Attribute to include both slots that are
intrinsically part of each Subject and these mutable
tables, defined at runtime.

The key points are tha.t we ca.n: (1) get values for
any defined Subject-At,tribute pa.ir (2) set values
for all Subjects and some Attributes and (3) define
new mutable Subject-Attribute pa.irs at runtime.

Our programming model also presumes that Sub-
jects can be organized into structured Collections,
like the Collection classes of Smalltalk [12], eg.
lists, directed graphs, or dictionaries. We also pre-
sume that new types of Collections can be defined
- if not by a random user, then at least by a
programmer sophisticated enough to develop new
kinds of plots.

0 Presentations in a Scene

The Scene consists of a directed acyclic graph (usu-
ally a tree) of objects (Scene Nodes) representing
geometric shapes (including text), in a two or three
dimensional Scene Space, The Scene is rendered
onto a display surface by standard computer graph-
ics techniques. Some nodes in the Scene are visi-
ble representations or Presentations of some of the
Subjects. (Our use of the word “Presentation” is
simila,r, but not identical to [7].)

A Subject determines the position and appearance
of its Presentations through an output Lens (see
below). The hierarchical or graph structure of the
Scene will often reflect a similar hierarchy in the
Subjects; in other words, a Presentation of a Col-
lection may have children that are Presentations of
the elements of the Collection.

l Links

There must be a mechanism for linking Presenta-
tions and their Subjects. There are three kinds of
connections between Presentations and Subjects:

- Lenses for output filt,ering

October 21-25, 1990 ECOOPIOOPSLA '90 Proceedings 251

110 DEVICES SCENE LINKS DATA BASE

Figure 8: A diagmm of the programming model.

A Lens maps from Subjects to be visualized
into draw-able colored geometric shapes (in-
cluding text) in the Scene space; it computes
the position and appearance of a Presentation
from the Attributes of its Subject.

In general, each Presentation could ha,ve its
own unique Lens, computing position, sha.pe,
size, color, texture, etc., from its Subject how-
ever it likes. However, the standard pa.int-
ing operation-and most of the interesting
variations-can be implemented with a small
number of simple Lenses, shared across Pre-
sentations and across plots as well.

- Input-Translators

An Input-Translator maps input events re-
ceived by a Presentation to operations on its
Subject.

- Consistency-Constraints

A Consistency-Constraint ensures that the
Scenes always reflect the current state of the
Subjects.

To implement a simple version of painting for scat-
terplots, we first suppose the Subjects (the records in
the multivariate dataset) have p quantitative Attributes
and one color Attribute. We also suppose the records
are organized into Data-Set collections; a Data-Set is es-
sentially a list of records, with perhaps additional (sum-
mary) information about its records and Attributes.

In a scatterplot, the Scene is a tree. A Scatterplot-
Root node typically has four children: a Label node
that is a Presentation of a Data-Set, X-Axis and Y-Axis
nodes, and a Point-Cloud node (another PresenMion of
the Data-Set). An Axis node has a Label node (a Pre-
sentation of a continuous Attribute) and a. Ruler node
as children; a Ruler has Tic and possibly Tic-Label chil-
dren. A Point-Cloud has Point-Glyph children, each of

which is a Presentation of an element of the Data-Set.
A scatterplot uses a simple scatterplot Lens with two

component sub-Lenses: (1) a Projection-Lens that maps
a high dimensional record to a position in 2D Scene
space and (2) a Color-Lens that reads the value in the
color slot in the record object. The Projection-Lens
varies from plot to plot, but is the same for all Point-
Glyph Presentations in a given plot. All the Point-
Glyphs in all plots share the same Color-Lens, so that
all Point-Glyphs always have the same color as their
Subjects.

Painting input events received by a Point-Glyph are
tra.nsla.ted to the operation of changing the color At-
tribute of the glyph’s Subject record. The Consistency-
Constraint’s ensure that all visible Point-Glyph’s are
redrawn when their Subject’s color Attribute changes.

4 Small extensions of brushing
scatterplots

In this section, we present a number of small variations
on the basic idea of “brushing scatterplots.” in the next
section we discuss the slightly larger extension to dis-
plays of discrete data. There are several reasons for do-
ing so. One is to present a small sample of the range of
applications of painting multiple views, all of which are
natural consequences of the user’s thinking in terms of
direct manipulation of some underlying database. An-
other is to give some sense of how rapidly small new
ideas can arise, given the stimulation of new problems
and a simple but powerful conceptual model. This is
more evidence of the importance of improvisation in vi-
sualiza.tion systems. Finally, we wish to demonstrate
that our simple programming model easily supports im-
plementation of these few explicit examples and, by im-
plication, ma.ny other sma.11 extensions as well.

252 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990

4.1 Connecting points by lines

Our programming model supports a number of varia-
tions of painting using Collections that have more struc-
ture than simple lists of record objects.

The basic idea of linking multiple scatterplots by
changing the appearance of points was first invented
by Newton in 1978 [19]. Newton’s system provided an
interesting variation on painting: a user could connect
pairs of points by lines; the lines would be drawn in all
plots.

but it is sometimes necessary to get fast-enough feed-
back. This is important if, for example, one imple-
ments painting on images without subsetting. It can
be thought of as a variation on the idea of markup, that
is, the user gets a chance to see what the result will look
like before committing to a change in the database.

This operation makes most sense if we consider our
plots to be views of directed graphs, whose nodes are
records. Instead of multiple scatterplots, we have mul-
tiple graph editors. The operation of adding and delet-
ing edges in a graph may overstretch the “painting”
metaphor somewhat, but it is fully consistent with “di-
rect manipulation”: Adding an edge is a modification of
an object in the underlying database (the graph), and
is therefore reflected automatically in all views of that
object.

Suppose one Input Translator is shared by all the Pre-
sentations in a plot. It can collect and save painting
input events, and cause the Presentations that receive
them to be redrawn, without notifying or modifying
the Subjects in the underlying database and without
triggering the possibly expensive consistency constraint
mechanism. When a commit event is received, the paint-
ing operations can be forwarded to the database, possi-
bly re-packaged in a more efficient form (e.g., multiple
re-painting of the same Subject can eliminated). If a
cancel event is received, the Translator can discard the
saved events and cause the Presentations to be redrawn
with their original appearance (possibly by triggering
the constraint mechanism).

4.2 Painting Rings

Certain variations of painting can be easily implemented
using simple, but differing Color-Lenses in different
plots.

5 Painting tables of discrete
data

For example, some painting systems require plots to
be explicitly linked, permitting the definition of dis-
joint painting rings; painting ca.n be done between plots
within a ring, but not across rings. Our model supports
this by having multiple color Attributes in the subjects,
one for each plot ring, and a distinct Color-Lens for each
ring.

Scatterplots are the display of choice for continuous At-
tributes, like height, weight, or blood pressure. Statis-
ticians, however, often encounter data with calegoricnl
Attributes, that is, Attribut(es that take on a small num-
ber of discrete values, like (ma.le, female} or {Cadillac,
Ford, BMW, . . . }.

4.3 Shadow Highlighting

Becker and Cleveland’s shadow highlight [3,2]. operation
offers another variation. In shadow highlight mode, all
records are drawn as either highlighted or lowlighted in
the active plot (the one containing the brush). In ot,her
plots, only the records corresponding to the highlighted
points in the active plot are drawn; records correspond-
ing to lowlighted points are not drawn (or are drawn
with invisible paint).

Our next example concerns some categorical data ob-
tained from Mieko Ogura and Bill Wang of the Project
on Linguistic Analysis at UC Berkeley [20]. Early in
this century, linguists recorded, in each of 311 villages
in England, the principal vowel sound (or reflex) used
in the pronunciation of each of 181 words. Altogether,
there a.re 113 possible vowel reflexes. However, the data
is somewhat simplified by being grouped into families,
like the 35 EA words (eg. great, beans). Within ea.&
family, only a subset of the possible reflexes occurs. For
example, only 20 distinct reflexes are used for EA.

Shadow highlighting can be implemented by using the
standa.rd Lens in the plot conta.ining the mouse and a.
Lens that translates lowlighted to invisible in all
the other plots.

4.4 Markup and commit

Taking just the 35 EA words, we could represent this
data, by a collection of 311 village record objects, with
37 Attributes-2 continuous Attributes corresponding
t,o latitude and longitude and 35 categorical Attributes,
one for ea.ch of the EA words. A scatterplot of latitude
vs. longitude for the villages is shown in the lower right
of figure 9 (among a collection of windows produced by
the Ant,elope system [14]); the points fill out the outline
of England.

One example of the use of the Input Translator is to Categorical data is often summarized by contingency
allow temporary violation of the direct manipulation tables. A one-way, or, better, one dimensional contin-
model, which assumes that all redrawing of windows is gency t.able merely counts t,he number of records that
done to reflect changes in the underlying da.ta.base. De- have ea.ch possible value of a given categorical Attribut,e.
layed satisfaction is a violation of the conceptual model, A two dimensional contingency table counts the number

October 21-25, 1990 ECOOPIOOPSLA ‘90 Proceedings 253

Grand Tour
Inspect a Data 5ct

Select a Plot

Figure 9: English Vowel data.

Grand Tour

254

Figure 10: English Vowel data. after painting.

ECOOP/OOPSLA ‘90 Proceedinp October 21-25, 1990

of records that have each possible pa.ir of values for a
given pair of Attributes.

Figure 9 shows graphical representations of 3 contin-
gency tables.

In the bottom left corner, is a one dimensional con-
tingency table for the word great. There is one cell in
the table for each of the twelve reflexes that are used
to pronounce great somewhere in England. The area
of the white rectangle is proportional to the number of
villages that use that reflex; the most common reflex is
the one that’s labeled d. (The reflex labeling is a fairly
a.rbitrary translation of phonetic symbols into one or
two ASCII characters.)

Just to the right of the great table is a similar table
for beans. Fifteen different reflexes are used to pro-
nounce beans; the two most common are labeled id
and ix.

In the upper right corner is a two dimensional con-
tingency table, with the value of great plotted on the
horizontal and the value of beans plotted on the verti-
ca.l. Here, the area of the white rectangle is proportional
to the number of villages that use a particular pa,ir of
pronunciations for great and beans. The most com-
mon pair is labeled d for great and id for beans; the
(fi,i%) pair is almost as common.

An obvious question is how pronuncia.tion is related to
spatial distribution in the latitude-longitude scatterplot.
This can be answered easily by painting both points
in the scatterplot and cells in the contingency tables.
The result is figure 10, which shows spa.tial coherence in
pronunciation, ie., regional dialects.

Painting a point in a sca.tterplot changes the color of
one record. Painting a cell in a table is equivalent to
cha.nging the color Attribute of all the records tl1a.t fa.11
in that cell.

A point in a scatterplot is a presentation of a single
record. A cell in a table is a presentation of a set of
records, which are usually not all the same color. Cells
display the colors of their records using a divided color
ba.r; the proportions of the rectangle that are black and
white are the same as the proportions of bla.ck and white
records in the set that the cell represents.

6 Conclusion

There is a natural tendency to attempt to con-
vey complex information with displays of equivalent
complexity-in other words, to encode as much as pos-
sible in a single picture. However, such dense encoding
is not always possibIe. When it is possible, it may not
he the most effective way to present what’s important.
Indeed, there is often more than one way to present the
same informat,ion; which wa.y is preferred depends on
the task to be accomplished.

Thus, it is often better (or, at least, easier) to present

complex information in a number of simple, separate,
easy-to-comprehend pictures, each focused on a partic-
ula,r aspect of the larger information system.

Linking multiple views by painting is an effective
method for visualizing complex information. Painting
is best thought of as direct manipulation of the under-
lying entities. This paradigm, if suitably refined, leads
to a programming model whose components consist of
(1) manipulated Subjects in a database, (2) graphi-
cal Presentations of Subjects, ‘and (3) Links which (a)
map a Subject to the appearance of a Presentation, (b)
translate input events into operations on Subjects, and
(c) update Presentations in response to changes in the
database.

7 Acknowledgments

The resea.rch was supported by Bell Communications
Research, the Dept. of Energy under contract FGOG85-
ER.25006; the Office of Naval Research under Young In-
vestigator award N00014-86-K-0069, contract N00014-
83-K-0472, and grant N00014-84-G-0178; and the Na-
tiona.l Science Founda.tion under grant DMS-8504359.
Part of this manuscript was completed while the second
author was with Bellcore. A number of important ideas
used here (in particular the notion of Lenses) came from
discussions with Alan Borning. We thank John Micha.-
lak for producing figure 8 and Steve Willis for producing
figure 3.

References

PI

PI

PI

WI

PI

John B. Adams, Milton 0. Smith, and Alan R.
Gillespie. Simple models for complex natural sur-
fa.ces: A stra.tegy for the hyperspectral era of re-
mote sensing. In IGARRS’89, the IEEE Interna-
tiona.1 Geoscience and Rem.ote Sensing symposium,
1989.

R.A. Becker and W.S. Cleveland. Brushing scat-
terplots. Technometrics, 29:127-142, 1987.

R.A. Becker and W.S. Cleveland. Dynamic graph-
ics for data analysis. Statistical Science, 2:355-395,
1987.

D.G. Bobrow and M. Stefik. The LOOPS Manual.
Xerox PARC, 3333 Coyote Hill Road, Palo AIto,
CA 94304, 1983.

Andreas Buja, Catherine Hurley, and John Alan
McDona.ld. A Da.ta Viewer for multivariate data.
In Computer Science and Statistics: Proc. 18th
Symp. on the Interface, pages 171-174, Washing-
ton, D.C., 1987. ASA.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedinp 255

PI

PI

PI

PI

PO1

WI

1121

[131

1141

[151

WI

Herman Chernoff. The use of fxes to represent
points in k-dimensional space graphically. Jozlr-
nal of the American Statistical Association, 68:361-
368, 1973.

E.C. Ciccarelli. Presentation based user interfaces.
Technical Report 794, MIT AI Laboratory, 1984.

W.S. Cleveland and M.E. McGill. Dynamic Graph-

ics for Statistics. Wadsworth and Brooks/Cole,
Belmont, Ca., 1988.

A.W. Donoho, D.L. Donoho, and M. Gasko.
Ma&pin: dynamic graphics on a desktop com-
puter. IEEE Computer Graphics and Applications,

8(4):51-58, 1988.

Robert Duisberg. Constraint-based animation: the

implementation of temporal constraints in the An-

incus system. PhD thesis, U. of Washington, 1986.
Available as Tech. Rept. 86-09-01, Department of
Computer Science, U. of W., Seattle WA 98195.

R. K. Ege, D. Maier, and Alan H. Borning. The Fil-
ter Browser-Defining Interfaces Graphically. In
Proceedings of the European Conference on Object-

Oriented Programming, Paris, 1987. Association
Francaise pour la Cybernetique Economique et
Technique.

A. Goldberg and D. Robson. Smalltalk-80, The

Language and Its Implementation. Addison-
Wesley, Reading, MA, 1983b.

Catherine Hurley. The Rata Viewer: a program

for graphical data analysis. PhD thesis, Dept. of
Statistics, U. of Washington, 1987.

John Alan McDonald. Antelope: data analysis
with object-oriented programming and constraints.
In Proc. of the 1986 Joint Statistical Meetings,

Stat. Comp. Sect., 1986. Also Tech Rept 89, Dept.
of Statistics, U. of Washington.

John Alan McDonald. Interactive graphics for data
analysis. In W.S. Cleveland and M.E. McGill, ed-
itors, Dynamic Graphics for Statistics, pages 247-
275. Wadsworth and Brooks/Cole, Belmont, CA,
1988. Ph.D. thesis, Dept. of Statistics, Stanford,
June 1982, and Dept. of Statistics, Stanford, Tech
Rept Orion 11.

John Alan McDonald. Object-orient,ed progra.m-
ming for linear algebra. SIGPLAN Notices (Pro-

ceedings OOPSLA ‘89), 24(10): 175-184, 1989. also
Tech. Rept. 175, Dept. of Statistics, GN-22, U. of
Washington, Seattle, WA 98195.

WI

P81

WI

PO1

WI

WI

[231

PI

PI

PI

[271

P81

John Alan McDonald and Ja.n 0. Pedersen. Com-
puting environments for data analysis III: Pro-
gramming environments. SISSC, 9(2):380-400,

1988.

Brad A. Myers. An object-oriented, constraint-
based user interface development environment for
X in Common Lisp. In 4th Annual X Techni-
cal Conference: Technical Papers, Boston Marriot

Copley Place, January i5-17, 1990, 1990.

C. M. Newton. Graphics: from alpha to omega
in data analysis. In P.C.C. Wang, editor, Graphi-

cal Representation of Multivariate Data. Academic
Press, New York, 1978. Proceedings of the Symp.
on Graphical Representation of Multivariate Data,
Naval Postgra,duate School, Monterey, Ca., Feb 24,
1978.

Mieko Ogura and Wil1ia.m Wang. Spatial distribu-
tion of the Great Vowel Shift in England. In Lan-

guage Transmission an,d Change. Blackwell, Lon-
don, England, 1989.

R.W. Oldford. Object-oriented software represen-
tations for statistical da,ta. Journal of Economet-

rics, pages 227-246, 1988.

Lewis J. Pinson and Richard S. Wiener. An

introduction to object-oriented programming and

Sm.alltalk. Addison-Wesley, Reading, MA, 1988.

Antonio Possolo, John Adams, and Milton Smith.
Mixture models for multispectral images. Tech-
nical report, Dept. of Geological Sciences, U. of
Washington, 1989.

P. Shippert, G. Bradshaw, and S. Willis. Wash-
in.gton Image and Spectral Package (WISP) Pre-

lim.ima y Documentation. Remote Sensing Labora-
tory, Dept. of Geological Sciences, U. of Washing-
ton, Seattle, WA 98195, May 11, 1989.

G.L. Steele. Comm.on Lisp, The Language, 2nd

Edition. Digital Press, 1990.

M. Stefik, G. Foster, D.G. Bobrow, K. Kahn,
S. Lanning, a.nd L. Sucl1ma.n. Beyond the chalk-
boa,rd: computer support for collaboration and
problem solving in meetings. CACM, 30(1):32-47,
1987.

W. Stuetzle. Plot windows. JASA, 82(398):4GG-
475, 1987.

Symbolics. Text Editing and Processing. Symbol-
its, Inc., 4 New Engla,nd Tech Center, 555 Virginia.
Roa.d, Concord, Mass 01742, 1986.

256 ECOOPIOOPSLA '90 Proceedings October 21-25, 1990

[29] Mark A. Tarlton and P. Nong Txlton. Pogo: a
declarative representation system for graphics. In
Won Kim and Frederick H. Lochovsky, editors,
Object-oriented concepts, databases, and applica-
lions, chapter 7, pages 151-176. ACM Press, New
York. 1989.

[30] Paul F. Velleman. Learning Data Analysis with
Dale Desk. W.H. Freeman and Co., New York,
NY, 1989.

[31] John M. Vll isi d es and Mark A. Linton. Unidraw:
A framework for building domain-specific graphi-
cal editors. In 4th Annual X Technical Conference:
Technical Papers, Boston Marriot Copley Place,
January 15-17, 1990, 1990.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 257

